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Abstract: Features play an important role in the learning technologies and pattern recognition
methods for polarimetric synthetic aperture (PolSAR) image interpretation. In this paper, based on
the subspace clustering algorithms, we combine sparse representation, low-rank representation,
and manifold graphs to investigate the intrinsic property of PolSAR data. In this algorithm
framework, the features are projected through the projection matrix with the sparse or/and the
low rank characteristic in the low dimensional space. Meanwhile, different kinds of manifold graphs
explore the geometry structure of PolSAR data to make the projected feature more discriminative.
Those learned matrices, that are constrained by the sparsity and low rank terms can search for a
few points from the samples and capture the global structure. The proposed algorithms aim at
constructing a projection matrix from the subspace clustering algorithms to achieve the features
benefiting for the subsequent PolSAR image classification. Experiments test the different combinations
of those constraints. It demonstrates that the proposed algorithms outperform other state-of-art linear
and nonlinear approaches with better quantization and visualization performance in PolSAR data
from spaceborne and airborne platforms.

Keywords: PolSAR classification; subspace clustering; feature extraction; sparse representation;
low-rank representation; manifold graph

1. Introduction

Polarimetric synthetic aperture image (PolSAR) is an actively full polarimetric radar measurement
system, which can acquire abundant electromagnetic scattering information according to different
transmitting and receiving mechanisms. Due to the comprehensive description of land covers,
the received data contains more target information to deal with target detection, recognition, and land
cover classification tasks. Recently, a large amount of data from airborne and spaceborne platforms
has been produced. However, the development of assistant analysis and automatic decision systems
have lagged far behind the production of data sources. The distinctive imaging mechanism and the
complexity of imaging conditions make it difficult to automatic interpret and manual adjudge PolSAR
data. Then, how to process, analyze, and exploit the large amount of PolSAR data, and how to extract
more effective target information have become an key research direction in the field of remote sensing
information processing.

In the field of radar polarimetry signal processing, the observation data including polarimetry
covariance matrix, coherent matrix, backscattering matrix, Stokes matrix, and Mueller matrix
can be calculated through mathematical operation to characterize the polarimetric scattering
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property. Meanwhile, in order to exploit the distinct physical mechanism, some polarimetric target
decomposition mechanisms have been developed to describe the average backscattering of some
independent components. In an early example of this, Krogagor carried out a study and resolved the
scattering matrix into three components with clear physical mechanism [1]. Cloude [2], Holm and
Barnes, and Van Zyl [3] also developed excellent orthogonal component decomposition theorems.
Freeman developed a three-components mechanism to capture canopy scatter from a cloud of randomly
oriented dipoles, which is usable to estimate the effects of foresee inundations [4]. Furthermore, the
helix scattering term taking account of the co-pol and the cross-pol correlations is added as the fourth
component in the three components scattering model [5]. Based on H/A/α (Cloude) decomposition,
it can initialize and develop the Wishart-distribution based maximum likelihood classifier [6,7].
Those polarimetric characteristics were attempted to improve the classification performance and
exploited to discriminate different targets. However, how to select and extract effective features
from PolSAR data is still a problem in the PolSAR image processing. This is because the different
target decomposition components represent different physical mechanisms, and the same targets
or terrains always possess the same scattering mechanism, and vice versa [8]. Some approaches
directly extract nine freedom parameters from coherence matrix or covariance matrix to construct a
feature vector in machine learning related algorithms. They are also regarded as the representative
features for multilook PolSAR image interpretation [9]. The covariance matrix is the Hermitian positive
definite matrix lying in the nonlinear manifolds, so some researchers hold that Riemannian geometry
is suitable to analyze the PolSAR data, and project the matrix into a higher dimensional kernel Hilbert
space [10]. Literatures [11,12] evaluate and compare features for classifying PolSAR imagery, and
some also cascade multimodal features to form high-dimensional vectors and reduce those vectors to
discriminative features [8,13,14] .

Considering the spatial correlation of pixels in imagery, literature [15] focuses on combining
of multimodal features and exploiting the tensor-based techniques to facilitate the PolSAR image
classification. Some literatures [16,17] exploit the segmentation steps or the superpixel algorithms
to form groups of pixels to represent homogenous regions. Their features can reduce the influence
of speckles and the computation complexity. However, there are some problems in the process
of features selection and extraction. Different classifiers are suitable for different features owing
to different physical and statistical characteristics. So it is difficult to select optimal features in
corresponding classification tasks to adapt to different land covers. Then, the conventional methods
cascade multimodal features into a high-dimensional space, and project the data into a low-dimensional
space. In other words, they are dimensionality reduction process. In the principal component
analysis (PCA) and independent component analysis (ICA) algorithms [18–20], they mainly focus on
investigating the discriminative components of a group of data. In order to test whether it is suitable
to construct a whole neighborhood graph, Laplacian eigenmaps (LE) tried to process the features
from PolSAR data [8,21]. Graph embedding methods utilize the training samples to calculate the
similarity matrix with a linear technology and project the data into a low-dimensional space [13].
However, those embedding or clustering algorithms are all based on eigenvalue decomposition
without straightforward extension for out-of-sample examples. To overcome those difficulties, we
devote our work to sufficiently exploiting a latent intrinsic subspace and calculating a corresponding
projection matrix for extracting the discriminative features.

In the pattern recognition field, no matter whether the process is text, video, document, audio, or
images, high-dimensional data problem is inevitable. However, those high-dimensional data often
lie in a union of low-dimensional subspace. It is necessary to recover the low-dimensional structures
for reducing the computation complexity and improving the performance of algorithm tasks [22].
In many problems, data from the same category can be represented by a union of low-dimensional
space. Then the notion of subspace clustering is proposed to focus on finding the number of subspaces,
the intrinsic dimension of corresponding subspace, and the basic of subspaces [23]. The subspace
clustering algorithms can be mainly divided into four categories: iterative methods, algebraic
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approaches, statistical methods, and spectral clustering based methods [24–29]. Meanwhile, the sparse
representation and low-rank based algorithms are proposed to process the subspace cluster problem
archiving great success. Those state-of-the-art algorithms include the Sparse Subspace Clustering
(SSC) [22,30,31], Low-Rank Subspace Clustering (LRSC) [32,33], Low-Rank Sparse Subspace Clustering
(LRSSC) [34], and Laplacian regularized Low Rank Subspace Clustering (LapLRSC) [35] under the
constraint of sparsity, low-rank and manifold regularization to find a reasonable representation of data.
They could handle the noises and outliers in the dataset without knowing the number of dimension of
subspaces. Motivated by those works, we make use of the property of subspace cluster algorithms
to explore the intrinsic subspace of the combination high-dimensional feature vectors, and calculate
corresponding projection matrix for extracting intrinsic features form the PolSAR data.

