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Abstract: Current methods for retrieving SWE (snow water equivalent) from space rely on passive
microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to
separation of snow microstructural properties from the total snow mass, and signal saturation when
snow is deep (~>80 cm). The use of SAR (Synthetic Aperture Radar) at suitable frequencies has
been suggested as a potential observation method to overcome the coarse resolution of passive
microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable.
Active microwave retrievals suffer, however, from the same difficulties as the passive case in
separating impacts of scattering efficiency from those of snow mass. In this study, we explore
the potential of applying active (radar) and passive (radiometer) microwave observations in tandem,
by using a dataset of co-incident tower-based active and passive microwave observations and
detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with
daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an
effective correlation length for the snowpack (treated as a single layer), which matches the simulated
microwave response of a semi-empirical radiative transfer model to observations. This effective
parameter is derived from radiometer and radar observations at different frequencies and frequency
combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer). Under dry
snow conditions, correlations are found between the effective correlation length retrieved from active
and passive measurements. Consequently, the derived effective correlation length from passive
microwave observations is applied to parameterize the retrieval of SWE using radar, improving
retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same
concept can be applied to future radar satellite mission concepts focused on retrieving SWE, exploiting
existing methods for retrieval of snow microstructural parameters, as employed within the ESA
(European Space Agency) GlobSnow SWE product. Using radar alone, a seasonally optimized value
of effective correlation length to parameterize retrievals of SWE was sufficient to provide an accuracy
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of <25 mm (unbiased) Root-Mean Square Error using certain frequency combinations. A temporally
dynamic value, derived from e.g., physical snow models, is necessary to further improve retrieval
skill, in particular for snow regimes with larger temporal variability in snow microstructure and a
more pronounced layered structure.

Keywords: snow water equivalent; passive microwave; radar; snow correlation length

1. Introduction

The mass of seasonal snow cover, or snow water equivalent (SWE) remains difficult to estimate on
a global scale. Observational needs in terms of spatial resolution and product accuracy cannot be met by
present satellite, in situ, or model-based data products at the global or regional-scale [1,2]. Global scale
EO (Earth-Observation)-based products [3,4] rely on passive microwave sensors, while watershed-scale
SWE has been successfully tracked with airborne LiDAR by relating observed snow height to the
snow free DEM (Digital Elevation Model), and inferring SWE from the observations by modeling
snow density [5]. The cost of timely airborne LiDAR surveys, however, is prohibitive for large-scale
applications beyond individual watersheds or regions, so continuing efforts are made to apply Earth
Observing satellite sensors for this purpose. Applying passive microwave observations from space for
snow cover detection is appealing due to the availability of a long time series of daily observations
with near global coverage, extending back almost 40 years. However, estimation of SWE has proved
challenging despite several decades of efforts in developing retrieval approaches [6,7]. The main
challenges hampering retrieval accuracy are related to the separation of the effect of increasing snow
mass from other varying microstructural properties of the snowpack (density, layering, snow structural
properties), and mitigating mixed pixel effects in the coarse scale passive microwave observations over
heterogeneous landscapes. Existing active microwave sensors are unable to estimate SWE at the global
scale and within user requirements because of the lack of current sensors at frequencies higher than
X-band. In order to overcome these limits, a dual-band (X- and Ku) SAR mission called CoReH2O
(Cold Regions Hydrology High-resolution Observatory, [8]), was proposed as a candidate for the 7th
Earth Explorer mission of the European Agency (ESA), with the objective to provide SWE products at a
spatial resolution of 200 m, exceeding that of current passive microwave methods. However, following
phase-A CoReH2O was not selected for further development.

A priori characterization of snow structural parameters determining the scattering efficiency of
microwaves in snow is of primary importance in the accuracy of SWE retrieval algorithms based on
radiometer measurements, as this knowledge is required to resolve the total snow mass from observed
signal changes [9–11]. A key parameter defining the scattering of microwaves has conventionally been
the snow grain size, an estimate of the average size of snow grains in the snowpack [12]. The snow
grain size has been used to empirically define the rate of microwave extinction in snow [13], which in
turn has been applied in a radiative transfer model simulating emission from snow covered ground [14].
An effective grain size can be determined directly from passive microwave measurements, using widely
available measurements from weather stations to fix the snow depth for the grain size inversion [15];
an effective grain size determined in this fashion can be related to grain sizes observed in the field [16].
Grain size estimates for application in SWE retrievals can also be obtained by means of applying a
model to estimate snow grain metamorphism during the snow season [17].

The snow structural parameter itself remains difficult to measure, and the conversion from the
3D structure to effective model grain size is not unique due to the complex nature of snow grain
metamorphism [18,19]. Theoretically-based emission and backscattering models based on the Dense
Medium Radiative Transfer (DMRT) theory have assumed snow as a collection of spherical particles,
introducing a stickiness parameter to emulate the sintering and clustering of snow grains [20–22].
However, it remains difficult to assign properties of snow observed in nature directly to these
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formulations of DMRT. While measurements of snow specific surface area (SSA) can be applied
to estimate the snow optical grain diameter, empirical scaling is required to translate this value to one
explaining the observed microwave response [23]. Recent efforts have focused on simulating snow as
a bicontinuous medium, simulating the resulting active and passive microwave response with some
success [24]. Arguably, statistical parameters such as autocorrelation length of the snow structure in
different axial directions are able to describe the snow microstructure with higher fidelity than the
conventional measure of grain size [25].

An effective grain size can be used to approximate the scattering behavior of the snowpack using a
forward model based on that parameter [15,16]. The term ‘effective’ refers to the fact that the grain size
may compensate for simplifications in the model setup (namely the aggregation of a multiple-layered
snowpack to a single layer, a practical implementation for operational SWE retrieval schemes, including
the one envisaged for CoReH2O), as well as other deficiencies in model input data or model physics.
In this study, we present the retrieval of an effective correlation length, which similarly describes the
radiative transfer properties of snow by a single parameter. The effective correlation length is retrieved
from active and passive microwave observations of naturally accumulated snow over four winter
seasons at a test site in northern Finland. We examine the interchangeability of the retrieved correlation
length (derived independently from active and passive measurements at different frequencies) for the
purpose of initializing the retrieval of SWE from radar observations. Specifically, the study has the
following objectives;

• Retrieve an effective snow correlation length by matching emission and backscattering model
predictions to the radiometer and radar measurements, respectively. Examine the seasonal
behavior in the observed changes and relate these to physical properties of the snowpack

• Examine the interchangeability of the active and passive microwave effective correlation length,
and determine the sensitivity of these estimates to observation frequency and polarization.

• Apply an effective correlation length derived from one sensor type (passive) to initialize the
retrieval of SWE using the other (active). Compare the impact on SWE retrievals of applying
temporally dynamic effective correlation length versus a seasonally constant value, optimized
separately for each winter season.

The third objective is meant as a first feasibility demonstration of synergistic active/passive
retrieval methods for potential implementation in proposed satellite mission concepts exploiting
co-incident radar and radiometer measurements [26].

The study makes use of data acquired from the NoSREx (Nordic Snow Radar Experiment, [27]).
The experiment was initiated in November 2009 in support of CoReH2O geophysical algorithm
development and included observations of a boreal forest snowpack using both active and passive
microwave instruments over four winter seasons.

Section 2 of the study describes the forward model and the methods applied for retrieval of
correlation length, and SWE. Section 3 presents the NoSREx datasets. Section 4 presents the main
results of the study. These are discussed and the conclusions of the study are given in Section 5.

2. Forward Model and Retrieval Method

2.1. MEMLS3&a Model

The Microwave Emission Model for Layered Snowpacks (MEMLS, [28,29]) is a semi-empirical
model utilizing snow correlation length (i.e., the autocorrelation of snow structural variations in a
spatial dimension) to define snow microstructure. This can be related to snow-scattering parameters
better than the ambiguous snow grain size [25], and is also a parameter that can be objectively
estimated from field and laboratory observations. A recent modification to MEMLS expanded the
model to also simulate microwave backscattering from snow (MEMLS3&a, [30]). MEMLS3&a allows,
by means of model inversion, determination of an effective correlation length describing the average



Remote Sens. 2018, 10, 170 4 of 28

scattering properties of a snowpack using a unified physical approach for both active and passive
microwave observations.

