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Abstract: Reconstructing building models at different levels of detail (LoDs) from airborne laser
scanning point clouds is urgently needed for wide application as this method can balance between
the user’s requirements and economic costs. The previous methods reconstruct building LoDs
from the finest 3D building models rather than from point clouds, resulting in heavy costs and
inflexible adaptivity. The scale space is a sound theory for multi-scale representation of an object
from a coarser level to a finer level. Therefore, this paper proposes a novel method to reconstruct
buildings at different LoDs from airborne Light Detection and Ranging (LiDAR) point clouds based
on an improved morphological scale space. The proposed method first extracts building candidate
regions following the separation of ground and non-ground points. For each building candidate
region, the proposed method generates a scale space by iteratively using the improved morphological
reconstruction with the increase of scale, and constructs the corresponding topological relationship
graphs (TRGs) across scales. Secondly, the proposed method robustly extracts building points by
using features based on the TRG. Finally, the proposed method reconstructs each building at different
LoDs according to the TRG. The experiments demonstrate that the proposed method robustly extracts
the buildings with details (e.g., door eaves and roof furniture) and illustrate good performance
in distinguishing buildings from vegetation or other objects, while automatically reconstructing
building LoDs from the finest building points.

Keywords: airborne LiDAR point clouds; building point extraction; building LoDs; the morphological
scale space; point cloud segmentation

1. Introduction

Three-dimensional (3D) building models play an important role in urban planning and
management, telecommunications, tourism, disaster relief and evaluation, environmental simulation,
vehicle navigation, and so on [1]. Automatically reconstructing building models at different levels
of detail (LoDs) is important for various applications. For example, the finest model would be taken
as the basis for assessing solar potential of rooftops [2], and a coarser model could satisfy personal
navigation in a mobile device [3].

The LoDs of buildings are the multiple representations of 3D building models. In the past
decade, many researchers have concentrated on the generation of LoDs from the finest 3D building
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models [4–8]. Generally, most methods derive coarse LoD models by employing the operators of
simplification and aggregation on a fine-scale 3D building model [5,7] or on the 2D ground plans [4,6,9].
However, there are many definitions for LoDs, and the standard is still not unified [4,10]. After the
CityGML (OGC City Geography Markup Language) standard was published [1], many studies
focused on deriving coarse models from a fine-scale 3D model according to the framework of CityGML.
Mao et al. generated CityGML models by simplification and aggregation, and then transformed the
generated CityGML models to a CityTree for realizing dynamic zoom functionality in real time [6].
Fan and Meng proposed a three-step approach to simplify and aggregate 2D ground plans and
generalize roof structures [4]. Verdie et al. generated building LoDs from the finest LoD to the
coarsest LoD based on surface meshes [11]. In a word, the above-reported methods generate 3D
building models at different LoDs from a fine-scale building model. However, reconstructing a
fine-scale building model is quite expensive and may not be relevant for many applications. Moreover,
the number of levels for discrete LoDs is fixed and thus limited in the framework of CityGML,
and the large difference between two adjacent building LoDs could cause a big jump from one level to
another level in the visualization [3,10]. Hence, automatically reconstructing a 3D building model at
desired levels from 3D information of buildings rather than from a fine-scale 3D building model is an
economical and flexible way to meet the user’s requirements.

Airborne Light Detection and Ranging (LiDAR) has become a mature technology for capturing
3D information of buildings [12], which could be taken as the basis for generating building LoDs.
At present, robustly extracting building points from various and complex urban scenes is still
a challenging issue [13,14]. In the last decade, numerous methods have been reported for
extracting building information from airborne laser scanning points, including DSM (Digital Surface
Model)-based methods [15], point cloud-based methods [16] and methods based on imagery-fusing
point clouds [17]. With the improvement of point density and the penetrating capacity of commercial
LiDAR systems (e.g., Full Waveform LiDAR systems), the point cloud-based methods could be more
suitable for complicated urban scenes. In general, segmentation-based methods and supervised
learning-based methods are two main solutions for building extraction based on point clouds.
Supervised learning-based methods [18–23] first select some building and non-building data as
samples for training classifiers, and then extract building points. However, it is time consuming in
selecting samples, and the result is highly dependent on samples [14]. Segmentation-based methods
begin by splitting point clouds into disjointed segments, and then extract building segments with
some prior knowledge or assumptions [16,24–27]. Generally, segmentation-based methods are widely
utilized in various engineering applications. These methods take each segment as an individual unit,
although many features derived from a single local segment cannot describe the differences between
buildings and other objects properly, causing classification errors. Fortunately, it can perform better
when the method combines features derived from the entire object with features derived from the
local neighbors, just like the human visual system distinguishes different objects from the whole to the
local [28]. The key step is to link the relationship between the segments of a building and the entire
building, and it is of great importance to generate building LoDs from extracted segments.

