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Abstract: Signal of interest (SOI) extraction is a vital issue in communication signal 
processing. In this paper, we propose two novel iterative algorithms for extracting SOIs 
from instantaneous mixtures, which explores the spatial constraint corresponding to the 
Directions of Arrival (DOAs) of the SOIs as a priori information into the constrained 
Independent Component Analysis (cICA) framework. The first algorithm utilizes the 
spatial constraint to form a new constrained optimization problem under the previous cICA 
framework which requires various user parameters, i.e., Lagrange parameter and threshold 
measuring the accuracy degree of the spatial constraint, while the second algorithm 
incorporates the spatial constraints to select specific initialization of extracting vectors. The 
major difference between the two novel algorithms is that the former incorporates the prior 
information into the learning process of the iterative algorithm and the latter utilizes the 
prior information to select the specific initialization vector. Therefore, no extra parameters 
are necessary in the learning process, which makes the algorithm simpler and more reliable 
and helps to improve the speed of extraction. Meanwhile, the convergence condition for 
the spatial constraints is analyzed. Compared with the conventional techniques, i.e., 
MVDR, numerical simulation results demonstrate the effectiveness, robustness and higher 
performance of the proposed algorithms. 
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1. Introduction 

The problem of blind source separation arises in a wide range of application fields, such as speech 
processing [1], image analysis [2], medical diagnosis [3] and wireless communication [4], etc. Suppose 
that there exist M independent source signals s(n) = [s1(n), s2(n), …, sM(n)]T and N observed mixtures 
of the source signals x(n) = [x1(n), x2(n), …, xN(n)]T. The linear instantaneous model of Blind Source 
Separation (BSS) is as follows: 

 (1) 

where A is an N × M mixing matrix and v(n) = [v1(n), v2(n), …, vN(n)]T denotes the noise vector. The 
goal of BSS is to determine the original sources s(n) from their mixtures x(n) without any other a priori 
knowledge being necessary. 

However, some applications of BSS often wish to extract only one signal of interest (SOI) or  
a desired subset of sources and automatically discard uninteresting sources: for example, the extraction 
of “interesting” signal from the interference signals in communication application. In such cases, the 
BSS problem reduces to a blind signal extraction (BSE) problem. 

Generally speaking, two kinds of promising techniques have been proposed to address the BSE 
problem. One is beamforming, which attempts to cover specific cell sectors so that the signal of 
interest (SOI) can be extracted while suppressing other signals. Traditional beamforming techniques 
such as MVDR, LCMV [5] are based on the accurate knowledge of the direction vector associated to 
the SOI and the perfect array calibration, both of which are not often available in practice. Another 
technique is independent component analysis (ICA), which is perhaps most widely used for 
performing BSS. ICA attempts to exploit the assumed mutual statistical independence of the source 
components to estimate the mixing matrix and/or the source signals which can have an arbitrary 
permutation of the original sources [6]. Many existing ICA algorithms recover the source signals 
simultaneously whose number is same as that of the observed mixtures, while in many practical 
applications, it is not necessary for us to extract all the source signals since the number of desired 
signals needed to be recovered is less than that of the mixtures. Therefore, classical ICA algorithms 
involve redundant computation, require large memory for estimating uninteresting signals, degrade the 
quality of the signals recovered and need complex post-processing to detect and identify sources of 
interest. Furthermore, Hiroshi et al. proposed a new algorithm [7,8] combing subband ICA and 
beamforming to solve convolutive blind source separation problem in frequency domain, which not 
only helps to solve arbitrariness of permutation and gain problem at each frequency bin, but also 
improve the separation performance. In [9], the geometric source separation (GSS) algorithm, which 
combines the optimization criteria of source separation, while constraining the responses of multiple 
beams based on readily available geometric information, can be used to extract the SOIs while 
reducing undesired interferences. However, it is a symmetric algorithm which recovers the source 
signals simultaneously whose number is same as that of the observed mixtures, though often in the 
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BSE problem, especially when the number of components needed to be recovered is much less, the 
one-unit (deflation) scheme is recommended. Although some one-unit algorithms were proposed to 
extract all source signals one by one with a deflation process, the inefficiency of such techniques and 
the arbitrary order of extraction remain as major drawbacks. Elimination of indeterminacy in the ICA 
not only resolves the aforementioned problems but facilitates more applications by providing stable 
and unique solutions. 