The original MEMLS model considers snow as a vertically stacked system of homogeneous snow
layers, with each layer characterized by temperature, thickness, liquid water content, salinity, density
and correlation length. Radiative transfer in individual layers is calculated using a two-flux approach
(fluxes propagating in forward and backward directions), while scattering and absorption coefficients
are functions of a six-flux model (including fluxes in perpendicular directions). The absorption
coefficient is obtained from density, frequency, temperature, moisture and salinity; the scattering
coefficient is determined based on frequency, density, and correlation length. Several empirical
formulations have been derived to relate correlation length with the six-flux scattering coefficient [28];
MEMLS also includes an option to use the Improved Born Approximation (IBA) to estimate correlation
length, expanding the model for coarse-grained snow [29]. For multiple layers, a sandwich model
is applied to determine the effects of internal scattering and reflections at layer interfaces. In the
MEMLS3&a model, a prediction of backscattering from snow is calculated based on the specular and
diffuse components of snow reflectivity. The specular component is determined from a mean-square
slope of slight surface undulations, assuming a Gaussian distribution. The diffuse component is
determined from the diffuse component of the total snow reflectivity, which in turn is related to the
total emissivity of the snowpack [30].

2.2. Retrieval of Effective Correlation Length

MEMLS3&a was applied in a one-layer configuration to retrieve effective exponential correlation
length pex,eff (i.e., a value of correlation length matching model predictions to observations).
The approach is analogous to the method introduced by Pulliainen [15] for large-scale passive
microwave data using conventional snow grain size. The cost function for iterative inversion can be
formulated as

CF(pex,eff) =
P

∑
k=1

[
Φs

k(pex,eff, SD, x1, . . . , xn)− φs
k
]2

σs
k

(1)

where SD is the snow depth, pex,eff the effective (exponential) correlation length, P the number of
observation channels k, Φs

k the forward model estimate for sensor types (active or passive), xn the
model parameters excluding SD and pex,eff, φs

k the observed microwave response and σs
k the variance

of the combined error of the sensor and the forward model. The same a priori parameters x were
applied in both active and passive forward model simulations. The Improved Born Approximation
(IBA) was applied to calculate the snow-scattering coefficient [29]. Ground reflectivity (s0v, s0h) at
different frequencies corresponds to bare soil with a surface roughness (hrms) of 1 cm and a ground
permittivity (εgnd) of 4, calculated using an empirical model [31]. The specular part of reflectivity in
MEMLS was considered to be 0.9 across all frequencies. Downwelling sky brightness temperature
was estimated using a 55% fractile atmosphere transmissivity model [32]. Snow density (ρsnow) was
assigned a constant value of 200 kg m−3, which closely corresponds to the approximate bulk density
over the four seasons at the test site [27], and which is also very close to the typical taiga snow
density [33]. SD was taken from measured in situ snow depth, and was in baseline retrievals the only
temporally variable ancillary input. All other parameters were kept as constants, while pex,eff was
the sole free parameter in the iterative optimization (minimization) of F. It should be noted that this
approach was chosen as the baseline, although measured values for factors such as air temperature
(Tair), ground temperature (Tgnd), ground permittivity and snow density would have been available
from the NoSREx experiment. However, our purpose was to emulate potential satellite scale retrievals,
where such values are likely not widely available. The retrieved effective correlation length thus
accounts also for potential errors arising from the use of these constant ancillary parameters.

The retrievals of effective correlation length using active and passive microwave observations are
henceforth labeled pactive

ex,eff and ppassive
ex,eff, respectively. The ancillary parameters x, as well as other

setting of MEMLS3&a, are summarized in Table 1.



Remote Sens. 2018, 10, 170 5 of 28

Table 1. Ancillary input parameters and MEMLS3&a model settings.

Parameter Description Value

F Centre frequency active: 10.2, 13.3, 16.7 GHz
passive: 18.7, 37 GHz

θk Incidence angle 50◦

s0v V-pol reflectivity of snow-ground interface
0.03(@37 GHz) . . . 0.06(@10.2 GHz)
using εgnd = 4 and hrms = 1 cm [31]

s0h H-pol reflectivity of snow-ground interface
0.05(@37 GHz) . . . 0.07(@10.2 GHz)
using εgnd = 4 and hrms = 1 cm [31]

ss0v, ss0h Specular part of reflectivity 0.9

q Fraction of cross-polarized scattering (cross polarization not used)

Tsky Downwelling sky brightness temperature 5 (@10.2 GHz) to 35 K (@37 GHz)
[32]

Tgnd Ground temperature −5 ◦C

Tsnow Snow temperature −5 ◦C

ρsnow Snow density 200 kg m−3

Scattering model IBA

Number of layers 1

To analyze the effect of uncertainties of the approach, retrievals of pactive
ex,eff and ppassive

ex,eff
were repeated using measured values for available ancillary parameters for Tair, Tgnd, εgnd and ρsnow.
Tair, Tgnd and εgnd were taken from automated sensors. The ground reflectivity was recalculated
based on the measured εgnd, considering the measured value valid across all frequencies, which is a
reasonable assumption for frozen ground [34]. The measured density was taken from weekly manual
observations of bulk snow density (measurements were made twice a week for the first season of
NoSREx). To reduce random variability due to variable location of the manual measurements, and to
obtain an estimate for each day, a third order fit was performed on the density data, using the fitted
values in retrievals.

2.3. Retrieval of SWE

SWE was determined iteratively from active and passive microwave measurements by inverting
the MEMLS3&a model. The cost function used in iterative minimization is analogous to Equation (1),
so that

CF(SWE) =
P

∑
k=1

[
Φs

k(pex,eff, SWE, x1, . . . , xn)− φs
k
]2

σs
k

(2)

where SWE is the sole free parameter and pex,eff is given a priori. The SWE retrieval tests in this study
were made using radar backscattering observations; four configurations (labeled Configurations 1 to 4)
were used to initialize pex,eff in the retrieval:

• Configuration 1: An overall average of optimized daily values <pactive
ex,eff> was calculated from

all retrievals of pactive
ex,eff under dry snow conditions for all four seasons. Averages were calculated

separately for each channel and combination. These average values of optimizations were used to
initialize the respective retrievals of SWE at time t (pex,eff (t) = <pactive

ex,eff>).
• Configuration 2: As in Configuration 1, but the average of optimized daily values <pactive

ex,eff>
was calculated and applied in SWE retrieval individually for each of the four winter seasons,
thus applying seasonal optimization to the retrieval.



Remote Sens. 2018, 10, 170 6 of 28

• Configuration 3: For each radar retrieval of SWE at time t, the effective correlation length was
acquired from the temporally closest passive microwave retrieval (pex,eff (t) = ppassive

ex,eff (t)). As a
default, ppassive

ex,eff was obtained from 18.7–37 GHz, V-pol, radiometer retrievals.
• Configuration 4: As in Configuration 3, but the value of ppassive

ex,eff was scaled so that pex,eff (t) =
β ppassive

ex,eff (t). A constant scaling value β was applied in SWE retrieval across all seasons.

The first of the above configurations represents a baseline retrieval where pex,eff is optimized for
the site in question based on a climatological average, but without any seasonal sensitivity to potential
changes. The second configuration emulates a retrieval where pactive

ex,eff has been seasonally optimized,
but otherwise kept temporally constant. In practice, this could be achieved e.g., by means of applying
e.g., a physical snow model. The contrast with Configuration 1 thus demonstrates the effect of using a
seasonally sensitive microstructural indicator, compared to a static climatological average. The third
and fourth configurations emulate a scheme where the active microwave retrieval is initialized using
effective correlation length derived from passive microwave observations, with the last configuration
applying an additional scaling factor, to account for the mean difference in the retrieved pactive

ex,eff
and ppassive

ex,eff. All other input variables of the MEMLS3&a model were kept constant in the retrieval,
following Table 1, as in the retrieval of pex,eff.