In this paper, we propose the novel subspace cluster based methods to process the PolSAR
imagery classification. It analyzes the extracted features and classification effect under different
constraints, and investigates the algorithm performance in the reproducing kernel Hilbert space.
It gives the contribution as follows. First, the related comprehensive feature vectors are extracted
from PolSAR data, which come from many target decomposition algorithms including the power
of components in coherent (Krogager) [1] and incoherent decompositions (Freeman, Yamaguchi,
Van Zyl, Neumann) [4,5,36], and the parameters with definitely physical characteristics from
H/A/α [37,38] and Touzi decompositions [39]. Most of them can be easily realized by PolSARpro5.0
software (http://earth.esa.int/polsarpro) [40]. Second, the projection matrix and affinity matrix can
be calculated simultaneously under the constraints of sparse representation (SR) [22,41], low rank
representation (LLR) [33], and manifold regularizations (MR), or various combinations of those
terms [42]. In those terms, the SR acts to select a few points from the same subspace, the LLR captures
the global structure of samples, and the MR detects the local manifold structure of data.The algorithm
aims at finding groups of data points from different subspace in samples space. Meanwhile, we test
the data in high-dimensional Hilbert space. Third, because of the deficiency of training samples in
remote sensing data, the unsupervised method is proposed with straightforward extension ability.
The projection matrix is optimized directly from the learning algorithm which solves the out-of-sample
problem without recomputing eigenvectors.

This paper is organized as follows. In Section 2, We introduce background of the subspace cluster
problem and review the related works about SSC, LRSC, and LRSSC. Section 3 introduces the proposed
manifold regularized sparse and the latent subspace clustering methods for the PolSAR data. Section 4
presents the experiment results of proposed method and contrast methods, and gives the experiment
analysis. Finally, discussion and some conclusions are drawn in Sections 5 and 6 respectively.

2. Related Work of Proposed Method

In order to search for a few points from the PolSAR samples and capture the global structure of
PolSAR data, it is necessary to introduce the background of proposed method, i.e., subspace clustering
problem. Subspace clustering is an extension of the traditional clustering method, which localizes the
relevant dimensions and looks for the groups of similar samples for clustering. It can be utilized in
removing irrelevant and redundant dimensions though analysing the entire dataset. Based on those
algorithms, we could evaluate the intrinsic subspaces of the dataset and weed out the redundant
information in the multimodal PolSAR features.

The following sentences summarize the subspace clustering problem and briefly introduce
the low-rank and sparse subsapce clustering algorithms. Let {yi ∈ RD}N

i=1 be a collection of N
data points drawn from a group of K independent linear subspace {Si}K

i=1 with the dimensionality
{di}K

i=1 and the bases {Ai ∈ RD×di}K
i=1. Let Yi ∈ RD×Ni be the given union of data points from the

subspace i. The target of this problem is to find the number of subspace K, the basis of each subspace,
the corresponding dimensions, and the segmentation of the data from a collection of multisubspace
data. The specified segmentation data matrix is Y = [y1, y2, · · · , yN ] = [Y1, Y2, · · · , YK]Γ ∈ RD×N ,
in which N = ∑K

i=1 Ni and Γ ∈ RN×N denotes the total number of data points and a unknown

http://earth.esa.int/polsarpro
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permutation matrix. Those subspace basis can be chosen from the columns of the data matrix
Y. Some related methods can be employed to find the basis to cluster the signals according to
their subspace.

2.1. Sparse Subspace Clustering

As above, the solution can be restricted by the l0 norm to sparsely represent the point yi in
dictionary Y. Then it can be formulated as:

yi = Yci, cii = 0, ‖ci‖0 ≤ di, (1)

in which, ci = [ci1, ci2, . . . , ciN ] denotes the representation coefficient of yi. The constraint cii = 0
eliminates the linear combination to represent the point itself, the sparsity ‖ci‖0 ≤ di means the
nonzero elements in coefficient equal or less than di. The dictionary Y is a self-representation matrix,
the points in it can be reconstructed by a combination of other points. To obtain the solution of l0 norm,
it needs to be relaxed as a non-convex problem to find the sparse representation of yi. Then a l1-norm
(‖x‖1 = ∑N

i=1 |xi| ,x ∈ RN) is employed to replace l0 norm to minimize the formulation,

min
ci
‖ci‖1 s.t. yi = Yci, cii = 0, (2)

which can be solved by some convex relaxation optimization tools. For efficient computing, it covers
all data points in matrix form and can be transformed as

min
C
‖C‖1 s.t. Y = YC, diag(C) = 0, (3)

in which C = [c1, c2 . . . cN ] ∈ RN×N is the representation coefficient matrix whose i-th column denotes
the representation vector of yi in dictionary Y . The vector diag(C) =0 refers to the diagonal elements
of C equaling to 0, which means data point yi can’t be self-represented by itself. However, in real
applications, some noise, outliers and errors exist in data corrupting process or measurement in the
data collection techniques. Then the real data may lie in a union of affine subspace that is regarded as
a more general model rather than linear subspace. To deal with this problem, we always consider the
fact that yi in an affine subspace Sl with the dimensionality dl can be linearly represented by dl + 1
other sample points in subspace Sl [20].

min
C

1
2 ‖Y− YC‖2

F + λ‖C‖1 s.t. CT1 = 1, diag(C) = 0. (4)

This formulation includes the linear equality constraints, CT1 = 1 denotes the sum of entries in
each representation vector ci equaling to 1, and ‖·‖F means to minimize the power of noise.

