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Abstract: Remote sensing is a key technology that enables us to scale up our empirical, in situ
measurements of carbon uptake made at the site level. In low leaf area index ecosystems typical of
semi-arid regions however, many assumptions of these remote sensing approaches fall short, given
the complexities of the heterogeneous landscape and frequent disturbance. Here, we investigated
the utility of remote sensing data for predicting gross primary production (GPP) in pifion-juniper
woodlands in New Mexico (USA). We developed a simple model hierarchy using climate drivers
and satellite vegetation indices (VIs) to predict GPP, which we validated against in situ estimates of
GPP from eddy-covariance. We tested the influence of pixel size on model fit by comparing model
performance when using VIs from RapidEye (5 m) and the VIs from Landsat ETM+ (30 m). We also
tested the ability of the normalized difference wetness index (NDWI) and normalized difference red
edge (NDRE) to improve model fits. The best predictor of GPP at the undisturbed PJ] woodland was
Landsat ETM+ derived NDVI (normalized difference vegetation index), whereas at the disturbed
site, the red-edge VI performed best (Rzadj of 0.92 and 0.90 respectively). The RapidEye data did
improve model performance, but only after we controlled for the variability in sensor view angle,
which had a significant impact on the apparent cover of vegetation in our low fractional cover
experimental woodland. At both sites, model performance was best either during non-stressful
growth conditions, where NDVI performed best, or during severe ecosystem stress conditions
(e.g., during the girdling process), where NDRE and NDWI improved model fit, suggesting the
inclusion of red-edge leveraging and moisture sensitive VI in simple, data driven models can constrain
GPP estimate uncertainty during periods of high ecosystem stress or disturbance.

Keywords: semi-arid; red-edge; NDWI; woody mortality

1. Introduction

Semi-arid regions and drylands together cover more than 40% of the globe. In spite of the
low fractional cover of vegetation and minimal annual precipitation, the contribution of semi-arid
biomes to the global uptake of carbon dioxide from the atmosphere can be significant on annual
time scales [1,2]. The inter-annual variability of precipitation in these ecosystems can result in both
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rapid carbon stock accumulation, and subsequent turnover due to frequent disturbance (e.g., drought,
insect outbreak, fire), but how these relationships alter the net storage of carbon is poorly understood
(e.g., [1]). The climate in the southwestern USA has recently experienced both increased regional
air temperature, and decreased precipitation, both trends which are projected to continue in the
coming decades [3-7]. The combined effects of these changes in climate have increased drought
severity, exacerbated ecosystem stress, and ultimately triggered widespread forest mortality across the
region [8-10]. Given the rapid state transitions of vegetation in these climatically sensitive biomes, and
the projected changes in climate and associated mortality for this region [11], accurate monitoring of
carbon uptake dynamics in these semi-arid ecosystems is an essential part of constraining uncertainties
associated with regional carbon balance.

Monitoring ecosystem carbon uptake over large geographic extents requires the use of remote
sensing. Typically, remote sensing driven models of ecosystem function predict Gross Primary
Productivity (GPP), the total atmospheric carbon taken up via photosynthesis (e.g., [12,13]). Satellite
remote sensing provides the means to predict GPP by employing light use efficiency-based
algorithms [14,15] that rely on vegetation indices (VIs), such as the normalized difference vegetation
index (NDVI, [16]). This approach has been used at a variety of sites and scales, both by employing
empirical (e.g., [17,18]) and light use efficiency/process driven techniques (e.g., [19]), generally using
high temporal resolution, coarse spatial resolution (=250 m) remote sensing data from sensors, such as
the Moderate Resolution Imaging Spectrometer (MODIS) (e.g., [12]). To this end, the success of
most space borne estimates of GPP hinge on a robust relationship between satellite estimated light
interception and photosynthesis, via light use efficiency models, which generally perform well relative
to in situ measurements from flux tower networks [20].

However, in semi-arid regions, vegetation function is constrained by water availability for the
majority of the year, with periods of drought and heat interrupted briefly by spring snow melt or
episodic pulses of precipitation. Consequently, in these biomes, changes in NDVI are constrained
primarily by the availability of water, rather than light or temperature [21]. This results in NDVI and
GPP often being decoupled in semi-arid regions due to low soil moisture, particularly where evergreen
plants are present [22]. Other characteristics unique to semi-arid ecosystems that challenge the use of
NDVI for characterizing changes in GPP in these biomes are highly variable precipitation patterns
which trigger high inter-annual variability in GPP due to seasonal water limitations, but low variability
in LAI and/or chlorophyll concentration (subsequently low variability in NDVI). Further, the low
LAI (<1.5 mean LAI across landscapes, e.g., [23]) and spatially heterogeneous plant canopies typical
of these systems can result in further uncertainties due to high reflectance by the soil background,
thus confounding spectral signals relating to plant function (e.g., [24-26]).