As with retrievals of pex,eff (see Section 2.2), SWE retrievals were repeated using measured ancillary
data for Tair, Tgnd, εgnd and ρsnow. Furthermore, comparative retrievals using passive microwave
observations were made adapting Configurations 1 and 2 for SodRad radiometer observations, as the
seasonal and overall average of ppassive

ex,eff to initialize the retrievals.

3. The NoSREx Campaign

3.1. Microwave Observations

The objective of the NoSREx campaign [27] was to provide a continuous time series of active
and passive microwave observations of snow cover in a representative location of boreal forest,
covering the complete snow accumulation and ablation period. The campaign lasted four full snow
seasons, providing near-continuous observations of snow cover microwave signatures. The campaign
hosted two tower-based microwave instruments; SnowScat, a stepped-frequency, fully polarized
radar operating on frequencies from X- to Ku band, and the SodRad radiometer, a microwave
dual-polarization radiometer system operating from X- to W bands. SnowScat was installed on
a tower at the height of 9.6 m overlooking a large forest clearing. SodRad was installed on an adjacent
platform at the height of 4 m, overlooking the same general test area. However, the footprints of the
instruments were not entirely co-incident (see e.g., [27,30], for a detailed description).

The standard measurement of SnowScat during the NoSREx experiment took place every three
to four hours (the measurement sequence was changed to four hours after the first season to allow
for scanning of a secondary observation area); co- and cross-polarized backscattering was measured
at four incidence angles (30◦, 40◦, 50◦, and 60◦). Each elevation scan in the main observation area
contained 17 azimuth looks at 6◦ intervals. Observations at 50◦ angle of incidence were chosen for
this study. The data for each incidence angle were averaged over all measured azimuth directions
in order to reduce effects of random speckle and to increase the number of independent looks.
The stepped-frequency scan was integrated over three bands of 2 GHz, with center frequencies
10.2, 13.3 and 16.7 GHz. Only the co-polarized vertical measurements (VV-polarization) were used in
this study. The inherent reason was that the MEMLS3&a model essentially calculates cross-polarized
backscattering from co-polarization using a fixed ratio; thus applying cross-polarized observations
was not seen to provide additional benefit.

Brightness temperatures from SodRad at 10.65, 18.7, 21, 37, 90 and 150 GHz (H and V pol) were
available at incidence angles ranging from 40 to 60◦; however, only the vertically polarized 10.65,
18.7 and 37 GHz channels at 50◦ were used for this study, as initial retrieval tests with H polarization
resulted in larger temporal variability and decreased correlation with pactive

ex,eff and so were omitted
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from further study. SodRad measurements took place in-between SnowScat scans to avoid RFI (radio
frequency interference) from the radar signal.

3.2. In Situ Data

The microwave observations were supported by regular manual snow profile measurements
as well as extensive array of automated measurements on snow, ground and meteorological
parameters [27]. SWE measured from snow profile measurements served as the main reference for SWE
retrievals. For the third and fourth season, collected data included vertical profiles of snow specific
surface area (SSA), using an infrared laser and integrating sphere [35]. The commercial IceCube
instrument was used; the SSA measurements are described by Leppänen et al. [36]. In addition,
the SnowMicroPen (SMP; [37]) was used on several occasions—these measurements allowed the
quantitative extraction of snow correlation length from the measured vertical profile of penetration
resistance [38]. Field data included also conventional measurements of snow grain size [39]; however,
these data were not applied here.

3.3. Campaign Summary

Figure 1 depicts the data measured during the four seasons of NoSREx. The data are presented as
channel differences to reveal trends associated with snow cover changes. For SnowScat, the channel
differences of VV-pol backscattering for 13.3–10.2 GHz, 16.7–10.2 GHz, and 16.7–13.3 GHz are depicted
(the data are shown in linear units). For SodRad brightness temperatures, channel differences of
10.65–18.7 GHz, 10.65–37 GHz, and 18.7–37 GHz are shown for the vertical polarization (V-pol).
The main reason for applying a channel difference in passive microwave retrievals is to reduce
sensitivity to variations in physical temperature affecting microwave emission; in the case of microwave
backscattering, the potential benefits of examining channel differences in backscattering are less
obvious, but are presented here to determine any potential improvement in retrieval results compared
to individual channels.

Also depicted in Figure 1 are in situ measured air temperature (Tair), as well as the 2 cm
depth ground temperature (Tgnd) and ground permittivity (εgnd) measured at the NoSREx test site.
Manual snow profile measurements were conducted weekly (twice a week during the first season of
NoSREx) at the test site. Bulk snow density (ρsnow), measured using a manual snow scale, is shown in
the lowest panel, together with the measured snow depth (SD) from an automated sensor. A third
order fit to measured ρsnow is shown, which can be used to reduce the effect of random errors in
the manual measurements, which in the case of density arises from local-scale variability in density
conditions (each density sample was taken from a different location due to the destructive nature of
the measurement). Bulk SWE values calculated from the density measurements were used as reference
to retrieved SWE in this study.

Clear differences in backscattering signatures between the four NoSREx seasons are apparent;
the second season (Figure 1b) shows a large dynamic range in the channel differences involving the
16.7 GHz channel, while the third season (Figure 1c) shows comparatively less temporal dynamics;
the first and fourth seasons exhibit a dynamic range between these two extremes. The channel
difference of the two lower frequencies (13.3–10.2 GHz), on the other hand, shows stable behavior over
all four seasons with very low dynamics relative to changing SWE. It should be noted that for the third
season, radar measurements were available only after January 23. The microwave emission shows
similarly large dynamics for the second season applying the frequency combinations involving the
37 GHz channel, while the overall response during the third season in particular is muted. The channel
difference of the two lower frequencies (10.65 and 18.7 GHz) shows notably low dynamic behavior
during the observed winter periods.

It is difficult to directly associate observed increases in microwave backscattering or decreases
in microwave emission to snowfall events; rather, significant increases in backscattering at Ku-bands
(shown as an increase of the difference of the 16.7 and 10.2 GHz channels, as well as the difference
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between 16.7 and 13.3 GHz channels) occur often in periods with no significant precipitation,
indicating that such increases are due to other changes in snow or soil backscattering characteristics
(e.g., in March 2011, Figure 1b). Similarly, significant precipitation events, such as those occurring in
February 2013, induce little or no increases in backscattering or dampening of microwave emission,
indicating low sensitivity of the microwave response to newly fallen snow. The new snow may
in fact work as a dampening layer, reducing backscattering from lower layers with coarser snow
microstructure (see e.g., [40]). This may also partly account for the early season decrease in the
backscattering signal.
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Figure 1. Data from four NoSREx campaigns in 2009–2010 (a); 2010–2011 (b); 2011–2012 (c); 2012–2013 (d).
Panels from top to bottom: SnowScat channel differences for backscattering measured between 10.2, 13.3
and 16.7 GHz, VV-pol, 50◦ incidence angle; SodRad brightness temperature channel differences between
10.65, 18.7 and 37 GHz channels, V-pol, 50◦ incidence angle; air temperature (Tair), ground temperature
(Tgnd) and ground permittivity (εgnd) at 2 cm depth; snow depth and snow density with 3rd order fit to
manual density measurements shown adapted from [27].

4. Results

4.1. Retrieved Active and Passive Correlation Length

The SnowScat and SodRad measurements were applied in Equation (1) to retrieve an effective
correlation length pex,eff for all observation cases in dry snow conditions. These were determined from
air temperatures, discarding all cases where air temperature was above −1 ◦C to allow for margin
for unclear cases close to melting point. The measured in situ snow depth was used to initialize the
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retrieval; as described in Section 2.2, other forward model parameters were kept constant following Table 1.
Individual channels, and combinations of two channels were used in the retrieval, mimicking possible
satellite sensor configurations. In the case of SnowScat, pex,eff was retrieved using 10.2, 13.3 and 16.7 GHz
observations as individual channels, using the combinations 10.2 & 13.3, 10.2 & 16.7, and 13.3 & 16.7 both
independently and as a channel difference in the cost function (total of nine different retrieval combinations).
VV polarized backscattering observations for each frequency channel or channel combination were used
in all cases. Similarly, in the case of SodRad V-pol radiometer measurements, both individual channels,
combinations of channels and channel differences were applied (total nine combinations).