2.2. Low-Rank Representation Subspace Clustering

LRR subspace cluster is an important clustering algorithm. It aims at finding the lowest-rank
representation of a collection of vectors jointly, which can be better capture the global structure of
data [33]. Low rank may be a more appropriate and robust technique to capture the global structure of
data. It demands to find a “lowest-rank representation” of data Y with respect to the dictionary X

min
C

rank(C) s.t. Y = XC. (5)

The above formulization is nonconvex due to the discrete nature property of rank function. Then a
convex transformation is provided as follows:

min
C
‖C‖∗ s.t. Y = XC, (6)
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in which ‖·‖∗ is the nuclear norm, i.e., the sum of singular value of the matrix [43]. In order to segment
the data into the corresponding subspace, we compute an affinity matrix to encode the pairwise
affinities matrix data vectors. Then the sample matrix Y is utilized as a dictionary to exploit the
intrinsic data similarity,

min
C

1
2 ‖Y− YC‖2

F + λ‖C‖∗. (7)

Because of the solution space is I− null(Y), it has the advantage over the spare representation
method that there always exists a nontrivial solution without eliminating the sample point itself when
optimizing. LLR also confronts the real problem that the observations are corrupted or noisy and
sometimes even missing.

2.3. Low-Rank Sparse Subspace Clustering

Considering the sparse and low-rank property coexist in the data space, the authors also study
for searching for a representation coefficient matrix with both the sparsity and low-rank property [23].
In the low-rank sparse clustering (LRSSC) algorithm, the sparse and low-rank norms are added into
the model and the objective function is as follows:

min
C

1
2 ‖Y− YC‖2

F + λ1‖C‖1+λ2‖C‖∗ s.t. diag(C) = 0, (8)

where the parameters λ1 and λ2 balance the weighted of the sparse and low-rank norms. The
optimization framwork can be solved by the alternative direction method of multipliers (ADMM) [44].
Similar to SSC and LRSSC algorithms, after obtained the representation matrix C, we can define the
weighted matrix as follows:

W = |C|+
∣∣∣CT

∣∣∣ . (9)

3. Latent Subspace Clustering for PolSAR Classification

Considering the lack of the manually labeled samples in PolSAR data, it is necessary to
accurately approximate data structure and analyze the intrinsic data dimensionality for subsequent
classification and segmentation. For modeling and evaluating the multimodal high-dimensional
features, the structure should be considered both in terms of local and global information properties.
The global information can be captured by the sparse representation and low-rank approximation
model. These algorithms aim at finding a representation matrix of data samples to construct the
similarity matrix. However, under the common assumption of the spectral clustering-based method:
the nearest neighbors of a sample are in the same subspace of this sample. According to the local
similarity to classify the samples in a same category. Both the local and global thoughts have
disadvantages. The global representation techniques are sensitive to outliers and noise, while the local
spectral algorithms ignore the samples that may be in the same subspace far away form each other.

To resolve these drawbacks and consider the practical applications, a manifold graph is added
to the representation framework to capture the local geometry of data, while the LRR or the sparsity
enhance the data global description in subspace clustering [45,46]. The manifold graph can actually
approximate the nonlinear structures existing in the PolSAR data, which can effective preserve the
local geometric structure embedded in the high-dimensional PolSAR data space. Then we resort to
making use of the local geometry information in learning techniques for calculating the similarity
of each point. How to construct an undirected nearest graph is the basic step to characterize the
local structure of PolSAR data. We analyze some manifold graphs from different perspectives to
consider the relationship and measure the similarity of PolSAR data points. This is due to the high
complexity of eigenvalue decomposition from the spectral based methods. The PolSAR images are
preprocessed by the superpixel algorithms to reduce the algorithm complexity in optimization. We
select a normalized cut technique based on superpixel algorithms to oversegment PolSAR images and
regard one superpixel as a resolution unit in the spectral clustering methods [47].
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In PolSAR image classification, it is necessary to search for a suitable graph to characterize the
polarimetric property for obtaining better classification performance. In general, the most common
ways to define neighborhood graph are k-nearest neighbor mode and ε-neighbor mode. In this section
we will analyze the graph constructed in the k-nearest neighbor mode, and three kinds of methods are
employed to form manifold regularization to capture the geometry structure in PolSAR data.

3.1. Manifold Graph Construction for PolSAR Data

The graph idea employed in the subspace clustering is inspired by the spectral clustering
algorithms [48]. Given a group of data points

{
y1, y2, · · · , yN

}
∈ RD, it is necessary to compute

the weighted and undirected graph G = (V, E, ω), in which V denotes the vertex set and E denotes the
edge set associated with weights ω. We can build the nearest graph G with the points corresponding
to vertexes and the similarity of points corresponding to the weight matrix W, respectively. When we
have achieved the matrix W, we can obtain the degree matrix D that is a diagonal matrix Dii = ∑

j
Wij

measuring the similarity between point i and other points. Then a normalized graph Laplacian matrix
L = D−W can be computed.

a. The similarity is directly measured by the Euclidean distance of the concatenation feature
vectors from the PolSAR data, and the matrix of graph can be defined as follows:

Wij =


yT

i yj

‖yi‖2
2·‖yj‖2

2

, yi ∈ Nk(yj) or yj ∈ Nk(yi)

0, otherwise
. (10)

b. In order to capture the complex statistical information in PolSAR data, some measures
are derived from the complex Wishart distribution in the coherency matrix [49]. Under the three
general metric apply conditions: generalized non-negativity, identity of discernible, symmetry and
subadditivity, the Bartlett distance and symmetry revised Wishart distance (SRW) are proposed to
measure the pairwise similarities between different PolSAR pixels [16]. The SRW distance dSRW will
be utilized to construct the weighted matrix:

Wij =

{
exp

(
−d2

SRW(Ti, Tj)/2σ2) , yi ∈ Nk(yj) or yj ∈ Nk(yi)

0, otherwise
, (11)

where Ti and Tj is the coherence matrix representing the pixel yi and yj, and the K-nearest neighbors
are also measured by SRW distance. The parameter σ is the Gaussian kernel bandwidth.

c. The features are extracted by different methods and may be in different modalities. In order to
effectively combine multiple graph layers by laying multiple feature spaces, a Grassmann manifold
provided a nature framework to solve this problem [50]. Given a set of points, this can be represented
by the feature vectors {yz

1, yz
2, · · · , yz

N}Z
z=1 from Z feature spaces. We first compute the feature space

representation matrix Ui by the spectral clustering algorithm, which can be solved through the trace
minimization problem:

min
Uz∈Rn×k

tr(UT
z LzUz) s.t. UT

z Uz = I, (12)

in which n denotes the number of vertices in the z-th graph, and k denotes the target number of
clusters. The graph Laplacian matrix Lz is first computed corresponding to each graph Gz which is
represented by the spectral embedding matrix Uz. The column uz

i in matrix Uz =
[
uz

1, uz
2, . . . , uz

n
]

is the eigenvector corresponding to the i-th largest eigenvalue of the matrix Lz. The philosophy of
merging multi-layer graphs is to find a representative space span(U) closed to all the individual space
span(Uz) and the representation matrix Uz preserving the vertexes connection information in each
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graph. The merging Laplacian matrix L mod is calculated to represent the multi-layer graphs through
mathematical derivation and the Rayleigh-theorem solution [50,51].