Recently, Lu and Rajapakse proposed a new technique of constrained independent component 
analysis (cICA) [10], which incorporates the a priori information as additional constraints into the 
conventional ICA learning process and means that only a single statistically independent component 
will be extracted for each given constraint, which can help to reduce the dimensionality of the output 
of the ICA method. The a priori information in [11,12] are rough templates or reference signals of the 
desired signals, and the constraints are denoted by the correlation measure between the recovered 
signals and their corresponding reference signals. James et al. have applied with great success the 
cICA method to artifact rejection in EEG/MEG signal analysis [13]. Lee et al. used the cICA method 
for the extraction of fetal abdominal ECGs [3]. In practice, it is difficult for us to accurately 
compensate the time delay between the recovered signal and the reference signal in order to make the 
phase between them be closely matched, let alone that the reference signals are not available in 
communication applications Mitianoudis et al. [14] proposed a new cICA method exploiting the 
smoothness constraint to extract the smooth source signals with slowly varying temporal structures. 
Furthermore, the previous cICA methods generally view the a priori information as inequality 
constraints and transform the BSE problem into a constrained optimization problem. It means that the 
a priori information has been incorporated into the learning process to guarantee the algorithms 
converge to the desired solution. Yet, all of these algorithms need a very important parameter, e.g., 
closeness tolerance in [11–13] and smoothness degree in [14], to measure the corresponding constraint. 
Unfortunately, it is not easy for us to obtain a suitable candidate, which needs a great deal of trial. 

We notice that, in communication applications with antenna arrays, the mixing matrix is closely 
related to the Direction of Arrivals (DOAs) of the narrowband source signals and the advantage of the 
beamforming technique over the source separation method lies in its use of geometric information. The 
a priori information about the structure of selected source sensor projections is often readily available 
and can similarly be used as a reference or spatial constraint, which is associated with the DOA of the 
SOI as well as in the beamforming theory. This paper is concerned with the use of spatial constraints in 
the cICA method and aims to introduce a novel method by incorporating the rough spatial knowledge 
into the initialization of the ICA method, instead of its learning process. Our purpose is to describe 
how the computationally fast and efficient, the ICA algorithm can be adapted to accommodate spatial 
constraints and thus provide an improved algorithm. This manuscript is organized as follows: in 
Section 2, the attenuation delay mixing model is given, along with the assumptions and the notations. 
Section 3 briefly reviews the ICA concept and the cICA framework. Section 4 introduces how the 
spatial constraint can be incorporated into the ICA process and demonstrates its efficacy in extracting 
the SOI. Section 5 presents the results of a computer simulation compared with the beamforming 
method and finally Section 6 provides the conclusions and discussion. 
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2. Problem Formulation, Definition, Assumption and Notation 

2.1. Notation 

Conventional notation is used in this paper. Scalars, matrices and vectors are represented by lower 
case, upper case and boldface lower case letters, respectively. The ith component of vector x is denoted 
by xi. The expectation operator is E{·}, AT, A* and AH denote transpose, complex conjugate, and 
Hermitian transpose of the matrix A, respectively. The identify matrix is denoted by I. Furthermore, 
kurt(·) denotes the kurtosis operator and ║·║ represents the L2 norm of a vector. 

2.2. Problem Formulation 

In narrowband (NB) array signal processing, the attenuation delay mixing model is more suitable 
than the instantaneous mixing model. Suppose N narrowband source signals impinge on a linear array 
of M sensors, the ith mixture xi(n) can be formulated as: 

 (2) 

where bik is the attenuation coefficients, and τik denotes the propagation time delays associated with the 
path from the kth source signal to the ith sensor which can be represented by c−1disinθk where di, c and 
θk denote the position of the ith sensor, the propagation velocity and the DOA of the kth source signal, 
respectively. According to the NB assumption, Equation (2) can be formulated as complex-valued form: 

 (3) 

Equation (3) can be rewritten as the matrix form (1), where the mixing matrix can be represented by 
the DOAs of the source signals A = [a1(θ1), …, aN(θN)]T  א M ×N. For instance, in a uniform linear 
array (ULA) system where the inter-element equals to half of the wavelength of the source signal, the 
steering vectors in the mixing matrix can be denoted by ak(θk) = [1, ିࢋగ௦ఏೖ, …, ିࢋሺெିଵሻగ௦ఏೖ]T א M ×1. 
The model throughout this paper is a uniform linear array. 

