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Abstract: A three-party Authenticated Key Agreement (AKA) protocol in the distributed
computing environment is a client that requests services from an application server through an
authentication server. The authentication server is responsible for authenticating the participating
entities and helping them to construct a common session key. Adopting the Key Transfer
Authentication Protocol (KTAP) in such an environment, the authentication server is able to monitor
the communication messages to prevent and trace network crime. However, the session key in
the KTAP setting is created only by the authentication server and is vulnerable to the resilience of
key control. On the other hand, with the rapid growth of network technologies, mobile devices
are widely used by people to access servers in the Internet. Many AKA protocols for mobile
devices have been proposed, however, most protocols are vulnerable to Ephemeral Secret Leakage
(ESL) attacks which compromise the private keys of clients and the session key by an adversary
from eavesdropped messages. This paper proposes a novel ESL-secure ID-based three-party AKA
protocol for mobile distributed computing environments based on ESL-secure ID-based Authenticated
Key Exchange (ID-AKE) protocol. The proposed protocol solves the key control problem in
KTAP while retaining the advantages of preventing and tracing network crime in KTAP and also
resists ESL attacks. The AVISPA tool simulation results confirm the correctness of the protocol
security analysis. Furthermore, we present a parallel version of the proposed ESL-secure ID-based
three-party AKA protocol that is communication-efficient.

Keywords: Ephemeral-Secret-Leakage; distributed computing; three-party authenticated key
agreement protocol; mobile device; bilinear pairing; Automated Validation of Internet Security
Protocols and Applications (AVISPA) tool

1. Introduction

With the rapid growth of network technologies, portable mobile devices (e.g., mobile phone,
notebook and tablet) are widely used by people to access remote servers on the Internet. Due to
the limited computing capability and power energy of mobile devices, many Authenticated Key
Agreement (AKA) protocols are based on the traditional public key cryptography system [1–3] and
the ID-based AKA (ID-AKA) protocols [4–6] for mobile devices. Imbalanced computation is used to
shift the computational burden to a powerful server using an online/offline computation technique to
further reduce the mobile device computational load. If an AKA protocol adopted an online/offline
computation technique, the ephemeral secrets are generally generated by an external source that may
be controlled by an adversary. The ephemeral secrets are also involved in the offline pre-computation
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and stored in the insecure memory of mobile devices. If ephemeral secrets are compromised, an
adversary can reveal the private keys of clients and the session key would turn out to be known from
the eavesdropped messages. This phenomenon is called Ephemeral Secret Leakage (ESL) attacks [7].
To solve this security vulnerability, Tseng et al. [7] proposed the first ESL-secure ID-based Authenticated
Key Exchange (ID-AKE) protocol for mobile client-server environments.

In 1976, Diffie and Hellman [8] proposed the first Public Key Cryptography (PKC) concept, and
proposed the first key agreement protocol that allows two participants to construct a common session
key over a public network. Unfortunately, Diffie and Hellman’s protocol does not authenticate the
communication participants and is vulnerable to the man-in-the-middle attacks. Different approaches
have been proposed by cryptographic researchers to defeat the weakness in terms of improving
protocol security and efficiency. An AKA protocol should provide implicit key authentication
for participants. Each participant is ensured that no other participants or adversaries can learn
or determine the value of a common session key in a protocol run. The common session key is
used to ensure information integrity, confidentiality and availability between participants using
symmetric encryptions.

In traditional public key cryptography systems, the users have to access and verify other user’s
certificate before using its public key through the Certificate Authority (CA). The CA requires high
computational cost and storage efforts to manage the certificates and also increases the computational
cost for the client side [9]. Shamir [10] proposed the first ID-based cryptosystem to simplify the
certificate management procedures. In Shamir’s ID-based cryptosystem setting, the user’s public key is
an easy calculated function of the user’s known identity information such as identity numbers, E-mail
address and so forth. The corresponding private key can be calculated and issued to the user via a
secure channel by a trusted party referred to as Private Key Generator (PKG). In this way, the users
do not need to verify other user’s certificates before using the public key and thus can substantially
reduce the computational burden of the CA. However, Shamir’s ID-based cryptosystem is not easy to
be realized in practice due to lack of efficient encryption and decryption algorithms and thus restricts
its development. Boneh and Franklin [11] proposed the first secure and efficient practical ID-based
encryption scheme based on the Weil pairing defined on elliptic curves. Subsequently, the ID-based
cryptographic schemes based on bilinear pairings have received much attention from cryptographic
researchers and a large number of ID-based cryptographic systems using bilinear pairings have been
published in the literatures [12–14].