L mod =
Z

∑
z=1

Lz − α
Z

∑
z=1

UzUT
z , (13)

where regularization parameter α balances the effluence between Graph Laplacian Lz and the spectral
embedding matrix Uz .

3.2. Manifold Graph Regularized Low-Rank Subspace Clustering

The similarity measurement and the weighted matrix calculation are the foundations to construct
the undirected nearest neighbor graph. A suitable manifold graph construction determines the
algorithms to explore the data intrinsic data structure. The manifold information is maintained
by the graph regularization in the liner models to model the nonlinear properties of PolSAR data.
The local geometric structures of high-dimensional data are also preserved by the Laplacian graph.
The manifold graph can be directly utilized in manifold based dimensionality reduction techniques
and spectral clustering methods, or computed as a regularized trace term Tr(CLCT) added into the
sparsity and LRR framework. Matrix L is always regarded as a prior to achieve the uncontaminated
data samples [35,52]. Under the assumption that if tow data points i and j are closed in the geometry
space, then the representation of two points are also closed to each other [46,53,54]. The regularization
can be added to constrain the representation matrix subjecting to the data geometry structure [42,55].

The above related manifold regularizations are incorporated by the term Tr(CLCT) in LRR
algorithm, then the Laplacian regularized LRR (LapLRR) model is formulated as follows [42]:

min
C

1
2‖Y− YC‖F + λ1‖C‖∗+λ2Tr(CLCT) s.t. C ≥ 0. (14)

In this model, the global data structure are captured by the nuclear norm ‖·‖∗. According to
different Laplacian regularization construction models, we can combine Equation (14) with three
Laplacian regularized models to form three subspace clustering algorithms including Euclidean
distance based LapLRSC (LapLRSC-ED), SRW distance based LapLRSC (LapLRSC-SRW), and multi
graph model based LapLRSC (LapLRSC-MulG) algorithms.

3.3. Laplacian Manifold Regularized Latent Subspace Clustering

For PolSAR Classification, it also required to investigate the latent subspace distribution in feature
space. However, how to process cascaded high dimensional feature vector is also a problem. In this
paper, we simultaneously introduce the Laplacian manifold regularization and LRR constraint to
capture the data structure and analyze the sparsity of observation samples. Because of the complexity
of the PolSAR data, we analyze the feature with some typical subspace clustering algorithms to
embed the high-dimensional feature into an intrinsic low-dimensional feature space. Then a Laplacian
manifold regularized low-rank sparse subspace (LapLSSC) algorithm formulated as follows aims to
explore the low-dimensional latent subspace :

min
C

1
2 ‖Y− YC‖2

F + λ1‖C‖1+λ2‖C‖∗+λ3Tr(CLCT) s.t. diag(C) = 0, C ≥ 0. (15)

For the large-scale PolSAR classification problem, the projection matrix P is exploited to solve
the out-of-sample problems. A PCA-like regularization term is added to ensure the projection
domain keeping enough information from the original domain. Then the projection matrix P
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and the comprehensive representation matrix C can simultaneously computed from the following
objective function:

[P, C] = arg min
C,P

1
2 ‖PY− PYC‖2

F + γ
∥∥Y− PTPY

∥∥2
F + λ1‖C‖1+λ2‖C‖∗+λ3Tr(CLCT)

s.t. PTP = I, diag(C) = 0, C ≥ 0
, (16)

where PTP = 1 makes sure that the projection matrix P is orthogonal, and it should be normalized to
unit norm. Then we can divide this objective function into two parts:

[P, C] = arg min H1(P, C) + H2(C)

s.t. PTP = I, diag(C) = 0, C ≥ 0
, (17)

in which,

H1(P, C) =
1
2
‖PY− PYC‖2

F + γ
∥∥∥Y− PTPY

∥∥∥2

F
. (18)

H1(P, C) is a information preservation term to obtain projection matrix. This is similar to the
reconstruction error used in LRR, LRSC, SSC, and LapLRSSC algorithms. γ is a non-regularization
parameter that balance the influence of two error terms. H2(C) is a constraint term constructing by
sparse, low-rank, manifold or association of those representation terms. When H2(C) = ‖C‖1,
the sparse representation is sought and similar to SSC. When H2(C) = ‖C‖∗, it pursues to a
global low-rank representation. It also can be combined with different manifold regularization
terms or associated with each other to form H2(C) = ‖C‖1 + λ1‖C‖∗ similar to LRSSC,
or H2(C) = ‖C‖∗ + λ1tr(CLCT) pursuing to manifold regularized low rank representation. In this
paper, we also exploit both sparse and low-rank representation with manifold regularization that is
done in LapLSSC H2(C) = λ1‖C‖1 + λ2‖C‖∗ + λ3tr(CLCT) . Parameter {λi}3

i=1 balance the weight
of each term to influence the calculation of C and P.

This formulation is optimized by introducing the auxiliary variables through alternative
optimization methods. The optimization process can be divided into two parts: fixed C to update P,
and fixed P to update C. In order to make this objective function easier to extend to a kernel method,
we replace the projection matrix as P = ΨTYT, Ψ ∈ RN×t that t denotes the dimensionality of the
low-dimensional embedding space. The formulation can be re-written as follows:

[Ψ, C] = arg min
C,Ψ

1
2

∥∥ΨTK(I− C)
∥∥2

F + γ
∥∥Y(I−ΨΨTK)

∥∥2
F + λ1‖C‖1+λ2‖C‖∗+λ3Tr(CLCT)

s.t. ΨTKΨ = I, diag(C) = 0, C ≥ 0
, (19)

where K = YTY is similar to a semi-definite kernel Gram matrix, and the constraint can be rewritten
as PTP = ΨTKΨ = I . The objective function will be solved by alternative iteration method, and the
overall optimization procedure is shown in Algorithm 1.