One of the most universal responses to leaf stress is increasing visible reflectance [27], due to
a combination of stressors which ultimately reduce chloropyll a + b, and consequently reduce the
absorption of incident light [27,28]. Chlorophyll a + b strongly absorb in the red portion of the visible
spectrum, resulting in saturation of the red band at low Chlorophyll a + b, and reducing its potential
to track initial chlorophyll loss at the onset of stress. However, the red-edge has been shown to
have a more linear response to a wide range of chlorophyll concentrations, increasing its potential
as a stress indicator in vegetated systems over conventional red-NIR combinations [26,29-32]. Given
the increasing availability of the red-edge waveband in commercial (e.g., RapidEye, WorldView-2,
WorldView-3) sensors, and freely available data (Sentinel-2, launched June 2015), testing the potential
of the red-edge waveband to improve modeled estimates of GPP in semi-arid ecosystems is becoming
a feasible task.

Here, we test the ability of spectral VI's other than NDVI to model GPP in semi-arid ecosystems.
We focus particularly on pifion-juniper woodlands for several reasons. First, because it is the largest
biome in the Southwestern US, covering 18 million ha in New Mexico, Arizona, Colorado and Utah.
Second, the changes in climate in this region have triggered a significant amount of mortality in
this biome [10,33], and thus, quantifying the extent of this disturbance on productivity throughout
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the region is crucial to understanding how this extensive mortality has impacted both current and
future carbon dynamics. Finally, we take advantage of an existing experimental manipulation
in a Pifion-Juniper woodland in central New Mexico that was girdled in 2009 to simulate the
widespread pifion mortality observed throughout the region. The advantage of using this experimental
manipulation is that since the girdling in 2009, changes in ecosystem productivity triggered by
this mortality have been continuously monitored using eddy covariance, and compared to similar
measurements in a nearby intact P] woodland that serves as a control.

Recent research [34] conducted in our experimental manipulation suggested that the red-edge
employing normalized difference red-edge index (NDRE) [35] was more sensitive than NDVI to
the observed initial decrease in leaf chlorophyll concentration triggered by pifion girdling in this PJ
woodland, adding evidence to its potential as a stress monitoring component in GPP modeling efforts.
The NDRE was determined to be more sensitive to changes in greenup of the low LAI herbaceous
vegetation following mortality in this same system [22]. Based on these findings, the goal of this
study was to test three specific hypotheses. The first hypothesis being that the observed variability in
NDRE will allow more accurate estimation of GPP in both the disturbed and undisturbed P] woodland
in this experimental manipulation. Secondly, due to the inherent dependence of productivity on
water availability in this biome, adding the normalized difference wetness index (NDWI), a VI that is
sensitive to changes in foliar water content, will significantly improve the model fit by constraining the
model error during the dry season. Finally, given the low vegetation cover and highly heterogeneous
nature of P] woodlands, that VIs generated from higher spatial resolution (5 m) data will provide more
accurate estimates of GPP relative to traditional, moderate resolution (30 m) remote sensing data.

2. Experimental Section

2.1. Site Description

The study site includes two pifion-juniper woodlands separated by 3 km and located south of
Mountainair, NM. In September of 2009, 1632 adult pifion (>7 cm diameter at breast height) in a 4 ha
plot in one of the sites (hereafter referred as the girdled site; 34°26'48.54”N, 106°12/48.63”W) were
mechanically girdled by severing the sapwood with a chainsaw at breast height (1.4 m) followed by the
application of a 5% glyphosate solution directly applied to the cut to ensure rapid loss of conductivity
and subsequent mortality of the trees. The total decoupling of the leaves with the roots following
the manipulation was designed to replicate the landscape following the mortality that occurred in
the response to the 1999-2002 drought [9,27]. The second P] woodland (hereafter referred to as the
control site; 34°26/18.420”N, 106°14'15.698”W) remained intact. We have continually monitored surface
fluxes of carbon, water and energy at each site using tower mounted eddy covariance and associated
micrometeorological sensors since 8 months prior to the girdling manipulation in February 2009.

