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Abstract- In this study, a collocation method based on Bernstein polynomials is 

developed for solution of the nonlinear ordinary differential equations with variable 

coefficients, under the mixed conditions. These equations are expressed as linear 

ordinary differential equations via quasilinearization method iteratively. By using the 

Bernstein collocation method, solutions of these linear equations are approximated. 

Combining the quasilinearization and the Bernstein collocation methods, the 

approximation solution of nonlinear differential equations is obtained. Moreover, some 

numerical solutions are given to illustrate the accuracy and implementation of the 

method. 
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1. INTRODUCTION 

 

 The quasilinearization method [2, 4, 12] based on the Newton-Raphson method is 

an effective approximation technique for solution of the nonlinear differential equations 

and partial differential equations. Aim of this method is to solve a nonlinear nth order 

ordinary or partial differential equation in N dimensions as a limit of a sequence of 

linear differential equations. So it is a powerful tool that nonlinear differential equations 

are expressed as a sequence of linear differential equations. This method also provides a 

sequence of functions which converges rather rapidly to the solutions of the original 

nonlinear equations. Moreover, this method has been applied to a variety of problems 

involving different equations like nonlinear initial and boundary value problems 

involving functional differential equations [1], functional differential equations with 

retardation and anticipation [5], singular boundary value problems [11], nonlinear 

Volterra integral equations [8,10], mix integral equations [3], integro-differential 

equation [13]. 

 The Bernstein polynomials and their basis form that can be generalized on the 

interval [a,b] ,are defined as follows: 

Definition 1.1 Generalized Bernstein basis polynomials can be defined on the interval 

[a, b]; by 
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For convenience, we set p i , n(x) = 0, if i < 0 or i  > n. 
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 We give the properties of the generalized Bernstein basis polynomials the 

following list: 

(a) Positivity property: 

 , 0i np x 
 
is hold for all i=0,1,...,n and all  ,x a b . 

(b) Unity partition property:  
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(c) Recursion's relation property: 

         , , 1 1, 1

1
( )i n i n i np x b x p x x a p x

b a
  

     
. 

(d) First derivatives of the generalized Bernstein basis polynomials: 

  
     , 1, 1 , 1 .i n i n i n

d n
p x p x p x

dx b a
  

     

Definition 1.2 Let  : ,y a b   be continuous function on the interval [a, b]. Bernstein 

polynomials of nth-degree are defined by  
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Theorem 1.1 If  C ,ky a b , for some integer 0m  , then 

  
 ( ) ( )lim ( ; ) ; 0,1, ,k k

n
n

B y x y x k m


  
 

converges uniformly. 

For more information about Bernstein polynomials, see [6, 7]. 

 Consider the mth-order nonlinear differential equation 

            1( ) , , ,..., ,
mmy x f x y x y x y x a x b
   ,       (1) 

under the initial conditions 
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    ;       (2) 

or boundary conditions 
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Here f is nonlinear function and    k k

f

y y
f




  is functional derivatives of the 

    1
, , ( ),..., ( )

m
f x y x y x y x

 on the interval [a, b], 
jk , 

jk , 
jk , 

j  and 
j  are known 

constants, and y(x) is unknown function. 

 In this paper, first purpose is to express the nonlinear equation (1) with conditions 

(2) or (3) as a sequence of mth-order linear differential equations by using 

quasilinearization method [9] iteratively: 
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under the initial conditions 
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or boundary conditions 
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Second purpose is to approximate the solutions of linear differential equations (4) with 

Bernstein polynomials: 

                         ( )( ) ( )

1 1 1 ,
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                                         (7)       

The paper is organized as follows. In Section 2, some fundamental relations are 

given for the generalized Bernstein basis polynomials and its derivatives. Combining 

the quasilinearization and the Bernstein collocation methods, the approximation 

solutions of the nonlinear differential equations are introduced in Section 3. In Section 

4, some numerical examples are presented for exhibiting the accuracy and applicability 

of the proposed method. The Section 5 is ended with the conclusions. 