Scale-space theory lays a sound foundation for representing one object from a finer level to
a coarser level [29]. It gradually ignores the details and merges parts of an object into a group
with the increasing of the scale and could directly generate an arbitrary level from the finest point
clouds when the corresponding scale is given. Moreover, it maintains the spatial relations between
adjacent scales, and provides a good way to imitate the human visual system (HVS) for perceiving
objects ranging from whole to local details [28]. Generally, scale spaces can be constructed by
wavelet transform [30], Gaussian smoothing [31], and mathematical morphology [32]. The scale
space constructed by mathematical morphology is non-linear, and it is good for maintaining the
shape of an object. It has been widely used in various fields, such as signal processing and
image processing [29]. Vu et al. generated a DSM from airborne laser scanning point clouds and
constructed the scale space with area morphology for building extraction by fusing spectral imageries,
and providing the simple models with multi-scale representation [33]. Nevertheless, loss of information
(e.g., the multiple returns) in the generation of DSMs affect the extraction of buildings, and the method
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ignores the local details (e.g., dormers and other roof elements) of the building model in the multi-scale
representation. Fortunately, the scale space constructed by the morphological reconstruction
(e.g., opening and closing by reconstruction) generates the LoDs of an object by controlling the
scale (e.g., the size of a structuring element in morphology). It could better describe the local changes
of objects across different levels by the smoothing operators of opening and closing [32]. Hence,
we propose a novel method to extract building points and generate 3D building LoDs from airborne
LiDAR point clouds by applying the morphological scale space, where each level is directly generated
from point clouds by the morphological reconstruction. The main contributions of the proposed
method are as follows.

• Directly construct the scale space from airborne laser scanning point clouds by applying
the morphological reconstruction with planar segment constraints for feature preservation,
and a TRG (topological relationship graph) is created for representing the spatial relations between
segments across levels;

• Generate 3D building LoDs from the extracted building points based on the TRG, and the building
LoD with a specified level could be automatically reconstructed from the finest building points.

The remainder of this paper is organized as follows. An improved morphological scale-space
for point clouds is elaborated in Section 2. Section 3 describes the generation of building LoDs from
airborne laser scanning point clouds based on the improved morphological scale space. In Section 4,
the experimental studies that were undertaken to evaluate the proposed method are outlined. Finally,
conclusions are drawn at end of this paper.

2. An Improved Morphological Scale Space for Point Clouds

The improved morphological scale space is iteratively constructed by a morphological
reconstruction with planar segment constraints with the increasing of scale. Moreover, the topological
relationship graph (TRG) describing the spatial relations between different levels of one object is
generated for extracting building points and reconstructing 3D building LoDs.

2.1. A Morphological Reconstruction for Each Level with Planar Segment Constraints

The improved morphological reconstruction on the point clouds includes two steps, the opening
by reconstruction and the closing by reconstruction. Although the exterior shape of an object could
be maintained, part of an inclined roof may be flattened during the morphological reconstruction.
It leads to a failure in linking the topology between different levels. To overcome the drawback,
the result of a plane segmentation is adopted as constraints. The improved morphological
reconstruction is described as follows.

Let P = {p0, p1, . . . , pn} be the point clouds. P is segmented by the plane segmentation method
of [34] and small segments are removed by the threshold tN , which is defined as the number of points
in one segment. The remained segments are denoted as PS = {PS0, PS1, PS2, . . . }, and all points in the
removed segments are pushed into one set of individual points. Moreover, the slope of each segment
is calculated, and each segment is robustly labeled as horizontal or inclined by Equation (1) to avoid
the disturbance of noises.

Lpsi =

{
1 i f Spsi ≥ tS

0 i f Spsi < tS
(1)

where Spsi is the slope of the segment psi; tS is the slope threshold; Lpsi is assigned to 1 or 0 for marking
one segment to be horizontal or inclined.

Then, the opening reconstruction operator is defined as follows: Set an arbitrary value s as
the current scale, which is taken as the radius of a window Bs, and perform an opening operator
on point clouds P according to Equation (2) to flatten the sharp details, which are smaller than
two times s, and the result is denoted as POPEN . POPEN is taken as the marker point clouds,
and P is the mask point clouds. A geodesic dilation with a window BI is adopted iteratively according
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to Equations (3) and (4) until the result is stable [32]. The result of the opening by reconstruction is
denoted as POPEN_REC = δ

(n)
P (POPEN).