Figure 2 depicts the time series of retrieved pactive
ex,eff and ppassive

ex,eff during the four seasons of
NoSREx. Retrievals of pactive

ex,eff using the three combinations of channel differences between the 10.2,
13.3 and 16.7 GHz are shown, as well as retrieved ppassive

ex,eff using the channel difference combinations
between the 10.65, 18.7 and 37 GHz channels. The three time series of pactive

ex,eff correspond largely to one
another in terms of temporal behavior, in particular in the beginning and end of the snow season, but
exhibit clear differences in magnitude; also the channel difference of 13.3–10.2 GHz produces a less dynamic
time series of pactive

ex,eff . With the exception of 2012–2013, as well as February 2012, the channel difference
of 16.7–13.3 GHz gives the largest value of pactive

ex,eff, while the channel difference of 13.3–10.2 GHz results
in the smallest values. Interestingly, for the last season these relations are reversed. The passive-microwave
derived ppassive

ex,eff follows some of the temporal behavior of the three pactive
ex,eff time series, with notable

exceptions in the beginnings of the first and second seasons. This may be related to early-season snow
melt-refreeze and consequent metamorphism, which caused early-season scattering behavior that was not
captured by the MEMLS3&a model when driven directly using in situ snow measurements [27]. It should
be noted that radar observations were missing from the beginning of the third snow season of NoSREx.
For the last season, both pactive

ex,eff and ppassive
ex,eff follow a similar temporal trend; the overall spread in the

magnitude of retrievals is also the smallest for this season.
Figure 2 also shows in situ measured values of pex using the IceCube instrument and the SMP.

SMP data were available from only a few days throughout the season, while IceCube measurements were
conducted weekly during the third and fourth seasons. The measurements of IceCube SSA, made at
approximately 5 cm vertical intervals, were averaged throughout the entire snowpack. Depth-weighted
averaging was applied, estimating the layer depth represented by the sample from the recorded snow
heights. The average values were converted to optical equivalent grain size D0, so that [25]

D0 =
6

ρi·SSA
(3)

The following empirical linear relations between D0 and pex have been derived [29]

pex = 0.4·D0 for dendritic grains (4)

pex = 0.3·D0 for non − dendritic grains (5)

Similar scaling values, ranging from 0.25 to 0.4, have been presented elsewhere in literature [41].
Here, the scaling value of 0.4 for dendritic grains (Equation (4)) was applied in all cases. The resulting
comparison of pex measured using IceCube for the third seasons shows relatively good agreement with
ppassive

ex,eff (significant R2 values for the channel differences depicted in Figure 2c ranged from 0.48 to 0.61),
while pactive

ex,eff generally overestimates measured values and showed a lower coefficient of determination
(significant R2 values ranged from 0.37 to 0.46). Nevertheless, both ppassive

ex,eff and pactive
ex,eff as well as

in situ measurements show decreasing values of pex in mid-February; this can be explained by snow
accumulation in that period (Figure 1c), which decreased the measured average pex. For the fourth
season, both pactive

ex,eff and ppassive
ex,eff overestimate measured values until mid-March 2013 by 20–30%

using the channel difference depicted in Figure 2d. However, again the general trend of measured pex is
closely replicated by the retrievals, with a generally decreasing trend in pex, pactive

ex,eff and ppassive
ex,eff until
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February 2013. Significant R2 values against in situ pex for the fourth season ranged from 0.30 to 0.61 and
0.27 to 0.34, for pactive

ex,eff and ppassive
ex,eff respectively.

Measurements of pex using IceCube generally agree well with SMP measurements of pex for the
third and fourth snow seasons, although the IceCube values show more variability, as depicted by
error bars in Figure 2. The results provide some confirmation of the physical representativeness of the
retrieved pex, eff; it should, however, be noted the method for active/passive SWE retrieval presented
in this study (Section 2.3) does not rely on matching of pex, eff with in situ measurements.
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Overall, the results show that retrievals derived from single channels show low correlation 
between frequencies, with the exception of the highest frequencies of 16.7 GHz for active and 37 GHz 
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multiple channels, and in particular channel differences. The highest overall R2 for most active 
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retrievals. Analysis for individual seasons (not shown) provided higher coefficients of determination 
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Figure 2. Time series of effective correlation length pex,eff retrieved for NoSREx campaigns in
2009–2010 (a); 2010–2011 (b); 2011–2012 (c); 2012–2013 (d). Retrieved active microwave pactive

ex,eff

for channel differences 13.3–10.2, 16.7–10.2, and 16.7–13.3 GHz (VV-polarization). Retrieved passive
microwave ppassive

ex,eff using the channel differences of 10.65–18.7 GHz, 10.65–37 GHz, and 18.7–37 GHz
(V-polarization). In situ measured pex, estimated from either SMP (black) or IceCube SSA measurements
(blue), averaged over whole snowpack (see [36]). Error bars reflect standard deviation of all
measured samples.

One objective of this study was to examine the interchangeability of the retrieved correlation
length derived independently from active and passive observations. Consequently, the relationships
between daily averages of pactive

ex,eff to ppassive
ex,eff were analyzed by calculating basic statistics between

parameters retrieved using different channel configurations. Table 2 summarizes the coefficient
of determination of pactive

ex,eff relative to ppassive
ex,eff. Coefficients of determination which are not

statistically significant (p > 0.05) are indicated with asterisks. Results are shown as a matrix of the
different active and passive channels and channel combinations. When calculating the daily average,
obvious erroneous retrievals were ruled out from the analysis (pex,eff < 0.05 mm or pex,eff > 0.5 mm,
which correspond to typical minimum and maximum values measured for natural snow [37]). Passive
microwave V-pol and active microwave VV pol combinations are shown; retrievals using in situ
measured values for model ancillary parameters are shown in parenthesis. The retrievals were also
performed using passive microwave H-pol observations as well as a combination of H- and V-pol
observations, with largely similar results, the main difference being that H-pol retrievals of ppassive

ex,eff
exhibited increased temporal variability compared to V-pol retrievals, arising directly from the larger
variability of the observed brightness temperature at H-pol. This resulted in most cases in decreased
correlation and increased bias and uRMSE against pactive

ex,eff. Therefore, only the results for V-pol are
presented and discussed further.

Overall, the results show that retrievals derived from single channels show low correlation
between frequencies, with the exception of the highest frequencies of 16.7 GHz for active and 37 GHz
for passive. Moderate association is apparent also between retrievals at 13.3 (active) and 37 (passive)
GHz. Increasingly better results in terms of the coefficient of determination are obtained using multiple
channels, and in particular channel differences. The highest overall R2 for most active microwave
channels were obtained against the channel differences of 18.7–37 GHz; this combination also typically
presented the smallest bias or uRMSE when compared to other passive microwave retrievals. Analysis
for individual seasons (not shown) provided higher coefficients of determination between pactive

ex,eff
and ppassive

ex,eff in particular for the third and fourth season of NoSREx, with R2 values exceeding
0.8. The use of measured in situ data in place of constants increased correlations moderately for
most frequencies and combinations (values given in parenthesis in Table 2); a notable exception
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are correlations of pactive
ex,eff with pactive

ex,eff derived from the 10.6–18.7 GHz channel difference,
where almost all correlations were deteriorated by use of in situ data.

Table 2. Coefficient of determination between daily averages of pactive
ex,eff and ppassive

ex,eff retrieved
using different channels and channel combinations. All four seasons of retrievals from NoSREx
summarized. Statistically insignificant R2 values indicated with asterisks (*). Results from retrievals
with measured ancillary data given in parenthesis.