 

2.  FUNDAMENTAL RELATIONS 

 

Theorem 2.1 Any generalized Bernstein basis polynomials of degree n can be written 

as a linear combination of the generalized Bernstein basis polynomials of degree n + 1: 

       , , 1 1, 1
1 1 .

1 1i n i n i n
n i ip x p x p x

n n  
   
 

 

Proof. We can easily prove this theorem via definition of the generalized Bernstein 

polynomials. For more information, see [6]. 

Theorem 2.2 The first derivatives of nth degree generalized Bernstein basis 

polynomials can be written as a linear combination of the generalized Bernstein basis 

polynomials of degree n: 

             , 1, , 1,

1
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Proof. By utilizing Theorem 2.1, the following functions can be written as 
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Substituting these relations in to the right hand side of the property (d), the desired 

relation is obtained. 

Theorem 2.3 There is a relation between generalized Bernstein basis polynomials 

matrix and their derivatives in the form 

  P
(k)

 (x) = P (x) N
k
;   k = 1,...,n. 
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Here the elements of (n + 1) × (n +1) matrix  ijmN , i, j = 0,1,…,n are defined by: 

  

, if 1

2 , if1

, if 1

0, otherwise

n i j i

i n j i
m

ij b a i j i

  


 
 

   


. 

Proof. From Theorem 2.2 and condition,  , 0i np x   if i < 0 or i > n, we have 
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Hence we obtain the matrix relation  

  P′(x) =P(x)N 

such that 

       0, 1, ,( ) n n n nx p x p x p x   P , 

       0, 1, ,( ) n n n nx p x p x p x      P , 

  

0 0 0 0
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In a similar way, the second derivatives  

  P′′(x)= P′(x)N= P(x)N². 

Thus we get derivatives of the unknown function in the form 

  P
(k)

(x) = P
(k-1)

(x)N= P(x)N
k
. 

This completes the proof. 

 

3. METHOD OF THE SOLUTION 

 

Theorem 3.1 Let  ,ix a b ; i = 0,1,…,n be collocation points. General mth-order 

nonlinear differential equation (1) can be written as the matrix form of a sequence of 

linear differential equations: 
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PN H PN Y G                                                (8) 
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Here the matrices are  1 1r r idiag h x    H ,   inj xp ,P ,   irr xg 11  G  and 

  1 1

b a i

r r n
y a



 
  
 

Y ; , 0,..., .i j n  

Proof. Let  0y x  be chosen function that provide given initial or boundary conditions. 

Consider the sequence of linear differential equations (4) for nonlinear differential 

equation (1) as follows: 
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We use the Bernstein collocation method for solving these series of linear equations. 

The expression (7) can be denoted by the matrix form 

                     ( )

1 1 1( ) ;k k k

r n r ry x B y x   ( ) ( )
P Y . 

By utilizing Theorem 2.3, the derivatives of the unknown functions can also be written 

by 

                    ( )

1 1( ) ; 0,1,..., .k k

r ry x x k m  P N Y                                                          (9) 
          

   

Substituting the collocation points and relation (9) into equations (4), we obtain the 

linear algebraic equation systems 
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  P N Y P N Y                 (10) 

such that  ( ) ( )
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r i n r iy x B y x k m    . Here  1r ih x and  1r ig x  is denoted 
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Considering the matrices 

  

 

0

1

( )

( )

n

x

x

x

 
 
 
 
 
 

P

P
P

P


, 

 

 

 



























nr

r

r

r

xh

xh

xh

1

11

01

1

00

00

00









H , 

 

 

 



























nr

r

r

r

xg

xg

xg

1

11

01

1 
G , 

the linear equation systems (10) can be denoted by the matrix form (8) and the proof is 

completed. 