The soil at both sites is Turkey Springs stony loam, characterized by an abundance of alluvially
deposited limestone (Soil Survey Staff). The climate of the region is semi-arid, with a mean annual
precipitation of 372 mm (£86.8 mm standard deviation, sd) and max, and min monthly temperatures
of 19.8 °C (+0.77 °C sd) and 2.32 °C (£0.64 °C sd) respectively, over the past 20 years (PRISM Climate
Group, Oregon State University). Incoming moisture to the site is largely bimodal, broken into winter
snow melt from January to March and seasonal monsoon precipitation between August and October
with a pronounced dry season occurring from April through July.



Remote Sens. 2016, 8, 20 4of 16

2.2. Data

2.2.1. Gross Primary Productivity

Data processing and instrumentation is identical at both sites. Eddy covariance (EC) derived
surface fluxes of carbon, water and energy were measured at 10 Hz using a 3-axis sonic anemometer
(CSAT-3, Campbell Scientific, Logan, UT, USA) and an open-path infrared gas analyzer (Li-7500,
LiCor Biosciences; Lincoln, NE, USA). Continuous measures of net radiation, air temperature and
relative humidity, soil temperature, photosynthetically active radiation, and soil moisture (volumetric
water content) were made using a CNR1 (Kipp and Zonen, Delft, The Netherlands), HMP45C (Vaisala
RH probe with aspirated radiation shield, Vantaa, Finland), TCAV (averaging thermocouple probes, 27
per site), up facing quantum sensors (Li-190SB, Licor Biosciences, Lincoln, NE, USA) and ECHO probes
(TE 5 cm, Decagon Devices, Pullman, WA, USA, 27 per site) respectively. The fluxes were aggregated
to 30 min intervals and were corrected for temperature and moisture variations (WPL, [36]) as well
as frequency responses according to Massman [37]. Anemometer tilt due to terrain variability was
corrected using a planar fit method. We used a friction velocity (u*) filter to reject data obtained when
turbulence is low (u* less than a threshold value). Data gaps created by the u* filter, malfunctioning
instruments, and rain were filled following Lasslop et al. [38]. We partitioned the gapfilled net
ecosystem exchange (NEE) into the components of total C uptake through photosynthesis (i.e., GPP)
and total carbon leaving the ecosystem through both autotrophic and heterotrophic respiration (Re).
We used exponential relationships between nighttime NEE and temperature following the methods
of Lasslop et al. [38] to calculate continuous ecosystem respiration during the day. GPP was then
calculated as NEE—Re [39].

We used a flux source area model [40] modified for 2 dimensions by Detto et al. [41], to characterize
the experimental region at both sites that are measured by the flux towers. The source area model
suggested that the four hectare analysis region at each site accounted for approximately 80% recovery
at the tower level. In this way we ensured that the remote sensing data and the EC measurements
were representing the same patch of vegetation.

2.2.2. Landsat ETM+

We used the web enabled Landsat database (WELD) web service [42] to download time series
of Landsat ETM+ data from 2009 to 2011 for 36 pixels within the four hectare area measured by each
flux tower. Each pixel time series was cleaned (i.e., filtered to meet the following conditions) using
the QA /QC data associated with WELD products [42]; only the pixels classified as containing no
saturated bands and not cloudy (determined by the automatic cloud cover assessment algorithm,
ACCA) [43] were retained. To remove effects of snow cover on the VI, the normalized difference snow
index (NDSI) was used to remove snow covered pixels from the analysis. If more than 25% of the total
analysis region for either the control or girdled site was covered by snow, the entire acquisition date
was removed from the analysis. Hall et al. [44] suggest mapping snowy pixels as NDSI >0.4. However,
we used a lower threshold of 0.2 in this study, which we validated with ground based imagery
and field technician reports. The majority (82%) of the Landsat ETM+ data were acquired within
<3 days of a RapidEye acquisition (see Section 2.2.3), with the greatest time separation being 10 days.
The Landsat ETM+ pixel time series was then linearly interpolated to daily intervals for comparison
with the RapidEye data. In this manner, the same number of Landsat ETM+ VI and RapidEye VI were
used in each of the models tested. Geolocation error for the Landsat ETM+ imagery was generally
<0.5 pixel according to the WELD documentation.
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2.2.3. RapidEye