R2 10.2 GHz 13.3 GHz 16.7 GHz 10.2 & 13.3
GHz

10.2 & 16.7
GHz

13.3 & 16.7
GHz

13.3–10.2
GHz

16.7–10.2
GHz

16.7–13.3
GHz

10.65 GHz 0.07 (0.11) 0.13 (0.07) 0.00 (0.20) 0.12 (0.08) 0.00 (0.21) 0.00 (0.20) 0.15 (0.01) 0.01 (0.15) 0.03 * (0.17)
18.7 GHz 0.00 (0.08) 0.10 (0.39) 0.04 (0.02) 0.07 (0.35) 0.04 (0.03) 0.02 (0.06) * 0.27 (0.53) 0.04 (0.01) 0.10 (0.01)
37 GHz 0.00 (0.09) 0.40 (0.47) 0.74 (0.79) 0.33 (0.41) 0.73 (0.79) 0.75 (0.80) 0.59 (0.65) 0.74 (0.79) 0.59 (0.63)

10.65 & 18.7 GHz 0.01 (0.09) 0.13 * (0.41) 0.03 (0.03) 0.10 (0.37) 0.03 * (0.03) 0.01 * (0.06) * 0.29 (0.53) 0.04 (0.02) 0.10 (0.01)
10.65 & 37 GHz 0.00 (0.04) 0.40 (0.47) 0.73 (0.79) 0.33 (0.41) 0.73 (0.78) 0.75 (0.80) 0.59 (0.65) 0.74 (0.79) 0.58 (0.63)
18.7 & 37 GHz 0.00 (0.04) 0.42 (0.49) 0.72 (0.77) 0.34 (0.42) 0.72 (0.77) 0.74 (0.79) 0.62 (0.68) 0.73 (0.78) 0.56 (0.61)
10.65–18.7 GHz 0.03 (0.05) 0.27 (0.10) 0.19 (0.07) 0.19 (0.05) 0.19 (0.06) 0.23 (0.08) 0.62 (0.40) 0.23 (0.09) 0.09 (0.02)
10.65–37 GHz 0.01 (0.01) 0.34 (0.38) 0.74 (0.79) 0.27 (0.32) 0.74 (0.78) 0.75 (0.78) 0.59 (0.60) 0.78 (0.82) 0.62 (0.68)
18.7–37 GHz 0.00 (0.02) 0.29 (0.34) 0.78 (0.82) 0.24 (0.29) 0.78 (0.82) 0.77 (0.80) 0.44 (0.47) 0.79 (0.84) 0.69 (0.76)

Figure 3 shows the retrieved ppassive
ex,eff against pactive

ex,eff separately for the four seasons
of NoSREx, using the channel differences of 16.7–10.2 GHz (active) and 18.7–37 GHz (passive).
This comparison gave the best overall coefficient of determination over the four seasons (0.79).
However, a consistent underestimation of 0.03–0.06 mm for ppassive

ex,eff relative to pactive
ex,eff was

apparent. Against retrievals with 18.7–37 GHz, pactive
ex,eff was on average 15% larger. This value was

applied in SWE retrieval Configuration 4 (see Section 2.3) to scale between ppassive
ex,eff and pactive

ex,eff.
It is notable in Figure 3 that retrievals from both sensor types similarly resolve the differing

magnitudes of pex,eff between the seasons; the second season gave on average the largest values,
while the third season indicated the lowest values of pex,eff. This confirms that snow microstructure
strongly depends on meteorologically driven seasonal variability in snowpack temporal evolution,
so a temporal (or at least seasonal) dynamic retrieval of correlation length is desirable. Incidentally,
these results concur with the inter-seasonal relations of the average size of snow grains derived from
conventional grain size observations (Table 4 in [27]). The second season, with the largest average pex,eff,
also exhibits the largest scatter and lowest correlation coefficient between active and passive retrievals.

The average of retrieved pex,eff for the four NoSREx seasons are summarized in Tables 3 and 4 for
active and passive retrievals, respectively, using the applied frequencies and combinations. For most
cases, the second season exhibits the largest, and the third season the smallest pex,eff for both active
and passive cases; notable exceptions are retrievals involving the lower X-band frequencies (10.2 and
10.65 GHz). The values represent retrievals with constant ancillary model parameters; the use of
measured in situ data increased the value of pactive

ex,eff on average by 15%, 7% and 5% for 10.2, 13.3 and
16.7 GHz, respectively. For ppassive

ex,eff, the induced differences were on average 21%, 10% and −3.0%
for 10.65, 18.7 and 37 GHz, respectively. For channel combinations, the effect was typically smaller
(2 to 8% increase for pactive

ex,eff, and a change of −3 to 16% for ppassive
ex,eff). In most cases, the use

of ancillary data increased the absolute difference between pactive
ex,eff and ppassive

ex,eff; the average
difference between all retrievals increased from 22 to 40%. The difference between pactive

ex,eff and
ppassive

ex,eff retrieved with the 18.7–37 GHz channel difference increased from 15 to 30%, which was used
to scale ppassive

ex,eff in Configuration 4, when performing comparative SWE retrievals with measured
ancillary in situ information.
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pactive
ex,eff retrieved using channel difference of 16.7–10.2 GHz, VV pol. Constant values (Table 1) used

for ancillary data. Color codes represent the four different seasons of NoSREx (1 to 4).

Table 3. The average of pactive
ex,eff (in mm) across seasons for different channels and

channel combinations.

Season 10.2
GHz

13.3
GHz

16.7
GHz

10.2 & 13.3
GHz

10.2 & 16.7
GHz

13.3 & 16.7
GHz

13.3–10.2
GHz

16.7–10.2
GHz

16.7–13.3
GHz

NoSREx 1 0.28 0.27 0.29 0.27 0.29 0.29 0.26 0.29 0.31
NoSREx 2 0.21 0.26 0.31 0.25 0.31 0.30 0.28 0.33 0.36
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Table 4. The average of ppassive
ex,eff (in mm) across seasons for different channels and channel

combinations. Retrievals at 10.65 and 18.7 GHz or with the channel difference of these frequencies for
NoSREx 3 did not produce realistic values of ppassive

ex,eff and were discarded.

Season 10.65
GHz

18.7
GHz 37 GHz 10.65 &

18.7 GHz
10.65 & 37

GHz
18.7 & 37

GHz
10.65–18.7

GHz
10.65–37

GHz
18.7–37

GHz

NoSREx 1 0.25 0.16 0.23 0.17 0.23 0.23 0.18 0.24 0.25
NoSREx 2 0.31 0.18 0.24 0.18 0.24 0.24 0.26 0.26 0.26
NoSREx 3 - - 0.17 - 0.17 0.16 0.11 0.17 0.18
NoSREx 4 0.34 0.22 0.22 0.22 0.22 0.22 0.27 0.23 0.22

4.2. SWE Retrieval Using Radar Observations

SWE was retrieved from SnowScat observations by applying the four retrieval configurations
described in Section 2. Retrievals for each season were compared to manual in situ measurements
of bulk SWE made weekly at the test site. The retrievals were again constrained to the dry snow
season. As described in Section 2, in the first and second configurations, pex,eff in Equation (2) was set
to be the overall average, or the seasonal average, of retrieved <pactive

ex,eff>, respectively. In the third
configuration, pex,eff was taken from the temporally closest retrieval of ppassive

ex,eff, thus testing the
suitability of passive- microwave derived pex,eff in informing the SWE retrieval from radar observations.
The fourth configuration applied this same method, but using also an additional linear scaling factor
(20%, as described in Section 4.1), so that pex,eff = β*ppassive

ex,eff. A constant value of β = 1.2 was applied
over all seasons, based on the average difference between ppassive

ex,eff and pactive
ex,eff.