POPEN = (P	 Bs)⊕ Bs (2)

δ
(1)
P (POPEN) = (POPEN ⊕ BI) ∧ P (3)

δ
(n)
P (POPEN) = δ

(1)
P ◦ δ

(1)
P ◦ . . . ◦ δ

(1)
P (POPEN) (4)

where⊕ is the operator of the dilation; 	 is the operator of the erosion; δ is the operator of the geodesic
dilation; ∧ stands for the point-wise minimum; n is the iteration number.

The closing reconstruction operator is defined as follows: Perform a closing operator with
the disc window (Bs) on POPEN_REC according to Equation (5) to remove lower details, which are
smaller than two times s, and the result is denoted as PCLOSE. PCLOSE is taken as the marker point
clouds, and POPEN_REC is the mask point clouds. A geodesic erosion is adopted iteratively according
to Equations (6) and (7) until the result is stable [32]. The result of the closing by reconstruction
PCLOSE_REC = ε

(n)
POPEN_REC

(PCLOSE) is regarded as the reconstruction result at the level of s.

PCLOSE = (POPEN_REC ⊕ Bs)	 Bs (5)

ε
(1)
POPEN_REC

(PCLOSE) = (PCLOSE 	 BI) ∨ POPEN_REC (6)

ε
(n)
POPEN_REC

(PCLOSE) = ε
(1)
POPEN_REC

◦ ε
(1)
POPEN_REC

◦ . . . ◦ ε
(1)
POPEN_REC

(PCLOSE) (7)

where ε is the operator of geodesic erosion, ∨ stands for the point-wise maximum, and n is the number
of iterations.

For example, one building is illustrated in Figure 1a, and Figure 1b shows a cross-section of that
building. Figure 1c shows the result of the morphological reconstruction at the scale of 2 m. It shows
that T0

6 is flattened onto the larger segment, but T0
3 and T0

4 are erroneously processed as three segments
(T1

3 , T1
4 and T1

5 ). The phenomenon is the canonical cut-off problem in the morphological operator [35]
and will result in a failure of relinking the relationships between these segments from adjacent
levels. In order to address the problem, a segment is restricted to two states after the morphological
reconstruction: one horizontal segment or itself. The result of plane segmentation (PS) is adopted to
correct the result of morphological reconstruction. First, we design an indicator to check whether a
segment becomes horizontal or not after the morphological reconstruction. If the elevation difference
hpsi as described by Equation (8) is less than a threshold tSH , the segment is marked as horizontal in
Equation (9). Otherwise, the elevations of the point in the segment are recovered by the corresponding
value after the morphological reconstruction. Figure 1d is the result after the modification.

hpsi = (hMAX − hMIN)× Lpsi (8)

L∗psi
=

{
1 i f hpsi ≥ tSH

0 i f hpsi < tSH
(9)

where hMAX and hMIN are the maximum and minimum elevation in the segment psi after
morphological reconstruction; hpsi is the indicator; tSH is the threshold; and L∗psi

is the judged result by
the indicator.

Additionally, although some segments are smaller than twice the scale, they may fail to be
removed. For example, there are two small segments T1

1 and T1
5 in Figure 1d, which is the

morphological reconstruction result at the scale of 2 m, and they fail to flatten into the segments
T1

0 and T1
4 . Therefore, the method automatically edits these false segments through two steps.

The first step is that the method detects these false segments according to their size and relationship
with the neighboring segments. For the first case T1

1 , the method first groups all segments into different
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clusters according to adjacent segments with a minor elevation difference in the vertical direction,
and each cluster is taken as an individual structure. Then, segments of any cluster which is smaller
than two times the scale are detected. For the second case T1

5 , the method checks each small segment
with a width less than twice the scale. If a small segment is included in another segment which is
larger than two times the scale, the small segment will be detected. After detection of false segments,
the method searches a neighboring segment with the width larger than twice the scale to modify
each false segment. Figure 1e is the final result of the improved morphological reconstruction at the
scale of 2 m.
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Figure 1. Improved morphological reconstruction for a building. (a) Raw point clouds of a building;
(b) A cross-section of the raw point clouds, where the cross plane is illustrated in (a), and the width of
each segment is annotated; (c) Result of morphological reconstruction at the scale of 2 m, where parts
of the inclined roofs T0

3 and T0
4 are flattened; (d) Result of recovering the inclined segments T0

3 and T0
4 ;

(e) Result of modifying false segments, where T1
1 and T1

5 are flattened onto the larger segment.