A time series of 46 images (September 2009 to October 2011) were used with a top of atmosphere,
dark object subtraction (TOA-DOS) correction applied by RapidEye, Inc. (now BlackBridge Ltd.
of Berlin, Germany). The RapidEye data were reasonably registered on delivery, but to minimize
variability in the spectral signature due to pixel shifts between scenes, we manually co-registered
each image to a master image (September 2009) using 50 ground control points and a second order
polynomial transformation. A total of 15-20 check points per image resulted in each scene being
co-registered to a root mean square error (RMSE) <2.5 m (0.5 pixels). Eighteen images were excluded
from the time series due to snow or cloud cover. Existing site boundary shapefiles were used to clip
the images to the extent of both the control and girdled sites, coincident with the pixels extracted for
the Landsat ETM+ analysis (Python Software Foundation. Python Language Reference, version 2.7).
Figure 1 illustrates the distribution of RapidEye images throughout the duration of this experiment for
the girdle and control site.

:-\5 — Control nom 1 | 1 | B | LI | [l L A
>4 Girdle
’."l\d 3
Q 2
a1
&

0
~ 40 B
£ 30
c
§e)
§ 20
=3
@ 10
o

0 . “ “ " 1

N N N

AR .o W

» P ®

Figure 1. Time series of tower-measured gross primary production (A) and precipitation (B) at both
the control (grey) and girdled (black) sites. RapidEye acquisition dates are indicated by the rug plot
above the top plot.

2.2.4. Spectral Vegetation Indices

NDVI (Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge), and
NDWI (Normalized Difference Wetness Index), were calculated to inform our simple models of GPP
and to test our hypotheses. NDRE and NDWI are only available using RapidEye and Landsat ETM+,
respectively, and indicated by their subscripts in Table 1. The red edge here refers to a waveband on
the RapidEye constellation of sensors that spans 690 to 730 nm.

NIR - RED
NDVI= NIR T RED @)
NIR — Red Edge
NDRE = ¥R T Red Edge @
IR — IR
NDwi = NIR = SWIR 3)
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Table 1. Model framework description. Each model is structured as GPP ~ PAR x TA x VI where VI
is represented by the corresponding Table entry above, while PAR and TA are derived from on-site
instrumentation. Acronym definition: GPP (gross primary productivity), PAR (photosynthetically
active radiation), TA (air temperature), VI (vegetation index), NDVI (normalized difference vegetation
index), NDRE (normalized difference red-edge index), NDWI (normalized difference wetness index).

Model VI Combination Scale (m)
NDVI; g Landsat NDVI 30
NDVI; sw Landsat NDVI, NDWI 30
NDVIRg RapidEye NDVI 5
NDVIgrgw RapidEye NDVI, NDWI 5,30
NDRE RapidEye NDRE 5
NDREw RapidEye NDRE, NDWI 5,30

2.3. Statistical Analysis

We fitted six multiple linear regression models in open-source software package R 3.0.1
(R Development Core Team, 2013). Each regression model is structured as follows:

GPP ~ PAR x TA x VI @)

where PAR is photosynthetic active radiation, TA is air temperature, and VI depicts one or
more vegetation index that are shown in Table 1. GPP, PAR, and TA were derived from on-site
instrumentation (for GPP, see Section 2.2.1). The VI were calculated as the mean of all pixels that
passed the qa/qc steps mentioned in Sections 2.2.2 and 2.2.3. Thus the spatial resolution of the driving
VI was either 5 m (from RapidEye), 30 m (from Landsat ETM+), or a combination in the case of the
mixed models.

Within each model group, we created a hierarchical structure of models containing all possible
combinations of parameters and one first order interaction term. In this way we aimed to compare
model groups by comparing the models with the best set of parameters within each group. Model
performance was characterized using the root means squared error (RMSE) and the adjusted R? (R? adj)
that adds an additional penalty for increasing model complexity:

2
2 (1-R*) (n—1)
R =11 ©
where n = the number of observations.
To identify the best model, we further calculated the Akaike information criterion (AIC,g;) :
2k(2k +1)

where k = the number of parameters . We chose the AIC,g4; to account for the relatively small number
of observations and to avoid model over fitting [45]. The best model for both the control and girdle
site was chosen based on the largest AIC,4; weight, and largest relative log likelihood, a measure of
how likely a given model is actually the best.