Joux [15] proposed the first three-party key agreement protocol based on bilinear pairings. Joux’s
key agreement protocol is the first key agreement protocol based on bilinear pairings and also the first
one-round three-party key agreement protocol. However, like the basic Diffie-Hellman key agreement
protocol, Joux’s protocol without authentication is also insecure against the man-in-the-middle attacks.
To solve this problem, Al-Riyami and Paterson [16] proposed several three-party AKA protocols that
use bilinear pairings. Al-Riyami and Paterson’s protocols overcome the security flaw in Joux’s protocol.
However, Al-Riyami and Paterson’s protocols still need certificates issued by the CA to ensure the
authenticity and a user also needs to verify the certificates before using other users’ public keys.
Afterwards, many ID-based three-party AKA protocols using bilinear pairings have rapidly emerged
and been well-studied as well [17–19].

Up to now, most of the literature on ID-based three-party AKA protocols using bilinear pairings
focused on the environment in which PKG computes the public key and corresponding private
key from a user’s identity information, and issuing the public/private key pair to the user via a
secure channel. The participants can authenticate each other using the public/private key pair
and construct a common session key. In 2004, Yeh et al. [20] pointed out that another common
communication environment exists, referred to as the distributed computing environment, discussed
in Kerberos [21]. In this open distributed computing environment, if the users would like to access
services on application servers distributed throughout the network, a centralized authentication server
is provided rather than building an elaborate authentication protocol at each server. The authentication
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server is responsible for participating entities’ authentication and helps the user and the application
server construct a common session key. In the centralized authentication server model an inspection
mechanism is provided to prevent and trace network crime, permitting users to access the services
provided by the application servers legally. The Key Transfer Authentication Protocol (KTAP) is
adopted in this system [22]. In a KTAP setting the session key is created by the authentication server
and secretly transmitted to the user and the application server. The authentication server can therefore
monitor the transferred messages [23–26]. However, the disadvantage of KTAP is that the session
key is only created by the authentication server and the client and the application servers are unable
to participate in constructing the common session key. KTAP is therefore vulnerable to key control
resilience attacks [27].

With the rapid growth of network technologies, portable mobile devices (e.g., mobile phone,
notebook and tablet) are widely used by people to access remote servers on the Internet. Due to
the limited computing capability and power energy of mobile devices, many AKA protocols are
based on the traditional public key cryptography system [1–3] and the ID-based AKA (ID-AKA)
protocols [4–6] for mobile devices. Imbalanced computation is used to shift the computational burden
to a powerful server using an online/offline computation technique to further reduce the mobile
device computational load. If an AKA protocol adopted an online/offline computation technique, the
ephemeral secrets are generally generated by an external source that may be controlled by an adversary.
The ephemeral secrets are also involved in the offline pre-computation and stored in the insecure
memory of mobile devices. If ephemeral secrets are compromised, an adversary can reveal the private
keys of clients and the session key would turn out to be known from the eavesdropped messages.
This phenomenon is called Ephemeral Secret Leakage (ESL) attacks. To solve this security vulnerability,
Tseng et al. [7] proposed the first ESL-secure ID-based Authenticated Key Exchange (ID-AKE) protocol
for mobile client-server environments.

Most KTAPs [20,23–25] are password-based authentication protocols. In these protocols the users
need to share their own passwords with the authentication server and employ the authentication
server public keys to ensure the identities of the participants. These protocols also use symmetric
cryptosystems to encrypt the transferred messages. For password-based authentication protocol
security a strong password should consist of letters (uppercase letters, lowercase letters), numbers
and special punctuations to resist various attacks, such as password guessing attacks and dictionary
attacks, etc. However, most mobile devices do not employ standard QWERTY keyboards for users to
conveniently enter strong passwords. Instead, these mobile devices often use numeric passwords for
user authentication, which is called Personal Identification Number based (PIN-based) authentication.
The PIN-based authentication provides a small password space size and thus is vulnerable to various
attacks [28]. Otherwise, using the authentication server public keys and the symmetric cryptosystems
for the user authentication requires expensive computation, which is not applicable to mobile devices
with limited computing capability.

This paper improved Tseng et al.’s scheme [7], to propose an ESL-secure ID-based three-party
AKA protocol which is more suitable for mobile distributed computing environments. The proposed
protocol adopts imbalanced computation to shift the computational burden to the powerful server
and an online/offline computation technique to further reduce the computational cost required
for mobile devices. The offline pre-computation is executed prior to protocol execution to achieve
better performance. The proposed protocol keeps all of the merits of KTAP regarding security
including the authentication server is able to monitor the communication messages to prevent and
trace network crime and solves the session key problem, which is only created by the authentication
server. All participants can contribute information to derive the common session key. In the security
analysis, the proposed protocol resists ESL attacks and also satisfies the security attributes required for
AKA protocols: known-key security, partial forward secrecy, key-compromise impersonation resilience,
unknown key-share resilience and key control resilience [29]. Furthermore, the proposed protocol
is validated by Automated Validation of Internet Security Protocols and Applications (AVISPA) [30]
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formal validation tool to show its security against various active and passive attacks. In addition,
a parallel version of the proposed protocol is proposed to enhance the protocol run performance.