2.3. Spatial Constraints on the Mixing Matrix 

Given the a priori knowledge on the rough estimate of DOAs ી = [θ1, θ2, …, θl]T of the SOIs,  
we can define a spatial constraint on the mixing matrix, i.e., the spatial constraint regarding the sensor 
projections of the SOIs operates on selected columns of A and are enforced with reference to a set of 
predetermined constraint sensor projections, denoted by Ac. Thus, the spatially constrained mixing 
matrix comprises two types of columns [15]: 

 (4) 

where ۯ ≈ Ac are columns subject to the constrained and can be written as follows: 

 (5) 

and Au are otherwise unconstrained columns. 
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To reflect the degree of certainty about the accuracy of the constrained topographies Ac and the 
extent to which ۯ may diverge from Ac, we make the definition of the inverse of the mixing matrix  
as follows: 

 (6) 

In this manuscript, the accurate degree of the constrained column ܉ො  for the desired signal si(n) 
contrast with sensor projections for other signal sj(n) is defined as follows: 

 (7) 

2.4. Assumption  

In our implementation of cICA with the spatial knowledge, we make assumptions that are in 
keeping with the general assumptions governing the application of ICA. In particular, we assume  
the following: 

AS1: All the source signals are independent from each other. 

In practice, this assumption is not strict and easy to satisfy. 

AS2: The SOI is not Gaussian. 

Most digital communication signals can be considered as sub-Gaussian and therefore this 
assumption is also within reason. 

AS3: The number of sensors is assumed to be identical to that of source signals for simplicity and 
the mixing matrix A is of full-rank. 

This assumption is necessary for preventing the BSS problem from becoming an underdetermined 
case which requires other separation methods. As long as there are no two signals whose frequencies 
and DOAs equal to each other completely at the same time, the mixing matrix can be considered as 
full-rank. 

AS4: The accuracy degree of each spatial reference or constraint satisfies the following condition: 

 (8) 

Remark: The accuracy degree required in the following analysis is related to the “non-Gaussianity” 
of the source signals and the mixing vectors corresponding to other “uninteresting” signals. Here,  
we use kurtosis as the measurement of non-Gaussianity of the source signals for simplicity. 

3. Constrained Independent Component Analysis 

3.1. Independent Component Analysis  

As ICA is a building-block in the cICA algorithm, we start with a short description. ICA is a 
statistical method for transforming an observed multidimensional random vector into components that 
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are statistically as independent from each other as possible. Thus the starting point for ICA is the very 
simple assumption that the components (called source signals in BSS) are statistically independent. 
ICA attempts to find an N × M demixing matrix W to recover source signals as follows: 

 (9) 

where P  א N × N is a permutation matrix, and D  א N ×N is a diagonal scaling matrix. Consequently, the 
source signals are recovered up to scaling and permutation ambiguities. In the past decade,  
a variety of ICA algorithms based on different methodologies and theories have been widely studied, 
like Bell and Sejnowski’s infomax algorithm [16], Cardoso’s joint approximate diagonalization of 
eigen matrices (JADE) [17], Hyvärinen’s fixed point algorithm [18,19], etc. (for more recent work  
see [20–22]). We will restrict ourselves to the exploitation of the FastICA algorithm, mainly because 
of its ease of implementation and speed of separation. The FastICA algorithm is a two step procedure 
where the mixture data are whitened in the first step, and in the next step, unitary separate vector is 
updated in order to produce independent output components. Whitening means that the original 
observed data x is linearly transformed to vectors z = Vx, such that the correlation matrix of z equals 
unity: E{zzH} = I, which can reduce the search for an extracting vector to the group of vectors with 
unity norm and orthogonal to each other. This transformation can be accomplished by a principle 
component analysis (PCA) step. The FastICA algorithm separates the source signals based on the 
“non-Gaussianity” of the recovered source signals, which is measured by kurtosis or negentropy. In the 
FastICA algorithm for complex valued signals, the flexible and reliable approximation of negentropy 
was introduced in [19] as follows: 

 (10) 

where G(·) is a non-quadratic function. 

3.2. CICA Framework 

cICA can eliminate the indeterminancy of classical ICA on permutation and consequently get the 
unique result by incorporating the additional requirements and available a priori information [10]. The 
general framework of cICA can be expressed as follows: 

 (11) 

where J1(w) is the contrast function which can be defined by the independence between estimated 
signals, while J2(w) = [J21(w), …, J2m(w)]T and J3(w) = [J31(w), …, J3n(w)]T are inequality and equality 
constraints denoting the available a priori information which of course can be combined into the 
contrast function or exploited in the initialization of the solution vector [23] as described in Section 4.2. 
Therefore, J2(w) and J3(w) are not often necessary according to different application. J4(w) indicates 
constrains the norm of extracting vector w to be unity due to the fact that the variance of recovered 
sources must be constrained to unity for whitened data. 
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4. The Proposed Algorithm with Spatial Constraint 

Firstly, we derive a new cICA algorithm with the spatial constraint by using the gradient ascent 
method and then we will propose a novel method by incorporating the spatial knowledge into the 
initialization of the extracting vector instead of the learning process. Therefore, no extra parameters are 
involved in the algorithm, which is superior to the previous algorithms. 