3. Results and Discussion

3.1. Models of GPP in P] Woodlands Had the Lowest Error at the Disturbed Site

Simple linear models driven by photosynthetically active radiation (PAR), air temperature (TA),
and remotely sensed VI, summarized in Table 1, were able to explain between 80% and 90% of
the variability of gross GPP in both intact and disturbed PJ] woodlands (e.g., Table 2). However, the
strength of this relationship was contingent on a tight coupling between the variability in VI and canopy
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physiological processes that affect a given index. For this reason, the model was run on individual
years, as well as on all years together. Overall, the best performing model VI at the undisturbed P]
woodland was Landsat ETM+ derived NDVI, whereas at the disturbed site the red-edge VI performed
best (Rzadj of 0.90 and 0.92, respectively).

Table 2. Model performance statistics for only year 2009 of the experiment. See Table 1 for a description
of model names. Rzadj is the adjusted RZ, AAICc is the difference in model AICc (Akaike information
criterion) relative to the lowest scoring model, RelLL is the relative log likelihood, or how likely it is
that each model is actually the best, and Weights is a list of the AICc weights for each model.

Site Sensor Model R? adj AAICc RelLL Weights

Landsat  NDVIs 0902 0 1 0.997

Landsat NDVIgw 075 12.159 0.002 0.002

RapidEye NDVIgs 0813 14.072 0.001 0.001
Control  RapidEye NDVIggw ~ 0.056 29.427 0 0
RapidEye ~ NDRE 0.024 29.86 0 0
RapidEye NDREy  0.135 33.983 0 0
Landsat  NDVIg 0391 18.428 0 0
Landsat NDVIgy 0439 17.684 0 0
, RapidEye ~NDVIgz 0238 41.847 0 0
Girdle  RapidEye NDVIggw ~ 0.392 39.812 0 0
RapidEye NDRE 0.921 0 1 1
RapidEye ~NDREy 0361 18.851 0 0

When we drove the model hierarchy with data from all three years in the study, the collection of
models performed poorly across the board (Figure 2, Table 3), with the Landsat ETM+ based models
performed best (RZadj = 0.40 at control, Rzadj =0.50 at girdle). We believe this to be due to the coupling
strength between changes in canopy VI and canopy function during as a function of interannual
variability in climate. As an example, the fit statistics from both the Landsat ETM+ and RapidEye
driven models improved significantly when a single year (e.g., 2009) was used to drive the regression
(Figure 3), dramatically increasing the fit of the simple Landsat ETM+ NDVI model at the control
site (Rzad]- from 0.40 to 0.90) and increased the fit of the RapidEye NDRE model at the girdled site
(Rzad]- from 0.14 to 0.92) (Table 2, discussed in following sections). At the control site, Fall 2009 was very
productive, with a strong monsoon bringing sufficient moisture to the ecosystem, and consequently the
coupling of Landsat ETM+ NDVI, PAR, and air temperature explained almost 90% of the variability
seen in GPP. In the case of girdled site during the same period, the manipulation in pifion mortality
drove both the rapid decrease in VI, and the sudden decrease in canopy uptake of carbon. Both during
this period of significant canopy stress and throughout the entire analysis period, the best model fits
were seen at the girdled site, possibly due to the drastic decreases in LAI and subsequent increased
coupling between the VI and GPP, previously documented as a potential effect of the manipulation
itself [22].
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Figure 2. One to one plots of tower derived (measured) and predicted (modeled) gross primary
productivity for the control (C, black) and girdled (G, grey) sites for all years of the study. See Table 1
for a description of model names.

Table 3. Model performance statistics for all years of data. See Table 1 for a description of model names.
Rzadj is the adjusted R?, AAICc is the difference in model AICc relative to the lowest scoring model,
RelLL is the relative log likelihood, or how likely it is that each model is actually the best, and Weights
is a list of the AICc weights for each model.

Site Sensor Model R? adj AAICc RelLL Weights
Landsat NDVI;g 0.401 0.836 0.658 0.352
Landsat ~ NDVligy 0.394 3518 0.172 0.092
RapidBye ~ NDVIgg 0.373 0 1 0.534
Control  RapidEye  NDVIggy 0.231 7.608 0.022 0.012
RapidEye NDRE -0.013 12.934 0.002 0.001
RapidEye ~ NDREy 0.218 8.042 0.018 0.01
Landsat NDVIig 0.167 10.991 0.004 0.004
Landsat ~ NDVIigy 0.497 0 1 0.899
, RapidBye ~ NDVIgg 0.14 13.979 0.001 0.001
Girdle  RapidEye  NDVIggw 0302 8.552 0.014 0.012
RapidEye NDRE 0.136 11.945 0.003 0.002
RapidEye ~ NDREy 045 4.803 0.091 0.081
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Figure 3. One to one plots of tower derived (measured) and predicted (modeled) gross primary
productivity for the control (C, black) and girdled (G, grey) sites for 2009 only. See Table 1 for a
description of model names.