This paper is organized as follows. Section 2 gives a brief review of the basic bilinear pairing
concept, the related mathematical assumptions and the security attributes required for AKA protocols
and notions used in the proposed protocol. The proposed ESL-secure ID-based three-party AKA
protocol is presented in Section 3. In Section 4 the proposed protocol security and performance
analyses are conducted. Conclusions are given in Section 5.

2. Preliminaries

In this Section the basic bilinear pairings concept, the related mathematical assumptions,
the security attributes required for AKA protocols, and the notations used in the proposed protocol are
briefly introduced.

2.1. Bilinear Pairings

Let P denote a generator of G1, where G1 is an additive cyclic group of large prime order q and let
G2 be a multiplicative group of the same large prime order q. G1 is a subgroup of the group of points
on an elliptic curve E defined over a finite field. G2 is a subgroup of the group of the multiplicative
cyclic group defined over a finite field. A bilinear pairing is defined as a map: ê : G1 × G1 → G2 .
The map ê is called an admissible bilinear map if it satisfies the following properties.

1. Bilinearity: Let P, Q, R ∈ G1, we have:

(1) ê(P + Q, R) = ê(P, R) · ê(Q, R).
(2) ê(P, Q + R) = ê(P, Q) · ê(P, R).

(3) ê(aP, bP) = ê(bP, aP) = ê(P, P)ab.

2. Non-degeneracy: There exist P ∈ G1 such that ê(P, P) 6= 1.
3. Computable: For P, Q ∈ G1, there exists an efficient algorithm to compute ê(P, Q).

2.2. Computational Problems

The security of the proposed protocol is based on the following two computational
problems. There is no polynomial time algorithm to solve these computational problems with
non-negligible probability:

1. Discrete Logarithm Problem (DLP): Give P, Q ∈ G1; find an integer a such that Q = aP whenever
such integer exists.

2. Computational Diffie-Hellman Problem (CDHP): Given P, aP, bP ∈ G1 for unknown a, b ∈ Z∗q ,
the CDHP is to compute the value abP ∈ G1.

2.3. Security Attributes

Here, A, B and S are going to agree upon a common session key and communicate to each
other securely. An AKA protocol should provide implicit key authentication for A, B and S, so there
are additional security attributes defined for AKA protocols.

• Known-Key Security. A unique session key should be constructed in each round of an
AKA protocol. An adversary cannot derive other previous session keys if knowledge of the
previous session keys has been compromised. The main purpose of known-key security is to
ensure that the compromising of one session key will not compromise other or future session keys.

• Forward Secrecy. If the long-term private keys of one or more of the participants are compromised,
the secrecy of previously established session keys will not be obtained by an adversary. The main
purpose of forward secrecy is to provide complete protection for the previous transferred messages.
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If all long-term private keys of the participants are compromised without compromising previous
established session keys, that means an AKA protocol still provides protection for the previously
transferred messages. We say that the AKA protocol offers perfect forward secrecy.

• Key-Compromise Impersonation Resilience. Suppose that A’s private key has been revealed
to an adversary. The adversary only can impersonate A to cheat S and B. It is desired that the
compromise of A’s private key does not allow the adversary to impersonate S or B to cheat A.

• Unknown Key-Share Resilience. After the session key has been established, A believes the
session key is shared with S and B, while S and B mistakenly believe that the session key is
instead shared with an adversary. Therefore, a desirable AKA protocol should be resistant to
unknown key-share attacks. None of the participants can force A to establish a session key with a
participant that he does not know but A believes he is sharing the session key with the participants
that he knows.

• Key Control Resilience. The session key should be determined jointly by all participants (e.g.,
A, S and B). None of the participants can control the session key construction procedure alone.
The main purpose of key control resilience is to ensure session key construction fairness and
security. It should not be possible for any participants or adversaries to predict or predetermine
the session key value.

Constructing a desirable AKA protocol must conform to these desirable security attributes:
known-key security, forward secrecy, key-compromise impersonation resilience, unknown key-share
resilience, key control resilience. Thus, an AKA protocol is able to resist various active and
passive attacks.

2.4. Notations

The system parameters, notations and functions used in the whole proposed protocol are defined
as follows:

• G1: an additive cyclic group.
• G2: a multiplicative cyclic group.
• ê: a bilinear map, ê : G1 × G1 → G2 .
• P: a generator of the group G1.
• s: the private key of the authentication server, s ∈ Z∗q .

• Ppub: the public key of the authentication server, Ppub = s · P.

• IDS: the identity of the authentication server.
• IDA: the identity of the client.
• IDB: the identity of the application server.
• DIDA/B: the private key of IDA/the private key of IDB.
• f1(), f2(), f3(), f4(), f5(), f6(): six one-way hash functions,

f1, f2, f3, f4, f5, f6 : {0, 1}∗ → {0, 1}n , where n is a fixed length and 2n < q.
• H1(), H2(): two map-to-point hash functions, H1, H2 : {0, 1}∗ → G1 .