Similarly to the retrieval of pex,eff, SWE retrievals were performed for several channels and channel
combinations. In Configurations 1 and 2, <pactive

ex,eff> was always chosen from the corresponding
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retrieval at the same channel or combination of radar channels, while in Configurations 3 and 4,
ppassive

ex,eff was always obtained from the retrieval using the 18.7–37 GHz, V-pol channel difference
(retrievals from H-pol were not applied). Retrievals using this passive microwave channel combination
showed the best overall agreement with pactive

ex,eff retrievals (Table 2).
Figure 4 shows the time series of retrieved SWE for the four seasons of the experiment using

retrieval Configurations 1 and 3 (left panels) and 2 and 4 (right panels), using the 13.3 and 16.7 GHz
channel combinations. Red lines represent retrievals with Configurations 1 and 2, applying either
the overall, or the seasonal average of <pactive

ex,eff>; green lines represent retrievals using ppassive
ex,eff

(Configurations 3 and 4). In comparison to in situ data, retrievals using Configurations 1 and 3 show
large biases for all seasons, in particular for the third season (Figure 4e). Applying the seasonally
optimized < pactive

ex,eff> (Configuration 2, right panels) produces SWE estimates which closely match
the in situ measured values, with the most notable discrepancies apparent for the fourth season.
Even the weak signal dynamics observed during the third season (see Figure 1c) is sufficient to result
in an increase of retrieved SWE which closely matches that of in situ observations (Figure 4f). Similarly,
without scaling, the temporally dynamic ppassive

ex,eff produces estimates which overestimate in situ
measured SWE for all seasons (green lines in left panels. Applying the constant scaling factor β corrects
for the overestimation, but actually results in underestimation of SWE in particular for the first and
second seasons. This can be explained by the scaling factor β being generally applicable to scale
ppassive

ex,eff for all frequency combinations of pactive
ex,eff; a more optimized fit could be achieved by

defining β individually for each channel or combination of channels, as well as for each season.
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The good performance of Configuration 2 can be expected due to the seasonal optimization of pex,eff; 
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also indicate good agreement, suggesting that such a static value, if optimized for a given season, is 
sufficient to account for most of the seasonal dynamics in snow microstructure at the test site. 

Figure 4. Retrieved SWE from 13.3 and 16.7 GHz, VV pol channels of SnowScat for NoSREx campaigns
in 2009–2010 (a,b); 2010–2011 (c,d); 2011–2012 (e,f); 2012–2013 (g,h). Left panels: retrievals with
Configurations 1 and 3; right panels: retrievals with Configurations 2 and 4.

A comparison of SWE retrievals against in situ measured SWE using the three individual SnowScat
frequency bands of 10.2, 13.3 and 16.7 GHz is shown in Figure 5. The data represent all four seasons of
NoSREx; the red markers represent SWE retrievals with using the seasonally optimized <pactive

ex,eff>
(Configuration 2), while green markers denote retrievals with a temporally dynamic but scaled
ppassive

ex,eff (Configuration 4). Error metrics in terms of the coefficient of determination, bias and
uRMS errors are also displayed. Retrievals using 10.2 GHz (Figure 5a) show little or no correlation
with measured in situ SWE, denoted by a low coefficient of determination for both configurations.
With the higher frequency bands, correlation as well as bias and uRMSE are improved for both
configurations. Overall, Configuration 2, using a seasonally optimized, but otherwise temporally static
pex,eff = <pactive

ex,eff> yields better error metrics compared to Configuration 4. The good performance of
Configuration 2 can be expected due to the seasonal optimization of pex,eff; this is reflected in particular
by the low retrieval bias. However, the correlation and uRMSE values also indicate good agreement,
suggesting that such a static value, if optimized for a given season, is sufficient to account for most of
the seasonal dynamics in snow microstructure at the test site.
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Figure 6 shows a comparison of retrieved vs. measured SWE retrievals using retrieval
Configurations 2 and 4 for different channel combinations, again for all seasons of NoSREx.
The combination of the two lower bands (Figure 6a) yields the largest discrepancies against in situ
measured SWE; the use of the 10.2 GHz channel even slightly degrades the error metrics when
compared to using 13.3 GHz alone (Figure 5b). Of the combinations, the use of 10.2 and 16.7 GHz
(Figure 6b) gives for both configurations the best overall error metrics. However, the results against
using the 16.7 GHz channel alone are practically the same, thus any benefit of applying the 10.2 GHz
channel cannot be shown.

Error metrics for SWE retrieval tests using Configurations 1 and 2 are summarized in Table 5.
Using a single value for pex,eff (Configuration 1) results in bias errors for several frequency combinations,
particularly notable for the third season. R2 values against the whole dataset of four seasons were
below 0.2 for any frequency combination. For individual seasons using the 16.7 GHz channel, however,
reasonable correlations were found (namely for the second and third seasons). Using Configuration 2,
obtained bias errors are on average below 10 mm for all frequencies and combinations, demonstrating
the sensitivity of the retrieval to pex,eff and the necessity for seasonal optimization. All frequency
combinations show both reduced uRMSE and an increased R2 value when using Configuration 2,
compared to Configuration 1. Furthermore, all retrievals with Configuration 2 using the 16.7 GHz
channel give an R2 value exceeding 0.7 on average for the whole dataset, with values exceeding 0.9
for the second season. The fourth season provides the worst results in terms of R2. It can be also
observed that, in this case, the addition of a secondary channel to 16.7 provides an improvement in R2

and uRMSE.
Table 6 summarizes similarly the retrievals using Configurations 3 and 4, i.e., by applying pex,eff

from passive microwave observations in the retrieval. Relatively large bias errors are obtained when
using ppassive

ex,eff directly without scaling (Configuration 3); however, R2 values in the order of 0.6 are
still obtained for several frequency combinations on average, with R2 values exceeding 0.8 for several
frequency combinations for the second season, and the 16.7–13.3 GHz combination for the fourth
season. This provides an indication that the passive microwave derived pex,eff is able to improve radar
retrievals, at least when compared to applying a single value for the whole dataset (i.e., Configuration
1, Table 5). Applying a scaling factor to ppassive

ex,eff (Configuration 4) further improves the error
metrics against in situ SWE, in particular in terms of reduced bias and uRMSE. R2 values for some
frequency combinations also show improvement (e.g., combinations of 10.2 & 16.7 GHz and 13.3 &
16.7 GHz), while e.g., retrievals using 16.7 GHz and the channel difference of 16.7–10.2 GHz shows
slight deterioration.
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Table 5. Bias, uRMSE and R2 of retrieved SWE against in situ observations using retrieval Configurations 1 and 2. Error metrics shown for NoSREx individual seasons
as well as for the whole dataset.

Configuration 1 NoSREx 1 NoSREx 2 NoSREx 3 NoSREx 4 All

Frequency Bias
(mm)

uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2

10.2 GHz 68 63 0.01 −22 37 0.13 −26 42 0.40 −12 49 0.02 18 68 0.05
13.3 GHz 40 35 0.44 14 14 0.89 −72 32 0.19 14 48 0.03 16 48 0.18
16.7 GHz 53 32 0.70 78 45 0.91 −80 19 0.86 −31 32 0.59 27 64 0.19

10.2 & 13.3 GHz 43 37 0.38 9 17 0.86 −67 33 0.24 10 48 0.03 15 48 0.16
10.2 & 16.7 GHz 51 31 0.69 71 38 0.91 −78 19 0.86 −31 32 0.57 25 61 0.19
13.3 & 16.7 GHz 47 29 0.67 60 29 0.92 −78 20 0.84 −24 34 0.48 22 55 0.20
13.3–10.2 GHz 31 29 0.61 41 15 0.92 −92 29 0.00 36 51 0.02 21 51 0.16
16.7–10.2 GHz 56 40 0.74 72 44 0.70 −87 16 0.87 −34 29 0.70 24 67 0.19
16.7–13.3 GHz 53 42 0.36 93 64 0.71 −85 13 0.81 −59 27 0.74 18 80 0.02

Configuration 2 NoSREx 1 NoSREx 2 NoSREx 3 NoSREx 4 All

Frequency Bias
(mm)

uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2

10.2 GHz −6 51 0.01 6 39 0.13 −12 44 0.40 0 50 0.02 −2 48 0.09
13.3 GHz 2 34 0.44 3 17 0.88 −11 37 0.19 0 47 0.03 0 35 0.45
16.7 GHz 3 25 0.70 7 13 0.91 −3 11 0.86 −2 29 0.59 2 23 0.77

10.2 & 13.3 GHz 0 36 0.38 3 18 0.86 −11 38 0.24 0 47 0.03 0 36 0.42
10.2 & 16.7 GHz 3 26 0.68 6 12 0.91 −4 11 0.85 −2 30 0.57 2 23 0.76
13.3 & 16.7 GHz 2 26 0.67 5 11 0.92 −6 14 0.84 −2 33 0.48 1 24 0.74
13.3–10.2 GHz 9 29 0.61 4 12 0.92 −11 33 0.00 1 48 0.02 4 32 0.54
16.7–10.2 GHz 8 25 0.74 10 16 0.91 1 13 0.87 −2 25 0.70 6 22 0.78
16.7–13.3 GHz 16 38 0.73 17 28 0.87 13 32 0.80 2 31 0.70 13 34 0.75
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Table 6. Same as Table 5 but for Configurations 3 and 4.