3.2. NDRE and NDWI Reduced Model Error only during Periods of Significant Stress

In our linear model hierarchy, including NDRE did not significantly improve model performance
relative to models that used only NDVI (Table 2). Previous work in this region suggests NDRE is
more responsive to decreases in canopy chlorophyll concentration relative to NDVI, yet following a
lag period (roughly 2 weeks), the NDVI performed equally well in quantifying foliar concentration of
chlorophyll [34]. Given that our time series spanned multiple years, with rapid decreases in canopy
chlorophyll occurring only at the girdled site in 2009, we ran the same model structures on only data
from 2009, which captured the girdling process (Figure 3). Over this smaller time period of significant
canopy stress, the NDRE dramatically improved model performance at the girdled site (R? agj from
0.136 for NDVI to 0.92 for NDRE, Table 2). However, we did not observe significant improvement
in NDRE driven model fit at the control site, which is consistent with the idea that NDRE explains
variability in canopy function best during early periods of rapid canopy change.

The incorporation of Landsat ETM+-derived NDWI into the model structure did not improve
model fit in either Landsat ETM+ or RapidEye based models when the entire time series was used
in the regression (Figure 2, Table 3). NDWI did however slightly reduce prediction error in both
Landsat ETM+ and RapidEye NDVI based models at the girdled site, in 2009 alone (Figure 3, Table 2).
While the inclusion of the moisture index slightly improved model performance, the added complexity
was penalized fairly heavily given the small number of observations used to parameterize the model.



Remote Sens. 2016, 8, 20 10 of 16

Previous work has shown that including Landsat ETM+ moisture indices can improve estimates of
productivity in some dryland ecosystems [21,46], although it appears to be less effective in sparse
canopy systems [47]. Our data suggest NDWI may only improve estimates of productivity in semi-arid
coniferous woodlands during rapid changes in canopy physiological status, such as during canopy
mortality, yet do not provide sufficient evidence to justify increasing the complexity of the model
structure in this case. Moisture sensitive VI are less effective at representing canopy water content
during periods of low to moderate drought stress [48,49], suggesting that GPP predictions during
periods of the year when water is less limiting may not benefit from the inclusion of a canopy moisture
VI as much as during periods of drought stress. This is evident at the girdle site during 2011, a year
which was characterized by significant drought across the southwestern US. Model performance
improved at the girdle site with the inclusion of Landsat ETM+ NDWI. However, the increased
complexity of the model and our small sample size limit the generalizability of the finding that NDWI
may constrain model uncertainty in these systems during drought periods (Table 4).

Table 4. Model performance statistics for only year 2011 of the experiment, a significant drought year.
See Table 1 for a description of model names. Rzadj is the adjusted R?, AAICc is the difference in model
AlCc relative to the lowest scoring model, RelLL is the relative log likelihood, or how likely it is that
each model is actually the best, and Weights is a list of the AICc weights for each model.

Site Sensor Model Rzadj AAICc RelLL Weights
Landsat NDVI; g 0.815 0 1 0.899
Landsat NDVI; sw 0.698 4414 0.11 0.099
RapidEye  NDVIgg 0.795 22.327 0 0

Control  pobidEye  NDVIggw 0292 12.08 0.002 0.002
RapidEye NDRE —0.042 15.56 0 0
RapidEye ~ NDREy 05 30.359 0 0
Landsat NDVI; g 0.592 4.36 0.113 0.04
Landsat  NDVIigw 0.677 1575 0.455 0.161

, RapidEye ~ NDVIgg 0.711 0.234 0.89 0.315

Girdle  RapidEye  NDVIggw  0.662 2.097 0.35 0.124
RapidEye NDRE 0.717 0 1 0.354
RapidEye  NDREwy 0.672 8.709 0.013 0.005