3. The Proposed Protocol

We present the proposed ESL-secure ID-based three-party AKA protocol for mobile distributed
computing environments in this section. The proposed protocol consists of three phases: the system
setup phase, the key extract phase and the mutual authentication and key agreement phases. We also
present a parallel version of the proposed protocol to enhance the protocol run performance.

3.1. System Setup Phase

The proposed protocol system consists of an authentication server S, an application server B and
a mobile client A. The client A refers to a user with handheld device and communicates with the
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authentication server S and the application server B through open channels such as wireless networks.
The application server B provides services or applications to the client A. The authentication server
S is responsible for computing private keys according to the application server B and the client A’
identities and distribute the private keys to them via a secure channel. The authentication server S is
also responsible to generate the systems parameters.

In the system setup phase the authentication server S first generates two cyclic groups G1 and
G2 of a large prime order q, an admissible bilinear map ê : G1 × G1 → G2 , and a random generator P
of G1, where G1 and G2 are additive and multiplicative cyclic groups of large prime order q, respectively.
The authentication server S then performs the following tasks:

1. Randomly select a system private key s ∈ Z∗q .

2. Compute the system public key Ppub = s · P.

3. Choose two map-to-point hash functions H1, H2 : {0, 1}∗ → G1 .
4. Choose six one-way hash functions f1, f2, f3, f4, f5, f6 : {0, 1}∗ → {0, 1}n , where n is a fixed

length and 2n < q.
5. Publish public parameters and functions Params = < G1, G2, q, P, ê, PPub, H1, H2, f1, f2, f3, f4, f5, f6 >.

3.2. Key Extract Phase

In the key extract phase client A and the application server B separately submit their identities
IDA and IDB to the authentication server S and receive their corresponding private keys DIDA and
DIDB, respectively. The key extract phase is depicted in Figure 1. To the client A as an example,
the detailed procedures are presented as follows:

1. The client A submits its identity IDA to the authentication server S.
2. Upon receiving the client A with identity IDA, the authentication server S chooses an ephemeral

secret value lA ∈ Z∗q , and compute QIDA1 = lA · P, hA = f1(IDA, QIDA1), DIDA1 = lA +

hA · s, QIDA2 = H1(IDA), QIDS = H1(IDS) and DIDA2 = s ·QIDA2.
3. Set DIDA = (DIDA1, DIDA2, QIDA1, QIDS) as the client A’s private key and send it to the

client A via a secure channel.

Figure 1. The key extract phase.
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The authentication server S also set DIDB = (DIDB1, DIDB2, QIDB1, QIDS) as the application
server B’s private key in the same procedures.

3.3. Mutual Authentication and Key Agreement Phase

Suppose that the client A would like to communicate with the authentication server S and request
services or applications from the application server B. As depicted in Figure 2, the detailed interactions
between the three participants are presented as below:

Step 1. A→ S : < IDA, IDB, UA1, UA2, VA, QIDA1 >

The client A with identity IDA performs the following off-line computations in advance:

(1) Random select an ephemeral secret rA ∈ Z∗q .

(2) Compute UA1 = rA · P and UA2 = rA ·QIDA2.
(3) Compute WA = H2(UA1, UA2) and VA = (rA + DIDA1) ·WA + DIDA2.
(4) Send < IDA, IDB, UA1, UA2, VA, QIDA1 > to the authentication server S.

Step 2. S→ B : < IDA, US, USB1, USB2, VSB >

Upon receiving < IDA, IDB, UA1, UA2, VA, QIDA1 >, the authentication server S
authenticates the client A by performing the following tasks:

(1) Compute WA = H2(UA1, UA2), hA = f1(IDA, QIDA1) and QIDA2 = H1(IDA).

(2) Check whether ê(P, VA) = ê(UA1 + QIDA1, WA) · ê
(

Ppub, hA ·WA + QIDA2

)
or not.

If the equation holds, then the authentication server S accepts the request. Otherwise,
the authentication server S terminates it.

(3) Random select an ephemeral secret rS ∈ Z∗q .

(4) Compute US = rS · P, USB1 = rS ·UA1 and USB2 = rS ·UA2.
(5) Compute DIDS = s · QIDS, hSB = f2(IDA, IDB, US, USB1, USB2) and VSB = rS ·

Ppub + hSB · DIDS.

(6) Send < IDA, US, USB1, USB2, VSB > to the application server B.

Step 3. B→ S : < IDB, UB1, UB2, VB, QIDB1 >

Upon receiving < IDA, US, USB1, USB2, VSB >, the application server B authenticates the
authentication server S by performing the following tasks:

(1) Compute hSB = f2(IDA, IDB, US, USB1, USB2).