Configuration 3 NoSREx 1 NoSREx 2 NoSREx 3 NoSREx 4 All

Frequency Bias
(mm)

uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2

10.2 GHz 41 43 0.29 −34 40 0.07 111 38 0.34 14 46 0.12 21 59 0.29
13.3 GHz 41 26 0.71 6 24 0.65 61 49 0.24 86 57 0.15 43 46 0.49
16.7 GHz 81 41 0.57 59 28 0.81 108 21 0.61 59 35 0.62 73 38 0.69

10.2 & 13.3 GHz 41 27 0.67 0 25 0.61 70 48 0.27 75 54 0.16 40 46 0.48
10.2 & 16.7 GHz 79 40 0.56 68 38 0.84 109 20 0.58 57 35 0.61 74 39 0.68
13.3 & 16.7 GHz 70 36 0.58 58 35 0.81 104 19 0.56 65 39 0.52 69 37 0.70
13.3–10.2 GHz 41 29 0.78 36 33 0.75 32 56 0.26 112 65 0.05 51 51 0.44
16.7–10.2 GHz 82 43 0.34 91 45 0.82 110 30 0.56 67 36 0.63 85 43 0.61
16.7–13.3 GHz 113 52 0.53 87 36 0.67 100 42 0.01 35 33 0.87 84 55 0.43

Configuration 4 NoSREx 1 NoSREx 2 NoSREx 3 NoSREx 4 All

Frequency Bias
(mm)

uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2 Bias

(mm)
uRMSE
(mm) R2

10.2 GHz −12 38 0.31 −51 38 0.08 29 43 0.38 −32 42 0.12 −23 45 0.28
13.3 GHz −14 25 0.73 −25 25 0.62 1 57 0.43 12 45 0.16 −10 37 0.44
16.7 GHz 23 32 0.77 32 34 0.88 23 27 0.20 −8 28 0.62 19 34 0.67

10.2 & 13.3 GHz −14 27 0.69 −28 26 0.58 8 61 0.45 5 44 0.16 −11 38 0.41
10.2 & 16.7 GHz 21 31 0.77 26 28 0.88 24 28 0.13 −9 28 0.61 16 32 0.68
13.3 & 16.7 GHz 13 26 0.77 16 22 0.87 18 32 0.02 −4 31 0.52 11 28 0.71
13.3–10.2 GHz −15 21 0.78 −7 19 0.76 −32 43 0.25 46 55 0.15 −2 42 0.41
16.7–10.2 GHz 19 27 0.64 47 41 0.84 16 19 0.60 −1 26 0.67 21 35 0.57
16.7–13.3 GHz 41 38 0.47 59 38 0.89 55 39 0.73 −25 16 0.88 31 47 0.45
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Retrievals are generally overestimated during the early winter, in particular for the first and
fourth seasons (see Figure 4). This is a direct result of increased backscattering observed in early
winter, possibly associated with formation of basal crusts due to snow melt-refreeze events (Figure 1;
see also [27,42]). Applying the channel difference mitigates this feature for some seasons and channel
combinations; as an example, Figure 7 demonstrates the retrieval for the fourth season of NoSREx
using the channel difference of 16.7–13.3 GHz. The overestimation in early winter retrievals for
Configuration 2 (red line) is reduced compared to applying the channels individually in the cost
function (compare to Figure 4h). While helpful in this case, applying the channel difference in
place of individual channels in the retrieval was not found to universally improve retrieval error
statistics (see Table 5).

SWE retrievals were repeated using available measured in situ data (Tair, Tgnd, εgnd, and ρsnow).
Values of pex,eff applied in the various SWE retrieval configurations were also derived from retrievals
involving measured in situ data. For Configurations 1, 2 and 4 retrievals involving the 16.7 GHz
channel (including channel combinations) yielded on average a 27 to 75% reduction in bias errors,
a reduction in uRMSE from 5 to 14%, and a 7 to 15% improvement in the coefficient of determination.
For Configuration 3, however, the use of in situ data resulted in an increase of retrieval bias and uRMSE
by 33 and 16%, respectively, while the coefficient of determination was marginally reduced, compared
to retrievals with static ancillary parameters.

Retrievals of SWE using the SodRad radiometer observations generally showed less skill
compared to radar retrievals. Figure 8 shows retrieved against measured SWE from the 10.65–36.5 GHz
channel difference, which yielded the best overall error metrics. Results from Configurations 1
and 2, adapted for radiometer observations, are shown. Use of the seasonal average of ppassive

ex

(Configuration 2) can be seen to reduce both the bias and uRMSE, and increase the coefficient of
determination compared to Configuration 1, where the overall average of ppassive

ex was used. However,
the error metrics are inferior compared to any radar channel combination involving the 16.7 GHz
channel and using the seasonal average of pactive

ex (Configuration 2 in Table 5), with the exception of
the larger bias error of the 13.3–16.7 GHz channel difference retrievals.
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5. Discussion

Results in Section 4.1 demonstrated that at certain frequencies and combinations of frequencies,
active and passive -derived pex,eff were shown to be temporally correlated (Table 2). This can be
expected, as similar physics drive the backscattering and emission signal behavior, linked to varying
scattering and absorption properties induced by precipitation events, and snowpack metamorphism
over time. On average, obtained correlations were higher between higher frequencies which are
generally more sensitive to the volume properties of snow cover, while lower X-band active and
passive frequencies were found to be mostly uncorrelated, affirming that the underlying soil and not
dry snow-scattering properties govern the signal at these frequencies and snow depths. However,
even at higher frequencies a seasonally consistent bias between active and passive -derived pex,eff
was found (Figure 3), indicating deficiencies in either the model physics or the applied ancillary data.
Possible reasons for the bias include the omission of snow layering in the applied one-layer model
configuration which affects in particular the highest 37 GHz passive microwave channel simulations,
as well as deficiencies in the applied ground reflectivity model [31], which is not verified for active
microwave observations beyond this paper and tests conducted by Proksch et al. [30].