2.2. Generating the Morphological Scale Space and Constructing the Topological Relationship Graph (TRG)

To generate the scale space for an object, the improved morphological reconstruction is iteratively
executed with the increasing of the scale. Hence, for one object, a scale space is constructed by
employing a series of scale values (S = {s0, s1, s2, . . . , sn}) until all points of the object are located on
a horizontal plane, and each scale value indicates one level. It is clear that the points of one object
have been portioned as different segments at each level. Sequentially, topological relationship graphs
(TRGs) across levels can thus be created by linking the spatial relations between segments of adjacent
levels, and each segment of one level is taken as a node. The rule of linking is that if most points
from one segment in a fine level can be found in another segment of the next coarse level by the point
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index, the spatial relation between them is recorded. Figure 2 is an example of generating scale space
and constructing topological relationship graphs within one building, and the scales are defined as
S = {2, 4, 8, 16, . . .}, where the former scale is half of the latter scale. Figure 2a is the raw point
clouds, and Figure 2d is a corresponding cross-section. There are seven segments, and the size of each
segment is annotated. Figure 2b,e are the results of the improved morphological reconstruction at
the scale of 2 m. T0

1 , T0
5 and T0

6 are flattened, and T0
3 and T0

4 are preserved. Figure 2c,f are the final
results of the improved morphological reconstruction, and the maximum scale is 4 m. Figure 2g is the
generated TRG.
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the third scale (s = 4 m); (d–f) Results of scale space are displayed by cross-sections, and the location
of the cross plane is illustrated in Figure 1a; (g) Topological relationship graph, which is generated by
relinking the relationship between two segments from adjacent levels.

Moreover, the proposed method labels the topological relationship between each two adjacent
segments for each level in the generated TRG, where the level is in order from the coarsest to the finest.
For the labeling, four types of situations are designed, namely, INTERSECTION, STEP, INTERSECTION
and INCLUSION, STEP and INCLUSION, as shown in Figure 3. The steps of labeling are described
as follows:

Step 1: all segments are grouped into different clusters according to their father node.
For example, segments of the third level in Figure 2g would be grouped into four clusters, which are
the set of

{{
T0

0 , T0
1 , T0

6
}

,
{

T0
2
}

,
{

T0
3
}

,
{

T0
4 , T0

5
}}

.
Step 2: arbitrary two segments in one cluster are judged whether they are neighboring in

the horizontal direction. Two neighboring segments are denoted as a segment pair. For example,
the cluster

{
T0

0 , T0
1 , T0

6
}

would result in one set of two pairs {
{

T0
0 , T0

1
}

,
{

T0
0 , T0

6
}

}.
Step 3: traverses the segment pairs in each cluster one by one, derives an intersection line

from the segment pair, and labels the relationship of the pair as either INTERSECTION or STEP.
More specifically, if the distance between the points in the segment pair and the intersection line is less
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than one threshold (e.g., two times the point spacing), the relationship is labeled as INTERSECTION.
Otherwise, it is labeled as STEP. On the other hand, if points of one segment are fully located in the
exterior boundary of another segment in a segment pair, the relationship is labeled as INCLUSION
as well. Additionally, the relationship between the segments from different clusters could be derived
from their father nodes. For example, the labeled result of Figure 2g is illustrated in Figure 4.
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the generated topological relationship graph (TRG), and two adjacent segments should be from the
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3. Generating Building Levels of Detail (LoDs) Based on the Improved Morphological
Scale Space

Figure 5 illustrates the flowchart of the proposed method. Four key steps are integrated to
generate 3D building LoDs from airborne laser scanning point clouds, namely, detection of building
candidate regions, generation of the improved morphological scale space, detection of building points,
and generation of building LoDs.
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3.1. Building Candidate Region Extraction and Generation of the Morphological Scale Space

Buildings in an urban scene have different structures with highly variable sizes and stories.
In general, the maximum scale is determined by their sizes and structures in the scale space. That is to
say, different buildings may be assigned different values for the maximum scales. Hence, the candidate
region of each building is first detected from the point clouds for adaptively tuning the maximum
value, and then the morphological scale space is generated for each candidate region respectively.

Step 1: The filtering method of [36] is utilized to separate ground points from non-ground points.
The filtering method classifies the points into a set of segments and one set of individual points by
point cloud segmentation, which are filtered by segment-based filtering and multi-scale morphological
filtering, respectively. Therefore, the non-ground points include two sets, non-ground segments and
non-ground individual points. Figure 6b is the filtering result of Figure 6a, and Figure 6c is the
non-ground segments.
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Step 2: Extract the candidate region of each building. First, the non-ground segments are clustered
via a region-growing method with the constraint of two-dimensional Euclidean distance, and the
distance threshold is specified as two times that of the point spacing. Then, with the assumption
that one building has a certain area, width and large elevation differences with its neighboring
terrain areas, the clusters are classified by Equation (10) to obtain the candidate building clusters.
Finally, each candidate building cluster is buffered with a distance (e.g., 3 m) to obtain a buffer area,
which is regarded as the candidate region of each building object. The buffer operator aims to ensure
the completeness of an object. For example, Figure 6d is the result of extracting candidate regions.