(2) Check whether ê(VSB, P) = ê
(

US + hSB ·QIDS, Ppub

)
or not. If the equation holds,

then the application server B accepts the request. Otherwise, the application server B
terminates it.

(3) Random select an ephemeral secret rB ∈ Z∗q .

(4) Compute UB1 = rB · P and UB2 = rB ·QIDB2.
(5) Compute WB = H2(UB1, UB2) and VB = (rB + DIDB1) ·WB + DIDB2.
(6) Send < IDB, UB1, UB2, VB, QIDB1 > to the authentication server S.

Step 4. S→ A : < NA, AuthSA, IDB, US, USA1, USA2 >, < NB, AuthSB >

Upon receiving < IDB, UB1, UB2, VB, QIDB1 >, the authentication server S authenticates the
application server B by performing the following tasks:

(1) Compute WB = H2(UB1, UB2), hB = f1(IDB, QIDB1) and QIDB2 = H1(IDB).
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(2) Check whether ê(P, VB) = ê(UB1 + QIDB1, WB) · ê
(

Ppub, hB ·WB + QIDB2

)
or not.

If the equation holds, then the authentication server S accepts the application server B.
Otherwise, the authentication server S terminates it.

(3) Compute USA1 = rS ·UB1 and USA2 = rS ·UB2.
(4) Acquire two nonce NA, NB.
(5) Compute KSA = s ·UA2 and AuthSA = f3(IDA, IDB,UA1,UA2,VA, NA,KSA,US,USA1,USA2).
(6) Compute KSB = s ·UB2 and AuthSB = f3(IDA, IDB,UB1,UB2, VB, NB, KSB,US,USB1,USB2).
(7) Send < NA, AuthSA, IDB, US, USA1, USA2 > and < NB, AuthSB > to the client A.

Step 5. A→ B : < NB, AuthSB, AuthAB >

Upon receiving < NA, AuthSA, IDB, US, USA1, USA2 > and < NB, AuthSB >, the client A
authenticates the authentication server S by performing the following tasks:

(1) Compute KAS = rA · DIDA2.
(2) Check whether AuthSA = f3(IDA, IDB, UA1, UA2, VA, NA, KAS, US, USA1, USA2)

or not. If the equation holds, then the client A accepts the authentication server
S. Otherwise, the client A terminates it.

(3) Compute KAB = ê
(

rA · Ppub +KAS, USA1 +USA2

)
and AuthAB = f4(IDA, IDB,US, KAB).

(4) Send < NB, AuthSB, AuthAB > to the application server B.

Step 6. B→ A : < AuthBA >

Upon receiving < NB, AuthSB, AuthAB >, the application server B authenticates the client A
and the authentication server S by performing the following tasks:

(1) Compute KBS = rB · DIDB2.
(2) Check whether AuthSB = f3(IDA, IDB, UB1, UB2, VB, NB, KBS, US, USB1, USB2) or not.

If the equation holds, then the application server B accepts the authentication server S.
Otherwise, the application server B terminates it.

(3) Compute KBA = ê
(

USB1 + USB2, rB · Ppub + KBS

)
.

(4) Check whether AuthAB = f4(IDA, IDB, US, KBA) or not. If the equation holds, then
the application server B can be sure that the client A has the ability to compute the
session key. Otherwise, the application server B notifies the authentication server S
that the authentication has been failed and terminates it.

(5) Compute AuthBA = f5(IDA, IDB, US, KBA, AuthAB).
(6) Compute the session key SKAB = f6(IDA, IDB, US, KBA, AuthAB, AuthBA).
(7) Send < AuthBA > to the client A.

On the other side, upon receiving < AuthBA >, the client A checks whether
AuthBA = f5(IDA, IDB, US, KAB, AuthAB) or not. If the equation holds, the client A can be sure
that the application server B has the ability to compute the session key, then the client A computes
the session key SKAB = f6(IDA, IDB, US, KAB, AuthAB, AuthBA). Otherwise, the client A notifies the
authentication server S that the authentication has been failed and terminates it. After transferring the
messages in the above six steps, the client A and the application server B can authenticate each other
via the authentication server S and agree upon the session key. The authentication server S also can
compute KAB = ê(s ·UA1 + KSA, USA1 + USA2) or KBA = ê(USB1 + USB2, s ·UB1 + KSB) to compute
the session key SKAB = f6(IDA, IDB, US, KAB, AuthAB, AuthBA) which is shared with the client A
and the application server B. The session key is created by the three participants and not created by the
authentication server S alone. Therefore, the proposed protocol can solve the problem in the resilience
of key control of the KTAP while the authentication server S still can monitor the communication
messages to prevent and trace network crime.
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In Steps 2 and 4, the correctness of the equations that the authentication server S uses to
authenticate the client A and the application server B can be proved by the bilinear pairings feature
operation. To the client A as an example, the correctness of ê(P, VA) = ê(UA1 + QIDA1, WA) ·
ê
(