We can solve the differential equation with variable coefficients under the conditions 

given in the following steps: 

Step 1. The equation (8) can be written in the compact form 

  1 1 1r r r  W Y G  or  1 1;r r W G , 
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so that
1

1 10

mm k

r rk



 
 W PN H PN . This matrix equation (11) corresponds to a linear 

algebraic systems with unknown coefficients 
1; 0,1,ry r  iteratively.  

Step 2. From the expression (9), the matrix forms of the conditions (5) and (6) can be 

written respectively 
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or compactly 
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Step 3. To obtain the solutions of equations (4) under the conditions (5) or (6), we add 

the elements of the row matrices (12) or (13) to the end of the matrix (11). In this way, 

we have the new augmented matrix  
1 1;r r  

 
W G . Here the augmented matrix is a 

(n+m+1)×(n+1) rectangular matrix. This new matrix equation shortly can be denoted by 
 

1 11r rr  W Y G . 

Step 4. If    
1 1 1; 1r r rrank rank n     

 
W W G , then unknown coefficients  

1; 0,1,ry r  are uniquely determined iteratively. These kinds of systems can be 

solved by the Gauss Elimination, Generalized Inverse and QR factorization methods. 

  

4. NUMERICAL RESULTS 

  

 Two numerical examples are considered by using the presented method on 

collocation points ; 0,1,b a
i n

x a i i n    . Numerical results are written in Matlab 

7.1. 

Example 4.1 Consider the following nonlinear boundary value problem [2]: 

    ;  0 1; 0 1 0yy e x y y     
 

The exact solution of the above equation is     ln 2 2ln sec  1/ 2 / 2y x c c x     , 

where c = 1.3360557. Let be 
 0 ( ) 0y x   

n 𝐸1 𝐸2 𝐸3 
2 1.0e - 002 1.3e - 002 1.3e - 002 

4 5.3e - 004 1.4e - 005 1.4e - 005 

8 5.2e - 004 8.5e - 009 9.6e - 009 

16 5.2e - 004 8.5e - 009 8.5e - 009 

32 5.2e - 004 8.5e - 009 8.5e - 009 

 

Table 1. Maximum errors of Example 4.1. 
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Using the Bernstein collocation method, the maximum errors are given in the Table 1. 

The numerical results show that the proposed method can be applicable to the nonlinear 

differential equations and have effective results for increasing n.  

Example 4.2 Consider the following nonlinear boundary value problem: 

  
     3 2 ;   0,1 ; 0 1,   1 1/ 2y y x y y    

 
The analytic solution of the above equation is ( ) 1 (1 )y x x  . Let be  0 1 2y x x   . 

 

Table 2. Absolute errors of Example 4.2. 

n 𝐸1  𝐸2 𝐸3 𝐸4 

4 6.4e - 002 6.3e - 002 6.4e – 002 6.4e - 002 

6 2.2e - 003 1.5e - 006 1.4e – 006 1.4e - 006 

16 2.2e - 003 1.3e - 006 8.1e – 012 8.2e - 012 

24 2.2e - 003 1.3e - 006 4.6e – 013 4.9e - 015 

 

In Table 2, the maximum errors are computed with increasing n. We show that the 

presented method converges rapidly to the exact solution of the nonlinear differential 

equations for increasing n. 

 

5. CONCLUSIONS 

 

In this study, by using quasilinearization technique, nonlinear differential 

equations under the initial or boundary conditions are expressed as a sequence of the 

linear differential equations iteratively. Then, a collocation method based on generalized 

Bernstein polynomials is developed for solving these equations. If y(x) and its 

derivatives are continuous functions on bounded interval [a ,b] ,  then the Bernstein 

collocation method can be applied to any initial or boundary value problems. Moreover, 

this method has been tested on two nonlinear boundary problems, and numerical results 

have been presented for showing applicability, accuracy of the proposed method. 

Consequently, all of the reasons are revealed that the proposed method is encouraging 

for solutions of the other problems involving different equations. 
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