4.1. Conventional Approach with Spatial Constraint 

If the minimum of half the wavelength of all source signals is longer than the sensor spacing, there 
is no spatial aliasing. In most such cases, the desired solution wi forms spatial nulls in the directions of 
jammer signals and extracts the SOI in another direction [5]. Thus, the extraction system for the SOI 
si(n) can be viewed as an impulse response from the mixtures to its estimate ̂ݏi(n), which can be written 
as follows: 

 
(12) 

In beamforming theory, the impulse response is thus called a directivity pattern, which can measure 
the spatial constraint. If the ith row in the separating matrix produces the “interesting” source signal 
originating from the direction θi, it should maximize the gain of , that is: 

 (13) 

where γ is a threshold measuring accuracy degree of the spatial constraint. Thus, an inequality constraint 
can be defined for the desired output component with the directivity pattern at θi more than or equal to 
a threshold γ, that is: 

 (14) 

Similarly, the problem of spatial constrained ICA can be modeled in the cICA framework as a 
constrained optimization problem: 

 

(15) 

Firstly, we replace the inequality constraint by the equality constraint max(J2(w), 0) = 0 for simplicity 
and then a neural algorithm using the augmented Lagrange multipliers method and the gradient ascent 
learning approach can be derived to obtain the desired optimal solution. The corresponding Lagrangian 
function L(w, λ) is given by: 

 (16) 

The unit-norm constraint in Equation (15) is enforced by the projection of the estimated w on the  
unit-sphere in each iteration, that is: 

(17) 
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Following the strategy proposed in [24], the above optimization problem is addressed using 
alternative optimization. That is, given the current estimate λ, a new estimate for w is searched, and 
then given the estimated for w, we update λ. The cICA algorithm reported here search for the optimal 
solution of w and the Lagrangian parameter λ by using conventional gradient descent for complex 
variable [24]: 

 
(18) 

where η1, η2 are the corresponding learning rate and ܮܟ  denotes the gradient vector of L(w, λ)  
(See the Appendix I): 

 
(19) 

where g(·) denotes the first-order derivative of G(·). In fact the selection of the learning rate (step size) 
is a crucial point and it has been a research focus for several decades where various step size selection 
schemes have been developed (see for example [25,26]). 

If there is a subset of SOIs with the same spatial constraint, we need to run the same procedure by 
re-initializing the extracting vector wi in order to identify the whole subset of SOIs. To prevent 
different vectors from converging to the same independent component, we must decorrelate the outputs  ܟଵுܟ ,ܢଶுܢ, ... As introduced in [6], there are two varieties of the FastICA algorithm: the one-unit, or 
deflation algorithm and the symmetric algorithm. So does our algorithm for extracting a desired subset 
of SOIs with the same cyclic frequencies. The one-unit approach estimates the source signals 
successively under orthogonality condition, while the symmetric algorithm estimates all the source 
signals in parallel and each step is completed by a symmetric orthogonalization of the extracting 
matrix. In the one-unit approach, the ith extracting vector wi can be orthogonal to the space spanned by 

the vector w1, w2, …, wi-1, by Gram-Schmidt method, that is .  

In the symmetric algorithm the symmetric orthogonalization procedure can be approximately 
finished by (WWH)−1/2W. Therefore, the one-unit and symmetric version of the proposed algorithm 
with spatial constraint are summarized in Algorithms 1 and 2 respectively. We refer them to as Alg 1 
and Alg 2 in the later analysis for simplicity. 

Algorithm 1. The one-unit extracting algorithm with spatial constraint. 

Initialization 

Whitened the observation data x to give Z = Vx; 
for P = 1, …, l  
Set λ(0), η1, η2 and choose a random initial weight vector w(0) with unity norm 

Iteration 

At the ith iteration for obtaining Wp, 
Calculate Δwζ according to Equation (19) by utilizing Wp

(i−1) respectively 
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Algorithm 1. Cont. 

 

 

 

Termination 

The iteration is terminated when the relative change ||wp
(i)-wp

(i−1)|| is less than 
a specified tolerance. 

end for 

Algorithm 2. The symmetric extracting algorithm with spatial constraint. 

Initialization 

Whitened the observation data x to give z = Vx; 
Set λ(0), η1, η2 and choose a random initial weight matrix W(0) = | ܟଵሺሻ, …, ܟሺሻ| 
with ܟሺሻ having unity norm 

Iteration 

At the ith iteration for obtaining W, 
for P = 1, …, l  
Calculate  according to Equation (19) by utilizing ܟሺିଵሻ respectively 

 

end for 

 

 

Termination 

The iteration is terminated when the relative change  is less than a 
specified tolerance. 