Ppub, hA ·WA + QIDA2

)
in Step 2 is presented as follows:

ê(P, VA)= ê(P, (rA + DIDA1) ·WA + DIDA2)

= ê(P, (rA + lA + hA · s) ·WA + s ·QIDA2)

= ê(P, (rA + lA) ·WA + hA · s ·WA + s ·QIDA2)

= ê(P, (rA + lA) ·WA + s · (hA ·WA + QIDA2))

= ê(P, (rA + lA) ·WA) · ê(P, s · (hA ·WA + QIDA2))

= ê((rA + lA) · P, WA) · ê(s · P, hA ·WA + QIDA2)

= ê(UA1 + QIDA1, WA) · ê
(

Ppub, hA ·WA + QIDA2

)
In Step 3, the correctness of the equation that the application server B uses to verify the message

sent from the authentication server S. The correctness of ê(VSB, P) = ê
(

US + hSB ·QIDS, Ppub

)
is

presented as follows:
ê(VSB, P)= ê

(
rS · Ppub + hSB · DIDS, P

)
= ê(rS · s · P + hSB · s ·QIDS, P)

= ê(rS · P + hSB ·QIDS, s · P)

= ê
(

US + hSB ·QIDS, Ppub

)
In Steps 5 and 6, the equations AuthSA and AuthSB that the client A and the application server

B use to authenticate the authentication server S, respectively. If KSA = KAS and KSB = KBS, we
say that AuthSA and AuthSB are valid, the equations hold because of KSA = s · UA2 = s · rA ·
QIDA2 = rA · DIDA2 = KAS and KSB = s ·UB2 = s · rB ·QIDB2 = rB · DIDB2 = KBS.

In Step 6, if KAB = KBA, we say that AuthAB and AuthBA are valid. The client A, the application
server B and the authentication server S have established a common session key SKAB. The correctness
of KAB = KBA is presented as follows:

KAB= ê
(

rA · Ppub + KAS, USA1 + USA2

)
= ê(rA · s · P + rA · s ·QIDA2, rS · rB · P + rS · rB ·QIDB2)

= ê(rA · P + rA ·QIDA2, rB · P + rB ·QIDB2)
s·rS

= ê(rS · rA · P + rS · rA ·QIDA2, s · rB · P + s · rB ·QIDB2)

= ê(rS ·UA1 + rS ·UA2, rB · s · P + rB · DIDB2)

= ê
(

USB1 + USB2, rB · Ppub + KBS

)
= KBA

3.4. The Parallel Version

Chen et al. [31] pointed out that to enhance the performance and reduce latency of an AKA
protocol, the communication steps in the protocol should be as parallel as possible. To enhance the
proposed protocol performance, a parallel version of the protocol is presented. We reordered the steps
in the proposed protocol as shown in Figure 3. It can be obviously seen that the steps are reordered but
the message exchange contents are the same as those in the preceding protocol. In the parallel version
of the proposed protocol, the protocol can be executed in four rounds.
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3.5. Preventing and Tracing Network Crime

In a distributed computing environment preventing and tracing network crime often consists of
mechanisms to prevent, detect and deter security violations that involve the transmission of messages.
Authentication, Authorization, Accounting (AAA) services are the commonly used mechanisms to
protect the security of networks in distributed computing environments [32–34]. The authentication
service is the first inspection mechanism that prevents and traces network crime. The authorization
service is based on the security primitives of the authentication service. The authentication service and
the authorization service are usually performed together to ensure that a client requesting access to the
services is in fact the client to whom entry is authorized. It is able to prevent services access by a client
that is not authorized and trace which services were accessed by which client. After authentication
and authorization, a common session key is constructed using symmetric encryptions. These are most
effective techniques to protect transferred messages from being intercepted, disclosed and forged by
an adversary. The AAA services also provide accounting services that are used to collect resources
usage information for billing. In the generic AAA services, the authentication, authorization and
accounting services are provided by an authentication server referred to as AAA server.

The proposed protocol is an ID-based three-party AKA protocol that provides mutual
authentication and establishes a common session key between three participants. The authentication
server in the proposed protocol is responsible for the authentication of participating entities and
restricts access to authorized clients. Both clients and the application servers must send their identities
to the authentication server and retrieve the private keys computed by the authentication server in
the key extract phase. A client or an adversary without the private key is unable to request and
access the services provided by an application server. An application server without the private key is
unable to be accepted by the authentication server and the clients. The authentication server needs to
authenticate the clients and the application servers but also needs to be authenticated by the clients
and the application servers. The proposed protocol is able to prevent unauthorized access and detect,
deter an adversary who constructs a forged identity as the real authentication server or application
server to acquire useful information from the clients.