(1) Fix C to update Ψ. Then we only need to select the term including variable Ψ to construct a
new objective function and solve this sub-optimization problem.

Ψ = arg min
Ψ

1
2

∥∥ΨTK(I− C)
∥∥2

F + γ
∥∥Y(I−ΨΨTK)

∥∥2
F

s.t. ΨTKΨ = I
. (20)

Then this formula is derived through mathematical deduction and solved by the optimization
approach in the literature [23,56]. The optimal solution of this objective function is:

Ψ∗ = VS−
1
2 M∗. (21)
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Algorithm 1 Solving Objective Function by Alternative Iteration Method.

Input:{λi}3
i=1 > 0, γ > 0, K = YTY ∈ RN×N , L, imax .

Initialization:Set iteration number i = 1, compute decomposition K = VSVT, let Ψ equal to the
matrix constructed by the eigenvectors corresponding to the t largest eigenvalues in V .
Step 1: FixΨ to update C.
1) Compute B = PY = ΨTK .
2) Compute C employing the ADMM method summarized in Algorithm 2.
Step 2: Fix C to update Ψ .

1) Compute ∆ = S
1
2 VT( 1

2 (I− C)(I− C)T − γI)VS
1
2 .

2) Compute eigen decomposition of ∆ = UΛUT, and let M equal to the matrix constructed by the
eigenvectors corresponding to t the smallest eigenvalues in U.
3) Compute Ψ = VS−

1
2 M

i = i + 1 until i = imax.
End Iteration
Output:C,Ψ

V and S are computed from the eigenvalue decomposition K = VSVT, and M is optimized from
the following formula. It is a version of the Rayleigh-Ritz theorem.

M∗ = min
M∈RN×t

tr(MT∆M) s.t. MTM = I, (22)

in which ∆ is derived from the following mathematical expression.

∆ = S
1
2 VT( 1

2 (I− C)(I− C)T − γI)VS
1
2 . (23)

(2) Fix Ψ to update C . Then we should solve the following problem with respect to the variable C.

C = arg min
C

1
2 ‖PY− PYC‖2

F + λ1‖C‖1+λ2‖C‖∗+λ3Tr(CLCT)

s.t. diag(C) = 0, C ≥ 0
. (24)

It can be optimized by ADMM method with introducing some auxiliary variables to alternatively
optimize this objective function:

C = arg min
C

1
2 ‖PY− PYC‖2

F + λ1‖F1‖1+λ2‖F2‖∗+λ3Tr(F3LF3
T)

s.t. diag(C) = 0, C ≥ 0, C = F1, C = F2, C = F3

. (25)

Then an augmented Lagrangian function is formed to solve this problem. We can minimize the
following equation to obtain the optimum solution.

f (C, F1, F2, F3, F4, F5; Λ1 , Λ2, Λ3, Λ4, Λ5)

= 1
2 ‖B− BC‖2

F + λ1‖F1‖1+λ2‖F2‖∗+λ3Tr(F3LF3
T)+I1(F4)+I2(F5)

+ α1
2 ‖Y− F1 + Λ1‖2

F +
α2
2 ‖Y− F2 + Λ2‖2

F +
α3
2 ‖Y− F3 + Λ3‖2

F
+ α4

2 ‖Y− F4 + Λ4‖2
F +

α5
2 ‖Y− F5 + Λ5‖2

F

, (26)

in which B = PY = ΨTK, {Λi}5
i=1 denotes the multipliers of the constraints, and {αi}5

i=1 denotes
the penalty parameters. This problem can be divided into five sub-problems. I1( · ) and I2( · ) are
the indicator functions meaning to keep the coefficient matrix non-negative and diagonal elements
of the matrix zero. {Fi}5

i=1 and C denote the updateable variables. What we need is to update one
variables with fixing others to minimize those variables, each of the optimization step is summarized
in Algorithm 2.
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Algorithm 2 Optimization Procedure of Equation (26).

Input: Let,{λi}3
i=1 > 0, choose {αi}5

i=1 = α > 0, αmax = 106, ρ = 1.1 . Let the maximum iteration
number kmax = 300, {Fi}5

i=1= 0, {Λi}5
i=1= 0, and error = 10−5 .

While stopC > error do

1.
Ck+1 =

(
BTB + 5αkI

)−1

·
(

BTB + αk(F1,k −Λ1,k +F2,k −Λ2,k + F3,k −Λ3,k + F4,k −Λ4,k + F5,k −Λ5,k)
)

2. F1,k+1 = arg min
F1

λ1‖F1‖1 +
αk
2

∥∥Y− F1 + Λ1,k
∥∥2

F , which has the following solution:

F1,k+1 = S(Y + Λ1,k, λ1/αk),

where S(a, b) = sgn(a) (|a| − b), for |a| > b and zeros otherwise.
3. F2,k+1 = arg min

F2

λ2‖F2‖∗ +
αk
2

∥∥Y− F2 + Λ2,k
∥∥2

F , which has a closed solution:

F2,k+1 = Dτ(Y + Λ2,k),

where D(Y + Λ2,k) = USτ(Σ)VT, τ = λ2/αk , the singular decomposition Y + Λ2,k = UΣVT , and
Sτ(Σ) = diag({(σi − τ)}).
4. F3,k+1 = αk(C + Λ3,k)(2λ3L + αkI)

F3,k+1 = max(0, Tk+1 + U3,k)

5. F4,k+1 = arg min
F4

I1(F4) +
αk
2

∥∥Y− F4 + Λ4,k
∥∥2

F , which has the following solution:

F4,k+1 = max(0, Y− F4 + Λ4,k)

6. F5,k+1 = arg min
F5

I2(F5) +
αk
2

∥∥Y− F5 + Λ5,k
∥∥2

F , which has the following solution:

F5,k+1 = (Y + Λ5,k)− diag(diag(C + Λ5,k))

7.