3.3. Inconsistency in Sensor View Imposed Significant Variability RapidEye VI Model Performance

Our results from the entire 3 year period do not support the hypothesis that VI generated from
higher spatial resolution data should be a better predictor of ecosystem carbon uptake (Table 2). In fact,
using higher spatial resolution data from RapidEye surprisingly decreased model performance at the
control site in some cases, and did not significantly improve model performance at the girdled site.
Some of this can be explained by the inconsistent scene to scene sensor view angle in our RapidEye
time series, which influenced the apparent fractional cover of vegetation (Figure 4A). In an effort to test
whether or not the variability in view angle was imposing noise into the RapidEye data, we binned
the analysis by sensor view angles <7 °C off nadir, given the majority of our data were collected at
more than 7 degrees off nadir (60%, Figure 4B). Limiting the analysis to scenes with absolute sensor
view angle <7 degrees significantly improved model fits in NDVI RapidEye mods (at the girdled
site (Rzadj increased from 0.14 to 0.77), yet decreased model performance at the control site; Table 5,
Figure 5), potentially due to the changing apparent fraction of under-story and inter-canopy vegetation
as a function of sensor view angle, which has a more pronounced impact at the girdle site relative to
the control due to the lower fractional cover of overstory vegetation post manipulation. The inclusion
of view angle into the model hierarchy as a parameter resulted in model over-fitting given the small
sample size. The high inter-annual variability in system state (e.g., monsoonal precipitation or severe
drought) at these sites further confounded our ability to account for view angle effects, due to the
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coupling between canopy function and the remotely derived VI for some dates being much tighter
than others (see Section 2.1).

w

Number of Images

5 10 15
abs(View Angle) (deg)

Only pixels with

NDVI1 > 0.30
November 3 - 2009 November & - 2009
Acquisition Angle: 0.036 Acquisition Angle: -13.018 25 0 25 50 75 100m
50 0 50 100 150  200m | = == =

Figure 4. (A) RapidEye false color composites of the PJ control site (top) for two image dates 3 days
apart in 2009, and the corresponding fraction of pixels with NDVI >0.30 (bottom), with detailed subsets
on the far right; (B) Histogram of view angles that comprised the entire RapidEye time series. View
angles are represented as absolute values from nadir.

Table 5. Model performance statistics for RapidEye sensor view angles less than 7 degrees off nadir.
See Table 1 for a description of model names. Rzadj is the adjusted R?, AAICc is the difference in model
AlICc relative to the lowest scoring model, RelLL is the relative log likelihood, or how likely it is that
each model is actually the best, and Weights is a list of the AICc weights for each model.

Site Sensor Model R? i AAICc RelLL  Weights
Landsat NDVI; g 0.172 0.134 0.935 0.348
Landsat ~ NDVIigy 0.103 5.782 0.056 0.021
RapidEye ~ NDVIgg 0.078 6.113 0.047 0.018
Control RapidEye ~ NDVIggy  —0.133 8.584 0.014 0.005
RapidEye NDRE 0.446 0 1 0.372
RapidEye ~ NDREw 0.665 0.91 0.634 0.236
Landsat NDVI;g —0.248 9.964 0.007 0.003
Landsat  NDVI gy 0475 0.433 0.805 0.317
, RapidEye  NDVIgg 0.777 0 1 0.394
Girdle  gpopidEye  NDVIggw ~ 0.206 4985 0.083 0.033
RapidEye NDRE 0.087 0.894 0.64 0.252

RapidEye NDREw 0.437 10.209 0.006 0.002
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Figure 5. One to one plots of tower derived (measured) and predicted (modeled) gross primary
productivity for the control (C, black) and girdled (G, grey) sites for RapidEye acquisition angles
<7 degrees off nadir. See Table 1 for a description of model names.

Previous work indicates the effects of sensor view angle on the fractional cover of various feature
types (e.g., [50], pertaining to composites derived from the advanced very high radiometric resolution
spectrometer (AVHRR)), and generally near-nadir view angles are a selection criteria for multi-image or
multi-sensor analyses (e.g., [51]). Given the increasing amount and complexity of remote sensing data
at the disposal of terrestrial scientists, multi-resolution and time series data assimilation approaches
to developing temporally and spatially resolved remote sensing products will need to address the
confounding effects of view angle on apparent vegetation cover, especially in sparse canopy systems.