Yet Alg1 and Alg2 require a user parameter which may affect the final results significantly. The 
selection of the threshold in the algorithm is of vital importance for extracting the desired signal 
successfully, which can be found in Section 5 by simulation. Furthermore, the update step of the 
Lagrangian parameter in each iteration will increase the computational load of the algorithm. Therefore, 
it is important to develop user parameters free methods. 

4.2. A Novel Method 

If the number of source signals is N, there will be 2N local maxima of negentropy, each one of 
which corresponds to ±si(n). The FastICA algorithm cannot theoretically obtain particular desired 
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independent sources other than those having the maximum negentropy among the sources. Furthermore, 
as we know, the FastICA algorithm is a local optimization algorithm which may arbitrarily converge to 
different local maxima from time to time because the local convergence depends on a number of 
factors such as the initial weight vector and the learning rate. When one desires a specific solution, the 
FastICA algorithm is of little use, unless the “interesting” independent source lies in the neighborhood 
of the initialization. Therefore, as long as we predispose the initial w0 in the neighborhood of the SOI 
by utilizing the spatial constraint, the algorithm will automatically converge to it. In this case, the 
specific initial w0 for the SOI si(n) is obtained based on the maximization of the directivity pattern 
corresponding to the spatial information  as follows: 

 
(20) 

The Lagrange multiplier method is adopted to obtain the optimal solution of Equation (20). The 
corresponding Lagrangian function is given by: 

 (21) 

where μ is Lagrangian parameter. Let , we have: 

 (22) 

Since w0 is on the unit sphere, the result is: 

 (23) 

The whole estimation of initial w0 for si(n) via maximizing the corresponding directivity pattern 
does not need learning, so it is easy to obtain. In [6], Hyvarinen and Oja have shown that if the initial 
w0 is located in the neighborhood of wi which is the desired projection direction to extract si(n), the 
learning process will automatically converge to si(n). Therefore, the one-unit and symmetric algorithm 
with purpose-designed initialization under the spatial constraint are summarized in Algorithms 3 and 4 
respectively. We refer them to as Alg 3 and Alg 4 respectively in the later analysis for simplicity. 

Algorithm 3. The one-unit version of the cICA algorithm with the purpose-designed initialization. 

Initialization 

Whitened the observation data x to give z = Vx; 
for p = 1, …, l 
Compute the specific initial weight vector ܟሺሻ corresponding the spatial constraint, 
that is . 

Iteration 

At the ith iteration for obtaining wp, 
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Algorithm 3. Cont. 

 

 

Termination 

The iteration is terminated when the relative change  is less than a 
specified tolerance. 

end for 

Algorithm 4. The symmetric version of the cICA algorithm with the purpose-designed initialization. 

Initialization 
Whitened the observation data x to give z = Vx; 
Compute the specific initial matrix  corresponding 

the spatial constraints with  

Iteration 

At the ith iteration for obtaining W, 
for p = 1, …, l 

 

end for 

 

Termination 

The iteration is terminated when the relative change  is less 
than a specified tolerance. 

In summary, our new method is similar to the FastICA algorithm, including whitening, choosing an 
appropriate non-quadratic for contrast function, as well as the learning process for the optimization 
problem except for the initialization of the extracting vectors. The following theorem indicates the fact 
that the specific initialization obtained by Equation (23) can guarantee the learning process to the 
desired local maxima under certain condition. 

Theorem 1: If the spatial constraint satisfies the AS4, that is to say Equation (8) comes into 
existence, the Alg 3 and Alg 4 must converge to the desired signal corresponding to the spatial 
constraint automatically. 

Proof: See Appendix II. 
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The theorem shows that higher accuracy of the information about the DOA is required to dispose 
the initial vector in the neighborhood of the solution when the non-gaussianity of the SOI is weak. In 
general, most communication signals are sub-Gaussian signals. Therefore, the requirement of the prior 
information about the DOA of the SOI is not very strict, which can be found in Section 5 by simulation. 

As we know, the conventional beamforming (CBF) technique can extract the signal in the desired 
direction and reject all other signals in other directions, however, there are two major drawbacks:  
(1) the “uninteresting” source signals out of the beam can only be suppressed to some extent by the 
sidelobes while some “uninteresting” source signals in the beam cannot be removed, both of which are 
influenced by the spatial resolution; (2) The a priori information about the DOAs for the desired 
signals should be as accurate as possible. While the proposed algorithms (Alg 1–4) relax the accuracy 
requirement for the spatial information and may achieve better performance since they exploit the 
independence property of the source signals. 