cBuilds =

SCi ∈ SC

∣∣∣∣∣∣∣
Rule1 : Num(Bound(SCi) > tH) > 0.25× Num(Bound(SCi)) &&

Rule2 : Width(SCi) > tW &&
Rule3 : Area(SCi) > tA

 (10)

where cBuilds denotes the candidate building clusters; SC is the set of clusters, and SCi is the ith cluster;
Bound() is used to extract boundary points of each cluster; Num() is a counter of points satisfying
the condition of the elevation difference; Width() and Area() calculate the width and area of a cluster;
tW , tA, tH are three thresholds of the width, area and elevation difference respectively. tW and tA
should be tuned according to the scene (e.g., a modern megacity or a village), where tA could be
specified as 2.0–100.0 m2, and tW could be specified as 2.0–10.0 m. tH could be specified as a value in
consideration of a building no lower than 1.5 m.

Step 3: Generate the morphological scale space and the corresponding TRGs. Once the candidate
region of one building object is determined, the morphological scale space is generated according to
Section 2, and the corresponding TRGs are recorded as well. Generally, the root of a TRG represents the
entire object region, and the leaf nodes of a TRG are the segments of an object region in the minimum
scale. The relationships between segments from the same level are also labeled in the generated TRG.
For the generation of the morphological scale space, in consideration of time efficiency, a set of scales
S = {2, 4, 8, 16, . . .} is specified for iteratively generating each level of scale space, whereby the
former scale value is half of the later. An example is illustrated in Figure 7.
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Figure 6. An example for building point detection. (a) Raw point cloud. There are a building and
several trees, and three trees are near to the building; (b) Filtering result. Ground and non-ground
points are separated; (c) Some non-ground segments; (d) Generated building candidate regions by
grouping non-ground segments; (e) Result of TRG classification. Only one candidate region is labeled
as a building; (f) Non-building points near the building are removed, and the remained points are
classified as building points.
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annotated with a unique identification; (e) Generating TRG according to the method in Section 2.

3.2. Building Point Detection

A method based on the generated TRGs is employed to extract building points from each building
candidate region. The method distinguishes buildings from other points in consideration of the entire
object and its changes across scales. The method includes two steps. The first step is to label the
building TRGs, and the second step is to remove non-building points from the building TRG.

3.2.1. Classification of TRGs

The method first classifies all TRGs into building TRGs and non-building TRGs by five features,
as listed in Table 1. The five features are mainly related to geometrical sizes, surface characteristics,
the penetrating capacities within different objects, and the changing characteristics of objects across
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scales. The classification rules are defined in Equation (11). For example, Figure 6e is the result of
TRG classification.

buildTRGs =


pTRGi ∈ ATRGs

∣∣∣∣∣∣∣∣∣∣∣

Rule1 : A > tA &&
Rule2 : W > tW &&

Rule3 : ARMIN−MAX > tARMM &&
Rule4 : ARG−O < tARGO &&

Rule5 : PNRMIN−MAX > tPNRMM


(11)

where buildRegions is the set of building TRGs, ATRGs is the set of all TRGs, pTRGi is ith TRG, tA, tW ,
tARMM, tARGO and tPNRMM are thresholds of five features, respectively. The threshold tARMM should
be determined by several factors, such as the flatness of an object. Generally, it should not be lower
than 0.5. For the threshold tARGO, in theory, it should be near zero. However, because of the structure
and material of a building, there may be a lot of ground points below roofs. Therefore, the value of
tARGO ranges from 0.2 to 0.6. The threshold of tPNRMM is mainly relevant to the penetrating capacity
and the surface characteristics, and it could be larger than 0.5.

Table 1. Five features based on the TRG.

Features Descriptions Characteristics

The area of the TRG (A) The area of the TRG
The areas of buildings and large trees are large,
and the areas of small objects (e.g., vehicles,
low vegetation and street furniture) are small

The width of the TRG (W) The width of the TRG
The widths of buildings and large trees are large,
and the widths of small objects (e.g., vehicles,
low vegetation and street furniture) are small

The area ratio of the
segments (ARMIN−MAX)

The value is the ratio between the minimum and
the maximum area of segments across scales. It
reflects the result of segmentation
for objects in different scales

The value of a building is large,
and that of a tree may be small

The area ratio of ground
points (ARG−O)

The ratio in areas between the entire object
and the ground points in the corresponding
region. It reflects the penetrating
capacities in different objects

The value of a building generally approximates
zero, and it may be higher in the area of vegetation

The ratio of segmented
points (PNRMIN−MAX)

The ratio in the number of segmented points
between the minimum scale and the maximum
scale. It reflects the changing of surface
characteristics across scales and the penetrating
capacities in different objects

The value of a building is large,
and it is small for vegetation

3.2.2. Extraction of the Final Building Points from Each Building TRG

Although TRGs have been classified, there may be some other objects (e.g., vegetation, vehicles)
in the building TRGs, and these objects should be removed. Generally, these objects consist of small
segments or individual points in the minimum scale, and they are near the border of the building
region. Therefore, the process is described as follows.