Λ1,k+1 = Λ1,k + Ck+1 − F1,k+1
Λ2,k+1 = Λ2,k + Ck+1 − F2,k+1
Λ3,k+1 = Λ3,k + Ck+1 − F3,k+1
Λ4,k+1 = Λ4,k + Ck+1 − F4,k+1
Λ5,k+1 = Λ5,k + Ck+1 − F5,k+1

8. αk+1 = max(αmax, ρ× αk), k = k + 1
End While
Output:C

4. Experiment and Analysis

In this section, three kinds of PolSAR datasets are utilized to verify the performance of
the proposed method. Before processing those datasets, a refined Lee filter [57,58] is employed
to reduce the influence of speckle noise form speckle and the complicated imaging mechanism.
The multimodal features are extracted from multiple polarimetric target decomposition, which is
similar to literature [16] selecting features form software PolSARpro version 5.0 [40]. Those features
mainly contain specific parameters and decomposition component coefficients from Van Zyl, Krogager,
Yamaguchi, Neumann, TSVM, and H/A/α decompositions. They construct a 80D feature vector to
represent a pixel unit.

Three state-of-the-art typical contrast approaches including liner PCA, non-linear Kernel PCA,
and LE algorithms obtain low dimensional features for achieving fair comparisons. In contrast
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experiments, Gaussian kernel is utilized in KPCA, and the size of neighbor in LE is 12. Additional,
aiming to test the influence of different constraints, we assemble sparsity and manifold constraints
in H2(C) with a different model to obtain the projection matrix from the constraint from SSC, LRSC,
LRSSC, and LapLSSC. Those projection features computed by dimension reduction methods are
employed in PolSAR image land cover classification.

We utilize Euclidean and SRW distance exploiting the graph model to compute the data
neighborhood structure. The features are divided into three parts based on different target
decompositions properties. The coefficients of Freeman, Krogager, Yamaguchi, Neumann, and VanZyl
are taken as one modality feature, H/A/α and TSVM parameters are the other two kinds of modalities.
Then a 3-layers graph regularization is constructed in Grassmann manifold. We use those manifold
regularized low rank representation algorithms, LapLRSC-ED, LapLRSC-SRW, and LapLRSC-MulG to
test the influence of manifold term in subspace clustering method. For LapLSSC, we choose Euclidean
distance to construct the manifold describing data geometry structure.

Three assessment indicators are utilized to evaluate the performance of those techniques,
including average accuracy (AA), overall accuracy (OA), and Kappa coefficient. The NN classifier is
utilized to verify the effectiveness of projecting PolSAR data in low-dimensional space. The maximum
iteration value imax of the algorithms is 10.

4.1. Introduction of PolSAR Datasets

• Dataset 1: This dataset is produced in January 2010 at Fine Quad Polarization model from
RADARSAT-2 sensor. This image mainly scans the region covering western Xi’an and Weihe River
in Xianyang, Shaanxi Province, China. We choose one subimage with size of 512× 512 points and
5× 10 m resolution. It contains three typical terrains: buildings, grass, and water. Figure 1 shows
the Pauli colored image and ground truth. The subspace clustering algorithms are carried out in
this image with regularization parameters λ1 = 3, λ2 = 3, λ3 = 10.

Figure 1. RADARSAT-2 Xi’an dataset.

• Dataset 2: This dataset is C-band fully polarimetric data with one quad-pol mode in the
RADARSAT-2 aribrone platform. This radar image scans region mainly covers Flevoland,
Netherland with the size 1600 × 2400 and resolution 10 × 5 m and produced in April 2008,
which is shown in Figure 2. It mainly contains four typical land covers including: woodland,
cropland, urban area, and water. Those parameters in the subspace clustering based method are
set as λ1 = 2, λ2 = 2, λ3 = 10 .
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Figure 2. RADARSAT-2 Flevoland dataset.

• Dataset 3: The third dataset is one subimage from the well-known AIRSAR L-Band fully
polarimetric data shown in Figure 3. It was acquired by the Netherlands on 16 August 1989 during
the MAESTRO-1 Campaign. It owns recognized ground truth to test the natural vegetation and
land covers. In this subimage, it covers 9 different crops containing: stembeans, bare soil, lucerne,
rapeseed, wheat 2, beat, potatoes, grasses, wheat. Those regularization parameters utilized here
are set as λ1 = 3, λ2 = 3, λ3 = 10 .

Figure 3. AIRSAR Flevoland dataset.

4.2. Analysis of Reduced Dimensions

For testing the performance of the subspace clustering methods, we select RADARSAT-2 Xi’an
dataset to verify the effectiveness of features in different reduced low dimensions. We employ different
techniques to uniformly reduce high dimensional data into five dimensions for land cover classification.
Those typical low dimensions contain 1, 7, 13, 19, and 25. Each of them differs by 6 dimensions.
We show OA and Kappa coefficient classification bar chart in Figure 4.



Remote Sens. 2018, 10, 391 13 of 21

The low dimensional projection number is an important parameter in dimensional reduction
techniques. It can be seen that the performances of OA and kappa coefficient increase with the
dimension increasing in a certain extent. When the dimensions exceed 13, there is no improvement
in performance. This is because, when the dimension exceeded a specific value, the components in
PCA related algorithms would obtain enough discriminative information. The features extracted from
the subspace clustering based methods also achieve projection information. It can be assumed that
the intrinsic dimension of PolSAR data is less than 13 and greater than 7. Nevertheless, the OA in
subspace clustering methods have reached 88%, and is better than LE and PCA contrast methods.
This means that, under a proper constraint, the sparsity and manifold regularized would preferably
mine the polarimetric data information and obtain an effective projection matrix.

Figure 4. Classification performance variation from dimensions in Xi’an dataset.

4.3. Quantitative Evaluation and Classification Result

In this part, the quantization and visualization classification performance are tested in west Xi’an
data and RADARSAT-2 Flevoland data. In order to prove the universality, the kNN algorithm is
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utilized to classify the low dimension features. The number of the supervised samples is selected
related to the number of oversegmentation resolution units. In the two datasets, the training samples
used 20–40 samples per class. The low dimensional projection number is set to 9 for those two datasets.

The experiment results of west Xi’an data are shown in Figure 5 and Table 1. In this figure,
the LE algorithm shows the worst visualization classification result. From the black rectangle area,
it misclassifies lots of buildings as water region, and performs the lowest quantitation result in OA,
AA, and kappa coefficient. Compared to subspace clustering based algorithms, PCA and KPCA do
not show strong visual inferiority, because the PolSAR dataset has a few categories. Moreover, there is
not much difference between subspace clustering based methods in the visualization performance.
Compared to contrast methods, features form the proposed methods are sensitive to water and building
regions. From the classification indicators of subspace clustering methods, the OA of the water region
is almost greater than 79% and Kappa coefficient better than 0.80. This demonstrated that the proposed
methods have advantages in quantitation and visualization classification for local regions and the
whole area in PolSAR images.