On the other hand, the Alg 3 and Alg 4 have obvious advantages over the conventional cICA 
method (i.e., Alg 1 and Alg 2) in the computation load since the update of Lagrangian parameter is not 
involved in the learning process. Furthermore, the Alg 3 and Alg 4 are more reliable and stable due to 
the fact that they are user parameters free algorithms without choosing an approximate parameter 
measuring the corresponding constraint. We can easily see that the Alg 2 reduces to the Alg 1 and the 
Alg 4 reduces to the Alg 3 when there is only one SOI. The comparison results will be demonstrated in 
Section 5 by simulation. 

5. Simulation Experiments 

To evaluate the performance of the proposed algorithm, we adopt the average signal to interference 
ratio (SIR). SIR in decibels can be defined as follows: 

 

(24) 

Experiment 1: The performance of the proposed algorithm and comparison with the FastICA 
algorithm and the MVDR algorithm. 

In this experiment, we used four QPSK modulated signals with the carrier frequencies 12, 12.01, 
12.02, 12.03 MHz, and the symbol rates 1, 2, 3, 4 Mbps, respectively. The Directions of Arrival 
(DOAs) of the sources were set 100, 300, 500, and 700. The signals are received by a uniform linear 
array with four sensors without considering the imperfect array calibration. Without loss of generality, 
we assume the signal with the carrier frequency 12 MHz and DOA 100 to be the SOI. We chose a 
random initialization of w, η1 = 1, η2 = 0.01 and the initialization of Lagrange parameter λ = 10 in the 
Alg 1, while the threshold γ was set 2. In addition, the non-quadratic function G(u) = √0.1   was ݑ
used in the adaptation of w in both of the Alg 1 and Alg 3. More selection for G(u) can be found in [6]. 
The experiment was repeated 100 times with fixed length of data samples 12,500. The following 
experiments will exploit the same scenario and the parameter settings without extra statements. 
Moreover, the FastICA algorithm identified the SOI after separating all the source signals and the 
extracting vector corresponding to the desired signal can be obtained by: 
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 (25) 

where ࢝ෝ k (k = 1, …, N) is the columns of the separating matrix estimated by the FastICA algorithm. 
Figure 1 shows the SIRs for different input SNRs by using Alg 1, Alg3, MVDR and the one-unit 

and symmetric FastICA algorithm. The SIRs of the “interesting” signals of the FastICA algorithm are 
worse than those of Alg 1 and Alg 3 since the FastICA algorithm attempts to separate all the other 
“uninteresting” components before identifying the desired signal. Again, the proposed algorithms 
outperform the conventional beamforming technique as our technique utilizes the independence between 
the source signals while the beamforming technique suffers from the leakage or cross-talk problem. 

Figure 1. Comparison of the performance by using the algorithm of the Alg 1, Alg 3, 
MVDR, one-unit FastICA and symmetric FastICA. 

 

Experiment 2: The performance comparisons among the algorithm of Alg 1, Alg 3 and MVDR with 
the error of the spatial constraint. 

There are various factors influencing the accuracy of the spatial constraint and in this experiment 
we consider the following two types: (1) error of the DOA of the desired signal; (2) amplitude and 
phase mismatch of the array element. 

The distorted DOA of the desired signal covered from 100 to 120, spaced with 0.10 and the error of 
the DOA can be expressed by |θ − θtrue| × 100/θtrue (%). We ran this experiment 100 times for each 
value of error with fixed length of samples 12,500 when the SNR is 30 dB. The results are depicted in  
Figure 2. The results show that the proposed method is not sensitive to the error of DOA while the 
performance of the MVDR algorithm attenuates quickly as the increase of the error due to the fact that 
our algorithms combine the independence between the source signals and the spatial information of the 
SOI. Moreover, Alg 3 performs better than Alg 1 due to the different usage of the spatial information. 
In Alg 1, the spatial constraint has been incorporated into the learning process to guarantee the 
algorithm to converge to the desired solution, while in Alg 3, the spatial information is utilized to 
select the specific initial vector of the extracting vector. Therefore, the requirement of the accuracy of 
the spatial information for Alg 3 is less strict than that for Alg 1. 
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Figure 2. Comparison of the performance versus the error of DOA by using different algorithms. 

 

Let  be an M × M diagonal array error matrix defined as Γ = diag{ߙଵ݁ିఉభ, …, ߙெ݁ିఉಾ} where 
αm and βm are the gain and the phase of the mth element. We assume that αm and βm (m = 1, …, M) are 
independent and Gaussian random variables with μα = 1, μβ = 0, σα and σβ, where μα, μβ, σα and σβ are 
the mean value and the standard deviation of αm and βm (m = 1, …, M), respective. Thus, the mixing 
matrix defined in Equation (1) can be rewritten as: 

 (26) 

In this experiment, σα is assumed to be 0.01 and σβ varies from 0 to 0.2, spaced with 0.02. Figure 3 
shows the SIR of the algorithms of Alg 1, Alg 3 and MVDR with respect to the standard deviation of 
the phase errors (σβ). The results indicate that the proposed algorithms perform more robustly than the 
MVDR algorithm for a wide range of phase error. Again, Alg 3 outperforms Alg 1.  