Step 1: The method detects the small segments by an area threshold tSA in the minimum scale,
and non-ground points removed in the process of segmentation are also detected. The detected points
are labeled as unclassified points. Generally, the threshold tSA is specified as 3.0–5.0 m2.

Step 2: The unclassified points are grouped into different clusters by a region-growing method
with the constraint of two-dimensional Euclidean distance.

Step 3: For each cluster, the distance between its boundary and the border of the building region
is calculated. And then, the cluster will be determined whether it locates inside the building region
or near the border of the building region by one distance threshold, which is also specified as two
times that of the point spacing. If a cluster locates inside the building region, it would be classified as
building. Otherwise, five features are calculated after reconstructing a new TRG for each unclassified
cluster, and each unclassified cluster is labeled as building or non-building by Equation (11).

Figure 6f is the result of extracting the final building points of Figure 6a. Two trees near the
building are removed. Based on the detection result, the nodes of non-building segments would be
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removed from the finest level to the coarsest level, and the relationships of these segments are also
removed at the same time. The process is illustrated in Figure 8. Moreover, if there are non-building
child nodes, the non-building points should also be removed the father node. For example, points of
T0

10 should be removed from the segments T1
0 and T2

0 .
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3.3. Building LoD Generation

After automatically extracting building points and modifying the corresponding TRG, the method
reconstructs each building in each scale by the cycle graph analysis method of [37] to obtain the
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Table 3. Second example of generating the LoDs for a building with gable roofs and dormers.

Scale Values Multi-Scale Roof Data Plane Segmentation Results The Final TRG Building LoDs
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4. Experimental Results and Analysis

The experiment was conducted on the Toronto dataset (as shown in Figure 9) provided by
International Society for Photogrammetry and Remote Sensing (ISPRS) to validate the performance
of the proposed method. The area of this dataset is about 403 m × 532 m, and the elevation ranges
from 40 to 190 m. There are 58 buildings larger than 2.5 m2, and the corresponding building area
is 88,249.8 m2. The dataset is located in a commercial zone with representative scene characteristics
of a modern megacity. Moreover, the area is covered by the high-rise and multi-story buildings with
complex rooftop structures, which are very suitable for verifying the proposed method.
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Figure 9. Raw point clouds of the Toronto dataset provided by International Society for Photogrammetry
and Remote Sensing (ISPRS).

The procedure of the proposed method was executed to extract building points and generate
the LoDs for each building. The parameters involved in the proposed method are listed in Table 4.
The point clouds were first filtered into non-ground points and ground points. The result is shown
in Figure 10a, and the non-ground segments are showed in Figure 10b. Then, building candidate
regions were extracted, as illustrated in Figure 10c. For each building candidate region, the improved
morphological scale space and the labeled TRG were generated, TRGs were classified, and building
points were detected, as shown in Figure 10d–f. Then, the building LoDs were reconstructed.
Figures 11–13 are the processes for extracting building points and reconstructing building LoDs
from the building candidate region PB of Figure 10c. The result of reconstructing the building LoDs for
the entire scene is shown in Figure 14. It can be seen that roof structures change from complicated to
simple with the increasing scale until each roof becomes a plane. Therefore, the reconstructed building
models at different LoDs can serve various urban monitoring and analysis applications. Moreover, the
number of levels for each building self-adapts to its size and roof structures, ranging from three levels
to six levels. More importantly, the proposed method can reconstruct the roof model with any one
scale from the finest building points by the morphological reconstruction. The coarser roof model does
not need to be generated from the finest roof model. For example, the proposed method could directly
generate the level s = 4 m from the raw building points. This is very helpful to save the cost and satisfy
the user’s requirement.
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Table 4. Parameter settings.

Parameters Values Description Steps

tA/m2 50 The area threshold

Building candidate
region extraction

tW/m 5 The width threshold

tH/m 1.5
The threshold of describing the elevation
difference between the boundary
points of a building and the DEM

tN 10 This parameter is used to remove very small
segments in plane segmentation

The generation of
the scale space

tS/◦ 10 A threshold for the slope parameter

tSH/m 0.2
It is a threshold of the elevation difference for
determining a segment is inclined or
horizontal after morphological reconstruction

tARMM 0.5 The area ratio of the segments across levels of a TRG

Building point detection
tARGO 0.5 The area ratio of ground points within a TRG
tPNRMM 0.5 The ratio of segmented points across levels of a TRG