Figure 5. RADARSAT-2 West Xi’an dataset classification result. (a) PCA; (b) KPCA; (c) LE; (d) SSC;
(e) LRSC; (f) LRSSC; (g) LapLSSC; (h) LapLRSC_ED; (i) LapLRSC_SRW; (j) LapLRSC_MulG.

Figure 6 and Table 2 show the classification result of RADARSAT-2 Flevoland dataset. Similar to
west Xi’an dataset, all techniques are not sensitive to grass region that always be misclassified as wood
regions as shown in the black rectangle. PCA and subspace clustering based algorithms show better
classification performance, OA all greater than 90%. Since polarimetric data cannot construct a whole
connected graph, the LE algorithm presents the worst result and it is not suitable for the dimensional
reduction of PolSAR features.
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Figure 6. RADARSAT-2 Flevoland classification result. (a) PCA; (b) KPCA; (c) LE; (d) SSC; (e) LRSC;
(f) LRSSC; (g) LapLSSC; (h) LapLRSC_ED; (i) LapLRSC_SRW; (j) LapLRSC_MulG.

From the sparse subspace algorithms regularized form the different manifold constraints, it
is possible to observe that there exist some differences in LapLRSC_ED, LapLRSC_MulG, and
LapLRSC_SRW. This is because the method of constructing the manifold graph regularization
influences the feature extraction performance in the proposed methods. In three of the manifold
regularized algorithms, LapLRSC_ED achieves the best classification result. Its OA exceeds 97% and
kappa coefficients is greater than 0.95, which precede the LapLRSC_ED and LapLRSC_MulG. This
shows that the modalities division of multiple features in multi-graph construction is not reasonable.
For different dataries and machine learning algorithms, the statistical information derived manifold
sometimes also shows a poor performance. Then the manifold graph terms in subspace clustering
based method can provide information from different perspectives reflecting the PolSAR data property.
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Table 1. RADARSAT-2 Xi’an 9 dimension classification result.

Algorithms Grass Buildings Water OA AA Kappa

PCA 96.02 97.38 73.87 85.51 89.09 0.7729
LE 97.12 95.77 70.38 83.38 87.76 0.7418

KPCA 96.84 96.86 77.64 87.32 90.45 0.7922
SSC 96.78 96.11 79.56 88.00 90.82 0.8092

LRSC 96.78 96.15 79.58 88.02 90.84 0.8095
LRSSC 96.75 96.16 79.56 88.59 90.82 0.8090

LapLSSC 96.75 96.16 79.56 88.01 90.82 0.8093
LapLRSC_ED 96.78 96.16 79.58 88.61 90.84 0.8096

LapLRSC_MulG 96.78 96.11 79.67 88.59 90.86 0.8099
LapLRSC_SRW 96.78 96.16 79.51 88.69 90.82 0.8091

Table 2. RADARSAT-2 Flevoland 9 dimension classification result.

Algorithms Water Grass Wood Building OA AA Kappa

PCA 98.35 92.78 98.77 96.30 96.69 96.55 0.9490
LE 99.51 81.88 85.17 97.65 86.92 91.05 0.8106

KPCA 98.60 92.20 98.82 98.01 96.29 96.91 0.9445
SSC 98.52 92.08 99.15 96.57 96.29 96.58 0.9444

LRSC 98.60 93.98 99.15 97.02 97.03 97.19 0.9554
LRSSC 98.63 94.17 99.17 97.02 97.12 97.25 0.9567

LapLSSC 98.51 91.89 99.15 97.14 96.25 96.67 0.9438
LapLRSC_ED 98.61 94.10 99.17 96.91 97.08 97.20 0.9561

LapLRSC_MulG 98.52 91.97 99.15 97.14 96.28 96.69 0.9443
LapLRSC_SRW 98.56 92.35 99.15 97.01 96.42 96.77 0.9463

4.4. The Contrasts of Kernelized Methods

For many subspace clustering based methods, it may not be suitable to directly project original
features into low dimensional space. Then it is necessary to test the non-linearity property in the
PolSAR feature. We employ the kernel function Φ(Y) = [Φ(y1), Φ(y2), · · · , Φ(yN)] to transform the
data into a high dimensional feature space. It can make the non-linear data linearly separable and in
same distribution. Then a positive semidefinite kernel Gram matrix is denoted as:

[K(X, Y)]i,j = [〈Φ(Y), Φ(Y)〉H]i,j
= Φ(yi)

TΦ(yj)

= K(yi, yj).
(27)

In this paper, the polynomial kernels are utilized to transform the feature matrix to a Hilbert
space K(x, y) = (〈x, y〉+ a)b. We transform the SSC, LRSC, LapLSSC algorithms into the kernelized
version as NLLRSC, NLSSC, NLLapLSSC with parameters a = 0.3 and b = 2 . The original feature
are projected into a 3-dimnensonal space by linear and nonlinear subspace clustering based methods.
Classification performances are reported in Table 3 and Figure 7.

From the classification results, the proposed methods can achieve better performance with more
categories. The linear subspace algorithms show higher quantitative results that OA is more than 90%
and Kappa coefficient exceeds 0.90. Compared to PCA, LE, and KPCA, they have great improvement in
classification. For the regions with low discrimination, the contrast methods have clear disadvantages
in wheat and bare oil. Especially for PCA related methods, OA does not reach 60%, and those methods
present some confusion in classification images. Some subspace clustering based methods show
little difference and all of them present superior visualization and quantitation results. However,
kernelized methods do not perform well in the PolSAR dataset, because the low-rank and sparse
representation can capture the compact data structure enough in the linear model. The unnecessary
nonlinear operations will reduce the sensitivity of model to PolSAR data. It may not improve the
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model capacity to the specific data. Generally, the proposed methods could obtain discriminative
features for the subsequent classification.