The proposed protocol allows three participants to establish a common session key to protect
the transferred messages and also ensures the authenticity. The common session key of the proposed
protocol is derived from the authentication server, the client and the application server’s private
keys and their ephemeral secrets in the mutual authentication and key agreement phase. The three
participants are able to ensure that no other participants or adversaries can learn or determine the
value of the common session key and the authentication server could use the common session key to
monitor the transferred messages. The common session key of the proposed protocol is able to protect
and guarantee the authenticity of the transferred messages and also trace which client has accessed the
services provided by which application server. None of the clients are able to deny that the client has
requested and accessed the services provided by the application server.

In the proposed protocol the authentication server provides authentication service, authorization
service and uses the common session key to prevent and trace network crime. However, the
authentication server does not provide accounting services. The most important aspect in the AAA
services is the authentication service and the purpose of the accounting service is to collect information
on resource usage for billing, auditing and trend analysis [35–38]. Hence, the proposed protocol is
suitable for various communication systems in the distributed computing environments in terms of
protecting the security of network, preventing and tracing network crime.
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Figure 2. The mutual authentication and key agreement phase.
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Figure 3. Cont.
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Figure 3. The parallel version of Ephemeral Secret Leakage (ESL)-secure ID-based three-party
Authenticated Key Agreement (AKA) protocol.

4. Security and Performance Analysis

In this Section we discuss the security analysis of the proposed protocol. The simulation results
were performed using the AVISPA tool. The methodology used in our performance analysis and the
metrics utilized to evaluate the results of the proposed protocol.

4.1. Security Analysis

In this Section we present the security analysis of the proposed protocol to show the security
attributes required for AKA protocols are satisfied and the simulation results by the AVISPA tool.

• Mutual authentication and Ephemeral-Secret-Leakage Resistance. The proposed
protocol adopted Tseng et al.’s ESL-secure ID-AKE protocol [7] to achieve the
client-to-server authentication. The authentication server S authenticates the client A
and the application server B by checking whether ê(P, VA) = ê(UA1 + QIDA1, WA) ·
ê
(

Ppub, hA ·WA + QIDA2

)
and ê(P, VB) = ê(UB1 + QIDB1, WB) · ê

(
Ppub, hB ·WB + QIDB2

)
or not. To the client A as an example, the message < IDA, IDB, UA1, UA2, VA, QIDA1 >, where
WA = H2(UA1, UA2), hA = f1(IDA, QIDA1) and QIDA2 = H1(IDA) can be viewed as a
signature on a message UA2 in Tseng et al.’s ESL-secure ID-AKE protocol. According to the
security analysis by Tseng et al., if an adversary could have obtained the ephemeral secret rA
using ESL attacks, the adversary still needs to solve the computational Diffie-Hellman problem to
violate the client-to-server authentication.

The application server B authenticates the authentication server S by checking whether
ê(VSB, P) = ê

(
US + hSB ·QIDS, Ppub

)
or not. The message VSB, where VSB = rS · Ppub +

hSB · DIDS, hSB = f2(IDA, IDB, US, USB1, USB2) and DIDS = s · QIDS, can be viewed as
a signature on a message < IDA, US, USB1, USB2 >. Without knowledge of the authentication
server S’s private key s, none of the participants or adversaries can forge the message and compute
a valid signature. To forge a valid message < IDA, US, USB1, USB2, VSB >, an adversary must
have obtained the authentication server S’s private key s from Ppub, where Ppub = s · P. It is a
discrete logarithm problem to the adversary.

The proposed protocol provides the server-to-client authentication that is also based on Tseng et al.’s
ESL-secure ID-AKE protocol. The client A and the application server B authenticate the authentication
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server S by checking whether AuthSA = f3(IDA, IDB, UA1, UA2, VA, NA, KAS, US, USA1, USA2)

and AuthSB = f3(IDA, IDB, UB1, UB2, VB, NB, KBS, US, USB1, USB2) or not. Even though
an adversary could obtain the client A’s ephemeral secret rA by the ESL attacks. Since
< AuthSA > and < AuthSB > are derived from KSA = s · UA2 = rA · DIDA2 = KAS
and KSB = s · UB2 = rB · DIDB2 = KBS, respectively. To violate the server-to-client
authentication, the adversary has to solve the computational Diffie-Hellman problem to obtain
DIDA2 and the discrete logarithm problem to compute the application server B’s ephemeral
secret rB and the computational Diffie-Hellman problem to obtain DIDB2 from the transferred
messages. Otherwise, the adversary only can compute the authentication server S’s private key s
from Ppub, in which the adversary needs to solve the discrete logarithm problem.