tSA/m2 5 An area threshold for detecting
small segments near buildings
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Figure 10. Detecting buildings from the Toronto dataset. (a) Filtering result; (b) Non-ground segments,
and each segment is dotted in one color; (c) Result of generating building candidate regions, where
each region is dotted in one color; (d) Result of TRG classification; (e) Result of extracting buildings;
(f) Result of the extracted buildings, and different buildings are dotted in different colors.
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Figure 11. Generating the scale space and the corresponding TRG for a building candidate region PB in
Figure 10c. (a) Point clouds of the building candidate region; (b–e) Segmentation results at four scales,
where different segments are dotted in different colors. Additionally, each segment is annotated with a
unique identification; (f) Generated TRGs.
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Figure 12. Extracting building points and modifying the TRG from the building candidate region PB in
Figure 10c. (a) TRG classification. Two TRGs are classified as non-building, and one TRG is labeled as a
building; (b) Final result of building point detection; (c,d) Process of modifying the TRG according to
the result of building point detection, and only one segment node is removed.
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the pixel level, and 98.3% at the object level. The values indicate the method could robustly extract 
buildings, as shown in the yellow areas of Figure 15. Additionally, the proposed method could also 
preserve annex structures and rooftop furniture well by taking large parts of the building and small 
structures as a whole in the process of detecting buildings, and robustly removing noise and 
vegetation points on the roofs, as illustrated in Figure 16. In order to further analyze the performance 
of the proposed method, the comparison between the proposed method and the other methods [13] 
is listed in Table 5, showing that the proposed method has the best qualities in detecting buildings at 
the pixel level and the total RMS, and only the method of FIE [40] obtained a better performance than 
the proposed method at the object level. Therefore, the result of building point detection could 
provide a good foundation for the reconstruction of building LoDs. However, some small segments 

Figure 13. Reconstructing the building LoDs of the building candidate region PB in Figure 10c,
where there are four levels. The roof structures are changed from complicated to simple with the
increasing scale. (a) The building model within the scale of 0 m. (b) The building model within the
scale of 2 m. (c) The building model within the scale of 4 m. (d) The building model within the
scale of 8 m.

The high quality of building point detection results was the prerequisite for reconstructing
building LoDs in a scene. Hence, the result of building point detection was submitted to the
organization ISPRS for evaluation [38]. The evaluation result is shown in Figure 15, and the details can
be found on the website [39]. Several indicators are adopted for quantitative evaluation, including
Completeness (CP), Correctness (CR) and Quality (Q) at the pixel or object level, and the total Root
Mean Square (RMS) of reference boundaries. The result is listed in Table 5. It can be seen that the
Correctness values are 95.5% at the pixel level, and 96.6% at the object level. The high values show
that the proposed method can robustly distinguish buildings from vegetation or other objects. It may
benefit from the combination of features derived from the local and the whole of an object. In this result,
there are only two false positives at the object level. The false positives are large objects with smooth
surfaces, which are very easily classified as buildings. The Completeness values are 94.7% at the pixel
level, and 98.3% at the object level. The values indicate the method could robustly extract buildings,
as shown in the yellow areas of Figure 15. Additionally, the proposed method could also preserve
annex structures and rooftop furniture well by taking large parts of the building and small structures
as a whole in the process of detecting buildings, and robustly removing noise and vegetation points
on the roofs, as illustrated in Figure 16. In order to further analyze the performance of the proposed
method, the comparison between the proposed method and the other methods [13] is listed in Table 5,
showing that the proposed method has the best qualities in detecting buildings at the pixel level and
the total RMS, and only the method of FIE [40] obtained a better performance than the proposed
method at the object level. Therefore, the result of building point detection could provide a good
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foundation for the reconstruction of building LoDs. However, some small segments near the boundary
of a building may be erroneously removed, as shown in Figure 15 (dotted in blue), thereby resulting in
incorrect building LoDs reconstruction. Figure 17 shows an example of reconstructing building LoDs
for a building with complex rooftop structure. Because the points of dormers are few, they failed to be
detected, as illustrated in Figure 17a. The model of s = 0 m also missed several dormers, as shown in
Figure 17b.
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Figure 14. Results of reconstructing the building LoDs in the entire scene. The roof structures are
changed from complicated to simple with the increasing of the scale. Because different buildings have
different levels, the model of the maximum scale is utilized at a larger scale. (a) The building models
within the scale of 0 m. (b) The building models within the scale of 2 m. (c) The building models within
the scale of 4 m. (d) The building models within the scale of 8 m. (e) The building models within the
scale of 16 m. (f) The building models within the scale of 32 m.
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Figure 16. A result of detecting a building. (a) top-view of the building detection result; (b) side-view
of the building detection result; (c) cross-section of the black line in (a) for detailed description of the
building detection result, where roof furniture and annex structures are preserved, and vegetation
points and noise points are removed; (d) corresponding building model at the scale of 0 m.
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Table 5. Evaluation result by ISPRS; the best results are highlighted.