Table 3. AIRSAR Flevoland 3D classification result

Algorithms Potato Wheat Grass Beat Wheat 2 Lucer Ne Rapese Ed Bare Soil Stem beans OA AA Kappa

PCA 87.63 81.64 98.18 95.62 56.73 88.89 72.23 50.87 99.50 80.49 81.25 0.7966
LE 84.84 92.21 98.10 99.48 55.41 88.64 69.08 78.59 99.53 84.10 85.10 0.8336

KPCA 88.99 77.54 94.13 33.86 43.81 100.0 63.52 57.32 97.90 69.42 73.01 0.6813
SSC 84.77 83.91 99.92 99.55 86.38 88.64 82.49 86.27 99.50 90.70 90.16 0.9030

LRSC 86.13 83.91 99.92 98.61 85.86 88.89 82.49 87.56 99.50 90.64 90.32 0.9023
LRSSC 84.77 83.97 99.92 98.61 86.38 88.89 82.49 86.27 99.50 90.61 90.09 0.9020

LapLSSC 84.77 83.97 99.92 98.61 86.73 88.89 82.49 86.27 99.50 90.69 90.13 0.9029
NLLapLSSC 87.22 84.32 99.92 99.16 83.00 88.89 78.75 81.24 99.46 89.61 89.11 0.8916

NLSSC 87.22 84.20 99.92 99.16 82.81 88.89 80.22 81.24 98.94 89.50 89.18 0.8905
NLLRR 87.22 84.32 99.92 99.16 83.00 88.89 80.15 81.24 99.46 89.68 89.26 0.8923

Figure 7. AIRSAR Flevoland 3D classification result. (a) PCA ; (b) KPCA; (c) LE; (d) SSC; (e) LRSC;
(f) LRSSC; (g) LapLSSC; (h) NLSSC; (i) NLLRR; (j) NLLLR_SCC.

5. Discussion

For PolSAR Classification, features extraction and classifier design are two significant steps in
machine learning methods. In the proposed method, we construct some combinations of sparsity,
low rank, and manifold graph constraints to investigate the intrinsic property of PolSAR data. In order
to improve the classification performance, the projection matrix is computed to extract discriminative
information by fusing the multi-modal features. The experiments analyze the visualization and
quantization results and demonstrate that the features extracted from the subspace clustering based
methods are superior to other contrasting methods.

The performance varies from 1D to 25D, the OA and Kappa coefficients are shown in Figure 4.
This shows that the proposed algorithm achieves more discriminative features in different dimensions
constrained by corresponding terms from the multi-modal observations. There is not too much
difference in the performance of the subspace clustering based algorithms. This is due to the intrinsic
dimension near to the number of free variables in the coherency matrix of PolSAR data.

In order to demonstrate the effectiveness of the subspace clustering methods, the quantization
and visualization performance are simultaneously evaluated. In Figure 5, the subspace clustering
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methods have the capacity to identify the water region in the black rectangle, and Table 1 presents
the same performance as well. We also see from Figure 6 and Table 2 that it is important to explore
the geometry structure of data. After being regularized by manifold graph terms, LapLRSC_SRW,
LapLRSC_ED, and LapLRSC_MulG can exploit the geometry structure from different perspectives.
They can actually reflect the data property in a subspace clustering framework.

The subspace clustering algorithms are also kernelized to a high-dimensional Hilbert space, which
is utilized to test the performance of nonlinear version of subspace clustering algorithms in PolSAR
data. With a polynomial kernel, NLLRR, NLSSC, and NLLapLSSC is formed. However, those nonlinear
methods do not perform well in a PolSAR dataset because the proposed methods have enough capacity
to capture the PolSAR data structure. The OA and Kappa coefficients of proposed methods exceed 90%
and 0.90 respectively. This is vastly superior to the contrast methods in Table 3. This demonstrates that
sparse constrained algorithms can detect the intrinsic samples’ property, especially if the processed
PolSAR dataset has more categories. In summary, those subspace clustering methods can obtain an
effective projection matrix to achieve more discriminative features for the subsequent classification.

6. Conclusions

In this paper, we present algorithms based on subspace clustering methods to investigate
the intrinsic structure of PolSAR data. In this proposed framework, the sparsity term aims at
searching for a few of points from each same subspace. Low rank and manifold terms are utilized
to detect the local and global geometry structure of data. First, some comprehensive features are
extracted from PolSAR data. They mainly cover some physical information and parameters from
target decompositions, which can be realized by PolSARpro5.0 software. Secondly, the projection
matrix and affinity matrix can be obtained from framework constrained by different combinations
of those terms. Finally, experiments on three datasets from airborne and spaceborne platforms
demonstrate that the features from subspace clustering method outperform to several contrast methods.
Overall, the projection matrix from the proposed algorithms under the constrained of those terms can
extract more promising features for the subsequent PolSAR land cover classification. In future work,
we mainly focus on extracting comprehensive feature from the PolSAR data, and constructing the deep
leaning structure models for exploiting more abstract features. This requires us to develop a parallel
structure to improve the calculation efficiency of the eigen-value calculation in algorithms.

Acknowledgments: The authors would like to thanks the helpers in reviewing and editing. Especially, we thanks for
the works about subspace clustering from Vishal M. Patel and Ehsan Elhamifar, which give us motivations to
explore the PolSAR data. The codes of SSC, LRSC, and LRSSC related algorithms can be obtained from their
homepage [59,60]. This work was supported in part by the National Natural Science Foundation of China under
Grant No. 61671350; the Project supported the Foundation for Innovative Research Groups of the National Natural
Science Foundation of China under Grant No. 61621005; and the Major Research Plan of the National Natural
Science Foundation of China under Grant No. 91438201. [grant number 61671350, 61621005, and 91438201].

Author Contributions: Bo Ren theoretically proposed this original method and test on PolSAR data. Jin Zhao
gave the mathematically help in formula derivation. Biao Hou and Licheng Jiao gave some suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PolSAR Polarimetric synthetic aperture image
ICA Independent component analysis
SSC Sparse subspace clustering
LRSC Low rank subspace clustering
LRSSC Low rank sparse subspace clustering
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LLRSC Laplacian regularized low rank subspace clustering
SP Sparse representation
LLR Low rank representation
MR Manifold regularizations
ADMM Alternative direction method of multipliers
SRW Symmetry revised Wishart
LapLRR Laplacian regularized low rank representation
LapLRSC-ED Euclidean distance based LapLRSC
LapLRSC-SRW SRW distance based LapLRSC
LapLRSC-MulG Multi graph model based LapLRSC
LapLSSC Laplacian manifold regularized low-rank sparse subspace
NLSSC Nonlinear Sparse subspace clustering
NLLSC Nonlinear Low rank subspace clustering
NLLapLSSC Nonlinear Laplacian regularized low rank representation
AA Average accuracy
OA Overall accuracy
NN Nearest Neighbor
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