Figure 3. Comparison of the performance versus the variance of the amplitude and phase 
by using different algorithms. 
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Experiment 3: The selection principle of the threshold γ in spatial constraint in the algorithm of  
Alg 1 and Alg 2. 

In this experiment, we investigated the selection principle and established the suitable range for the 
threshold by simulations. We changed the value of the threshold from 0.01 to 50 for fixed Lagrange 
parameter λ covering from 10 to 20. The SIRs are displayed in Figure 4, where the x-axis and y-axis 
represent the varying threshold and Lagrange parameter, respectively.  

Figure 4. SIRs versus varying thresh γ and varying Lagrange parameter λ. 

 

Figure 5 is the slice results of Figure 4 when λ = 10, and Figure 6 gives the rate of “correct” 
extraction by setting different thresholds. The results indicate that the reasonable domain for the 
threshold γ in J2(w) should be γ (36 ,1) א. The results demonstrate the key role of the threshold in Alg 1 
and Alg 2. If it is beyond some limit, the output component may be unstable to produce any desired 
signal because the corresponding constraint J2(w) causes the learning process of that neuron to become 
unpredictable. If it is too small, the constraint will fail to guide the learning process to converge to the 
desired solution, since the spatial information of other source signals besides the SOIs may satisfy the 
constraint J2(w). Consequently, the algorithm of Alg 1 and Alg 2 cannot produce the desired solution 
due to the improper parameter selection, which perhaps needs a great deal of trial in different 
application and will not be a problem by utilizing the algorithm of Alg 3 and Alg 4. 

Figure 5. SIRs versus varying threshold γ when λ = 10. 
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Figure 6. The rate of “correct” extractions versus varying threshold γ. 

 

Experiment 4: The comparison of the consuming time between the proposed algorithm and the 
FastICA algorithm. 

In this experiment, we added six QPSK signals with the carrier frequencies from 12.04 to 12.09 MHz 
spaced with 0.01 MHz. The symbol rates are all 5 Mbps and the DOAs of all the source signals were 
set −800, −600, −400, −250, −100, 00, 150, 350, 550 and 750 respectively. Figure 7 gives the comparison 
of the time consumed by the different algorithms with different number of source signals through the 
Matlab execution. The results show that the proposed algorithm runs much faster than the FastICA 
algorithm in extracting the SOI, because the FastICA algorithm needed redundant computation in 
estimating unnecessary signals. For the FastICA algorithm, the larger the number of the source signals 
is, the larger the computation load will be. Consequently, much more time is necessary for extracting 
the SOI, while the time consumed by the proposed algorithm still maintained. Furthermore, the result 
also indicates that Alg 1 consumes more time than Alg 3 due to the fact that the update of the Lagrangian 
parameter and the calculation of the inequality constraint are involved in the learning process of Alg 1, 
both of which makes the algorithm more complex and slows down the convergence of w. 

Figure 7. Comparison of the performance in the case of different number of the sources. 
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Experiment 5: Extraction of a subset of SOIs by the algorithm of Alg 1, Alg 2, Alg 3 and Alg 4. 

This experiment exploited the same scenario and the same parameters as in Experiment 1 except 
that there were two desired signals with the DOA 100 and 300 to be extracted. The measurements 
indicating the quality of the extraction of the SOIs by using different algorithms are given in Table 1. 
We should note that the proposed deflationary approach, i.e., Alg 1 or Alg 3, has an inherent error 
accumulation problem and lower convergence speed. Since we proceed from one phase to the other 
without complete convergence due to the finite number of iteration existence of noise and nonlinear 
factors, the assumption about the elimination of previous sources will fail and this will create extra 
noise effect for the following stage, which will accumulate throughout the multiple stages of the algorithm. 

Table 1. Comparison of the performance of extracting two sources of interest by using the 
algorithm of Alg 1, Alg 3, Alg 3 and Alg 4. 