Methods
Per_Area/% Per_Object/%

RMS/m
CP CR Q CP CR Q

The proposed method 94.7 95.5 90.6 98.3 96.6 95.0 0.8
WHUY2 [34] 95.1 89.3 85.4 96.6 94.6 91.6 1.2

TUM [41] 85.1 80.0 70.1 86.2 92.3 80.4 1.6
FIE [40] 96.6 90.6 87.8 98.3 98.2 96.6 1.2

ITCM [42] 80.5 82.1 68.5 96.6 22.9 22.7 1.5
MAR2 [15] 93.7 94.9 89.2 98.3 94.9 93.4 2.8
MON2 [43] 95.1 91.1 87.0 100 83.6 83.6 1.1
Z_GIS [44] 93.0 94.5 88.2 96.6 96.5 93.3 1.0

MIN 80.5 80 68.5 86.2 22.9 22.7 0.8
MAX 96.6 95.5 90.6 100 98.2 96.6 2.8
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Figure 17. An example for describing some problems in the result of building LoDs. Because some 
dormers are missed in the building point detection, the models of some levels may be incomplete. (a) 
Extracted building points. (b) The building model within the scale of 0 m. (c) The building model 
within the scale of 2 m. (d) The building model within the scale of 4 m. (e) The building model within 
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The missing dormer segments 

Figure 17. An example for describing some problems in the result of building LoDs. Because some
dormers are missed in the building point detection, the models of some levels may be incomplete.
(a) Extracted building points. (b) The building model within the scale of 0 m. (c) The building model
within the scale of 2 m. (d) The building model within the scale of 4 m. (e) The building model within
the scale of 8 m. (f) The building model within the scale of 16 m.
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Finally, we selected two cases to describe the results of reconstructing building LoDs in the
local view, and the results were compared with the building LoDs in the framework of CityGML.
The first case is a connected building in Figure 18, where there is an ensemble of three parts with annex
structures and roof furniture. Figure 18a is the result of the proposed method, and Figure 18b is the
result based on CityGML. It shows that the proposed method could find the corresponding model
matching to each level of building LoDs based on CityGML. For example, the model of s = 0 m is the
same with LoD2, the model of s = 2 m approximates LoD1, and the model of s = 16 m is similar to the
LoD0, where only the elevation of the model of s = 16 m is assigned the minimum elevation of the
building points. Moreover, the models based on CityGML have only three levels, but the models of
the proposed method have five levels with a more gradual change for reducing the difference between
two adjacent levels. In the visualization of multi-scale representations for a building, the result of
the proposed method could have a smaller jump between two adjacent levels. The second case is a
building with multiple stories, where there are various types of roof structures (e.g., flat roofs and
gable roofs), as shown in Figure 19. Figure 19a is the result of the proposed method, and Figure 19b is
the result based on the CityGML. It also shows the models of the proposed method have a smaller
change between two adjacent levels. In addition, the inclined roofs are preserved in the model of s = 2
m from the proposed method, while each roof is flat in the LoD1 of the CityGML.
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Figure 19. Comparison of LoDs from CityGML and the proposed method for a building with multiple
stories. (a) Building LoDs from the proposed method; (b) Building LoDs from CityGML.

5. Conclusions

In this study, we propose a method to reconstruct building levels of detail (LoDs) by using
an improved morphological scale-space. After separating ground and non-ground points, the
candidate region of each building is detected. The scale-space of each building candidate region
is obtained by iteratively using the improved morphological reconstruction. Topological relationship
graphs (TRGs) are generated by relinking the relationships of segments between two adjacent scales.
Then, building points are detected by features based on TRG, and the TRG will be modified after
detection. Finally, the proposed method reconstructs the roof model for each building at each scale.
To verify the validities and the robustness of the proposed method, the Toronto dataset from
International Society for Photogrammetry and Remote Sensing (ISPRS) was selected to extract building
points and reconstruct building LoDs. The results of building point detection were submitted to
ISPRS for evaluation, and the building LoDs were compared with the building LoDs based on the
CityGML. The results demonstrate that the proposed method has a good performance in robustly
extracting the buildings with details (e.g., roof furniture) and distinguishing buildings from vegetation
or other objects. More importantly, the proposed method can directly reconstruct building LoDs from
airborne Light Detection and Ranging (LiDAR) point clouds with the adaptive number of levels while
maintaining the spatial relations between adjacent levels. However, some small parts of buildings
may be missed, which affects the quality of building LoDs. In the future, we will incorporate spatial
reasoning to improve the performance of extracting building details.
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