Considering practical satellite scale retrievals, obtaining seasonal characteristics for snow
microstructure and thus scattering properties could be realized by assigning e.g., seasonally or
regionally dynamic values for correlation length, derived from snow climatology or physical snow
models. However, as demonstrated in this study, passive microwave observations may also be of use
in providing a priori information on snow microstructure for radar retrievals. This implies a method
analogous to the one introduced in [15], characterizing snow-scattering efficiency over regions where
in situ data is available and extending this over larger areas by means of spatio-temporal interpolation.
In such a scheme, an effective correlation length derived at large scales with daily coverage from passive
microwave observations could initialize active microwave retrievals of SWE from backscattering
observations at suitable frequencies. This naturally implies assuming that differences in the scale and
geometry of observations do not result in detrimental differences affecting the interchangeability of
ppassive

ex,eff and pactive
ex,eff.; this matter was not accounted for in this study and should be investigated

before the method proposed here could be applied at the satellite scale. Forest cover in particular poses
a challenge in relating coarse scale passive microwave observations to high resolution SAR. However,
new methods for mitigating forest canopy effects in snow parameter retrieval from both radar and
passive microwave measurements have been developed using recent experimental data [43].
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Taiga snow typically has a poorly defined internal layer structure compared to other classes of
seasonal snow: snow grains near the base are larger than snow grains near the surface (with depth
hoar by the end of the season) but the internal boundaries between layers are weak. This means a
single snow layer was sufficient for the MEMLS3&a simulations in this study, in particular for late
winter. This may not be the case for strongly layered snowpacks that are found in open tundra and
prairie environments where wind processes strongly influence snow distribution. Tundra snow is
typically composed of fine-grained wind slab layers overlying depth hoar composed of large faceted
grains. Under these conditions, it is likely that two layer snow simulations would be necessary [44].
However, also in the case of NoSREx data, early season radar observations, and thus retrievals of
both pactive

ex,eff and SWE, were assumed to be influenced by melt-refreeze crusts in the base of the
snowpack; causing the high backscattering values seen in the early season (Figure 1). Accounting for
these would require use of a multi-layer model to properly represent the snow-scattering properties.

Reasonable estimates of SWE (Section 4.2) were achieved by inverting active microwave
backscattering observations, provided that the mean level of snowpack scattering efficiency for each
season was known (i.e., retrieval Configuration 2, see Table 5). This is partly incidental, as increases
in snow mass and evolution of snow microstructure both occur over the season, while the direct
impact of newly precipitated snow on the microwave signature was in many cases very small
(see Figure 1); the new snow may also dampen the backscattering signature from lower snow layers
thus compensating for any potential increase in total volume scattering from the new snow layer [40].
Snow regimes with more short-term temporal changes in microstructure may necessitate temporally
dynamic estimates of the microstructure to achieve the same retrieval skill. In an operational context,
assigning seasonally constant estimates of scattering efficiency is unrealistic if short latency is required
(a seasonal average can be assigned only after the snow season is over). Tests with Configuration 2
nevertheless demonstrate that temporal dynamics may not in all cases be critical for SWE retrieval
performance, if the average magnitude of scattering efficiency is correctly estimated. Retrievals of
SWE using passive microwave observations produced generally inferior results (Figure 8), indicating
that radar retrievals may have the potential to improve the absolute accuracy of current SWE products
from space.

The use of temporally variant, measured ancillary information for snow and soil properties was
shown to generally improve the coefficient of determination between correlation length derived active
and passive measurements (Table 2), as well as error metrics of SWE retrievals, compared to retrievals
using constant values. The exception was retrieval Configuration 3, where ppassive

ex was used without
scaling to initialize SWE retrievals from radar. However, the average improvement in e.g., the uRMSE
were less than 14% in any configuration when applying the 16.7 GHz channel. The results show that
while the use of accurate ancillary information is preferable, retrieval skill may still be acceptable when
using constant values derived from e.g., climatology, when measured or modeled data is unavailable.

Similar retrieval results for SWE were obtained by using an absorption-loss-based methodology
using the same NoSREx dataset [45]; that study also showed that a priori definition of snow-scattering
characteristics (in the form of single scattering albedo) was essential to achieve reasonable retrievals.
Nevertheless, further improvement may be achieved by applying more sophisticated retrieval
schemes, including balancing or constraining the parameterization of the retrieval (following
e.g., [45]), as well as by estimating the microstructural evolution of snow based on a physical
model. Direct coupling with physical snow models has been previously demonstrated using the
same dataset [46], including retrieval of SWE using a coupled model. A demonstration of different
microstructural parameterizations and their use in emission models using a suite of different emission
and physical models is given in [47]. Similar schemes have been demonstrated previously for SWE
estimation [48] and for forward model simulations [41,49] using other datasets.

Information on SWE can be coupled with land surface models by assimilation of snow mass
estimates [50] or by direct radiance assimilation [51–53]. With respect to direct assimilation of radiances,
this study indicates that the MEMLS3&a model may be applied to simulate both active and passive
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microwave data streams, provided a suitable proxy of snow microstructure (i.e., correlation length) is
produced by the land surface model (e.g., [54]).

6. Conclusions

This study investigated the seasonal behavior of snow bulk scattering properties by means of
retrieving a proxy variable, the effective snow correlation length, from active and passive microwave
observations. Tower-based measurements from the NoSREx campaign, representing four years of
differing snow conditions in a taiga environment, were used. A numerical inversion of the MEMLS3&a
backscattering and emission model was used to retrieve an effective correlation length matching
model estimates to observations. Snow depth was used as the only temporally variable ancillary
input, mimicking a similar scheme applied for satellite passive microwave SWE retrievals, in which
conventional snow grain size is used as a proxy [4]. The effective snow-scattering efficiency derived
in this fashion accounts also for deficiencies in e.g., ancillary data supplied to the forward model
used in the inversion, as well as physics of the forward model itself. If these deficiencies are severe,
the retrieved effective snow parameters (either effective grain size or correlation length) may lose any
physical relation to actual snow microstructural conditions. Nevertheless, for the last two seasons
when weekly observations of SSA profiles in snow were available, the retrieved values showed similar
temporal trends with MEMLS3&a retrievals of pex,eff, (Figure 2c,d). A bias was apparent for the
fourth NoSREx season (Figure 2d), but these discrepancies can be due to uncertainties in the SSA
measurement, the empirical relation applied to convert SSA to pex, and the use of a one-layer model
for the snowpack to retrieve pex,eff, which complicates the relation to physical snow microstructure
in the presence of a vertically inhomogeneous snowpack. Similar results for the second season of
NoSREx were obtained using the Helsinki University of Technology (HUT) snow emission model [14]
and conventional snow grain size measured in situ (see Figure 9 in [16]). This indicates that effective
snow microstructural parameters may under certain conditions bear relation to measured physical
snow characteristics.

This study also demonstrated SWE retrievals from radar observations, parameterizing the retrieval
by a temporally static effective value for snow-scattering efficiency (Configurations 1 and 2), and by
a temporally dynamic estimate, derived from passive microwave observations (Configurations 3
and 4). Applying seasonal scaling to the average scattering efficiency (Configuration 2), retrievals
yielded on average highly correlated estimates against in situ observations, when higher Ku band
radar (16.7 GHz) observations were applied either in a single frequency retrieval (R2 values between
0.59 and 0.91 for different seasons), or in combination with lower frequencies (R2 values between 0.48
and 0.92). It is notable that high correlations were achieved despite the value of snow correlation length
being static for each season. However, when attempting to apply a single value for the whole dataset
(Configuration 1), error metrics for the whole dataset deteriorated with the coefficient of determination
falling below 0.2 regardless of the frequencies applied in the retrieval, highlighting the need for at
least seasonal characterization of the scattering efficiency. For individual seasons, R2 values of up
to 0.92 were still found, but retrieval skill was hampered by large biases (Table 5). This is consistent
with different bulk and microstructural properties of the snowpack influencing the radar backscatter
response each season. Applying an effective correlation length derived from passive microwave
measurements to initialize the active microwave retrievals (Configurations 3 and 4) was shown to
provide improvement compared to using a single constant value (i.e., Configuration 1). This indicates
that passive microwave observations may, in some cases, serve to initialize retrievals using radar
backscattering, in particular at Ku band frequencies.

In summary, the presented results suggest that synergistic active-passive microwave observations,
such as those provided by a new radar mission concept [26], may enable the retrieval of terrestrial SWE
via the method of assigning an effective parameter for snow-scattering efficiency based on passive
microwave retrievals. Such retrieval products are available already from current passive microwave
satellite estimates [4]. Further work includes demonstrating the synergistic retrieval method beyond
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plot scale observations. Being sensitive to snow volumetric properties, synergistic passive microwave
and Ku-band radar measurements also support land surface modeling within operational forecast
systems through radiance-based assimilation of backscatter.
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