Algorithm Output SIR(dB) 

Alg 1 S1 28.9574 
S2 26.3267 

Alg 2 S1 27.5611 
S2 27.8531 

Alg 3 S1 27.6955 
S2 25.4508 

Alg 4 S1 27.5901 
S2 27.9003 

6. Discussion and Conclusions  

In this manuscript, the authors have extended current work in the cICA framework. Spatial 
constraints/references are associated with sensor projections, whose location in the source mixture 
model is specified a priori. We incorporated the spatial constraint into the ICA model in different ways 
and derived two types of iterative algorithms in order to extract the “interesting” signal from the 
instantaneous mixture while discard other “uninteresting” sources automatically. The first class of 
iterative algorithms, i.e., Alg 1 and Alg 2, combines the spatial constraints and the gradient descent 
method, and the second class of iterative algorithms, i.e., Alg 3 and Alg 4, incorporates the spatial 
constraints into the initialization of the extracting vectors by maximizing the corresponding directivity 
pattern. The experimental results showed the advantages and superiority of our method compared to 
the previous methods. Compared with the ICA method, our algorithms perform separation and 
selection of the SOI simultaneously and eliminate the need for complex post-processing to detect and 
identify the SOI. Compared with the beamforming techniques, our methods are less sensitive to the 
considerable error in the DOAs of the desired signals, as well as other factors influencing the accuracy 
of the sensor projections, such as amplitude and phase mismatch, etc. Furthermore, Alg 1 and  
Alg 2 outperform Alg 3 and Alg 4 in both computation complexity and robustness since no extra 
parameters such as Lagrangian parameter and threshold are involved in the learning process, which 
makes the algorithm simpler and more reliable and helps to improve the speed of extraction.  

Overall, the application of the cICA method has met with considerable success, especially in EM 
brain signal analysis, ECG/EMG signal extraction, etc. and it demonstrates great potential in the field 
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of cooperative/non-cooperative communication signal processing. In fact, the cICA method can be 
considered as very closely related to the method called semi-blind source separation/extraction. There 
are numerous advantages of the cICA technique over the previous approaches: it produces only the 
desired independent sources and facilitates subsequent applications; the computation time and storage 
requirements are reduced; and the incorporation of the a priori information improves the quality and 
accuracy of the separation of the interested components or convergence speed. cICA as applied in the 
previous literature with temporal constraint, i.e., reference signals or smoothness property, results in a 
useful technique for the fast and efficient extraction of the desired signals with the corresponding 
constraint from multichannel recordings, while the spatial constraint is exploited in our manuscript. 
Furthermore, when the a priori information mentioned in the previous literature is not available, new 
constraints should be explored. Moreover, different constraints can be incorporated in the cICA 
framework in different ways, including inequality constraints as well as specific initialization 
described in this manuscript. In conclusion, we need to answer the following two questions when 
dealing with the cICA problem. 

(i) Which types of the a priori information can be exploited in the cICA problem? 
(ii) How can the a priori information be exploited in the cICA problem? 

Additional work is being carried out to explore new features to validate the algorithm’s output 
automatically and a new manuscript concerned about the overall description on the cICA framework 
answering the above two questions is being prepared by the authors. 
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Appendix I—Derivation of Equation (19) 

The first-order derivative of J1(w) is calculated, as follows: 

 
(27) 

And the first-order derivative of J2(w) are calculated, as follows: 

 
(28) 

Also, max(J2(w), 0) can be expressed as follows: 

 
(29) 

Therefore, we can derive the following derivative 

 

(30) 

Therefore, the gradient of L(w, λ) is calculated as follows: 

 

(31) 

Substituting Equations (27) and (28) in Equation (31), we can easily obtain 

 
(32) 

Appendix II—Proof of Theorem 1 

Without loss of generality, we assume sp is the only one SOI, wp is the solution of extracting vector, 
and the initial weight of wp is ܟሺሻ= Vࢇෝp/║Vࢇෝp║. So we have 

 (33) 

 (34) 

where ep = [0, …, c, …, 0]H with |c| = 1 and qp(0) = (VA)H(VA)A−1ࢇෝp 
= A−1ࢇෝp 

= [qp,1, …, qp,N]H with 
the unit-norm constraint ║qp(0)║ = 1. Now, we just need to proof qp must converge to ep. Here, we use 
kurtosis as the measurement of non-Gaussianity instead of negentropy and gradient learning algorithm 
as the optimization method for simplicity, since Newton-like method has the same extreme value 
which has been shown in [6]. 
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According to 0, kurtosis has linearity property that 

 
(35) 

And the gradient can be calculated as 

 
(36) 

Equating the direction of gradient with new qp, we have 

 
(37) 

Therefore, the learning process of the elements of qp can be written as 

 (38) 

where c(k) is a constant which makes the norm of qp(k + 1) equal unity. Then we have 

 

(39) 

Case 1:  and  

 (40) 

Case 2:  

 (41) 

Therefore, for any k in the learning process, the following inequality always holds 
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Since [6,27] has proved that the FastICA algorithm will converge and once the algorithm 
converges, only one element of qp equals c with |c| = 1, and according to Equation (42), qp must 
converge to ep. This completes the proof. 
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