3.4. Implications for Regional Remote Sensing Based Estimations of GPP in P] Woodlands

The results of our case study suggest that remote sensing driven, simple linear models of GPP
have the potential to accurately describe patterns in regional carbon uptake, using locally measured
PAR and air temperature as covariates. In this study, we chose to use Landsat ETM+ data, given
its ease of access via the WELD portal. The highly heterogeneous composition of PJ] woodlands,
and the small scale of our manipulation experiment (200 m x 200 m), precluded the use of MODIS
sized pixels (=250 m x 250 m), and given the heterogeneous patterns of mortality and subsequent
recovery typical of disturbed PJ woodlands (e.g., [9,22,27]), Landsat scale or finer resolution (<30 m)
products are of the appropriate spatial scale to resolve the patchy, heterogeneous patterns of mortality
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typical in disturbed PJ] woodlands. In spite of the sensor view angle complications described in
Section 3.3, limiting image acquisition angle variability impacted model performance in some cases,
suggesting that increased spatial resolution data may have a role in constraining GPP predictions in
these heterogeneous woodlands in the future, yet we were unable to fully test the hypothesis due to
inadequate sample sizes when considering the variation in sensor view angle.

The inclusion of the red-edge leveraging NDRE from RapidEye only improved model performance
during periods of significant stress, such as during the selective mortality of pifion pine that we
imposed on the girdled site in Fall 2009, or during periods of severe drought such as in 2011
(see Section 3.2). Given the imminent transition in climate projected for the southwestern US, and the
already evident impacts on pifion mortality regionally, GPP prediction efforts in P] woodlands should
benefit from the incorporation of NDRE during mortality. Given recent launch of Sentinel-2, which can
leverage the red-edge and infrared wavebands required to compute NDRE and NDWI respectively,
the potential to incorporate NDRE into near-future regional models of GPP as a consequence of pifion
mortality may significantly constrain the current uncertainty in estimating P] woodland ecosystem
function. Further, while NDWI did not significantly contribute to model performance in this study,
the measured productivity of semi-arid plant canopies is strongly a function of available water,
which ultimately affects the coupling between canopy VI and GPP (e.g., [22]), and consequently the
predictive power of VI driven models of GPP in these regions. Previous work has shown NDWI
to correlate reasonably well with foliar water content, and water potential in pifion pine, but not
juniper [52], suggesting further that the inclusion of these VI to empirical modeling attempts should be
perhaps constrained to pifion dominated pixels, requiring higher resolution imagery. Remotely sensed
regional estimates of surface soil water content from the soon to launch Soil Moisture Active Passive
sensor (SMAP), may provide an alternative to constrain the inter-annual variability in the VI ~ GPP
relationship in semi-arid PJ woodlands.

4. Conclusions

Our results are promising in that we can use simple linear models to estimate GPP in both
disturbed and undisturbed PJ] woodlands driven by remotely sensed datasets. While structurally
sensitive, NDVI is more informative to models of GPP than NDRE except during periods of extreme
stress or disturbance. Similarly, we only saw a significant improvement in model performance using
NDWI at the girdled site, during the manipulation event that took place in the Fall of 2009. Finally, the
use of the RapidEye data did slightly improve estimates of GPP in both the control and girdled sites
relative to Landsat ETM+, however this was only true when we reduced the variability in scene to
scene sensor view angle in our RapidEye time series. This apparent advantage of the RapidEye data
may be due to a combination of factors, including spatial resolution (5 m pixels vs. 30 m pixels) and
spectral sensitivity of the sensor. While this may not play a strong role in more homogeneous, closed
canopy systems, sensor view angle in this study often imposed more variability on NDVI than natural
seasonal variability. Consequently, we recommend that remote sensing efforts to model VI sensitive
processes in heterogeneous, low fractional cover systems, place high constraints on acquisition angles
for time series, or bin analyses by viewing angle to minimize the potential confounding effects.

We recognize that the temporally resolved RapidEye data set we utilized for this study is not a
common commodity and currently carries with it a large cost. Using red-edge data added sensor and
illumination geometry complexity, but did improve estimates of GPP during periods of ecosystem
stress despite it. Our results suggest high resolution, red-edge employing platforms will potentially be
very useful for resolving changes in canopy function during periods of rapid disturbance or recovery
where LAl may be changing slowly in relation to chlorophyll content. The recently launched Sentinel-2
satellite mission will allow this to be tested on a broader scale by providing greater spatial and
temporal resolution than Landsat, as well as the ability to calculate NDRE and NDWI, and be freely
available. Secondly, the upcoming soil moisture active passive sensor (SMAP) may provide either
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direct measurements, or modeled estimates of soil moisture, providing further predictive power to
estimate carbon uptake rates in semi-arid ecosystems.
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