The application server B can be sure that the client A has obtained the session key by
checking whether AuthAB = f4(IDA, IDB, US, KBA) or not. The client A checks whether
AuthBA = f5(IDA, IDB, US, KAB, AuthAB) or not to be sure that the application server B also has
obtained the session key and both of them with the authentication server S can agree upon the
common session key SKAB = f6(IDA, IDB, US, KAB, AuthAB, AuthBA). For computing a valid
message < AuthAB > or < AuthBA >, we assume that the client A’s ephemeral secret rA has been
compromised by an adversary. Since the messages < AuthAB > and < AuthBA > are derived
from KAB = ê

(
rA · Ppub + KAS, USA1 + USA2

)
= ê

(
USB1 + USB2, rB · Ppub + KBS

)
= KBA,

where KAS = rA · DIDA2 and KBS = rB · DIDB2, the adversary must solve the computational
Diffie-Hellman problem to compute DIDA2 or the discrete logarithm problem to compute rB
and the computational Diffie-Hellman problem to compute DIDB2 from transferred messages.
Otherwise, the adversary only can compute the authentication server S’s private key s from Ppub,
in which the adversary needs to solve the discrete logarithm problem.

Without knowledge of the private key of a participant (e.g., the client A’s private key DIDA).
An adversary cannot impersonate the participant since the adversary is unable to forge a
valid signature. The proposed protocol employs the signature to authenticate the participants’
identities and one way hash function to protect the integrity of the transferred messages.
Even though the ephemeral secret of the client has been compromised, each participant can
be sure that none of the adversaries can impersonate other participants to violate the verification
procedures and corrupt the participants’ private keys and the session key.

• Known Key Security. Suppose that an adversary can eavesdrop on the transmitted messages to
learn the previous session keys. However, the session key of the proposed protocol is unique
and dependent of each participant’s ephemeral secrets rA, rB and rS and private keys DIDA2,
DIDB2 and s. Therefore, knowledge of the previous session keys does not enable the adversary to
derive other session keys and does not give the adversary any information that the adversary
could use to derive other session keys. Even though the client A’s ephemeral secret rA has been
compromised. If an adversary would like to compute KAB = ê

(
rA · Ppub + KAS, USA1 + USA2

)
,

where KAS = rA · DIDA2 from the transferred messages, the adversary needs to solve the
computational Diffie-Hellman problem to compute the client A’s private key DIDA2 or the
discrete logarithm problem from Ppub, where Ppub = s · P to obtain the authentication server
S’s private key s. Otherwise, the adversary only can solve the discrete logarithm problem and
the computational Diffie-Hellman problem to compute the application server B’s corresponding
ephemeral secret rB and private key DIDB2. In the proposed protocol, even if one of the session
key has been compromised, the security of the other or future session keys is not endangered.

• Partial Forward Secrecy. The proposed protocol session key is dependent on each participant’s
private key and corresponding ephemeral secret. In the proposed protocol, if the private key of
client A or the application server B has been compromised, an adversary also needs to obtain the
corresponding ephemeral secrets to compute the session key. Suppose that the adversary would
like to compute the corresponding ephemeral secrets from the transferred messages, the adversary
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needs to solve the discrete logarithm problem. However, if the adversary corrupts the private key
s of the authentication server S, it is obvious that all of the previous session keys can be recovered
from the transferred messages. Since the adversary is indeed able to compute KSA = s ·UA2,
KAB = ê(s ·UA1 + KSA, USA1 + USA2) or KSB = s ·UB2, KBA = ê(USB1 + USB2, s ·UB1 + KSB)

and SKAB = f6(IDA, IDB, US, KAB, AuthAB, AuthBA). The proposed protocol offers partial
forward secrecy.

• Key-Compromise Impersonation Resilience. To discuss the key-compromise impersonation
resilience property, we assume that client A’s private key DIDA is compromised to an adversary
who tries to impersonate the application server B to cheat the client A and the authentication
server S. When the client A requests service from the application server B, the adversary only
can choose < IDB, UB1, UB2, VB, QIDB1 > and < AuthBA > from the previous sessions and
send them to the authentication server S and the client A, respectively. Since the adversary
cannot derive the application server B’s private key DIDB2 and the corresponding ephemeral
secret rB from the transferred messages to compute KBA = ê

(
USB1 + USB2, rB · Ppub + KBS

)
,

where KBS = rB · DIDB2. The adversary only can violate the verification procedures of the
authentication server S. If the adversary tries to derive the ephemeral secret rB and the private
key DIDB2 from the transferred messages to compute AuthBA = f5(IDA, IDB, US, KBA, AuthAB)

and construct the session key, the adversary needs to solve the discrete logarithm problem and
the computational Diffie-Hellman problem.

• Unknown Key-Share Resilience. To implement such an attack, the adversary is required to
obtain the private key of client A or the application server B. In the proposed protocol, both
of the client A and the application server B have to be authenticated by the authentication
server S. Only the participant that has the private key distributed from the authentication
server S could compute the valid signature and thus pass the verification procedures and
compute the session key. To the client A as an example, the client A with its private key
DIDA and the ephemeral secret rA can compute VA = (rA + DIDA1) ·WA + DIDA2 and
KAB = ê

(
rA · Ppub + KAS, USA1 + USA2

)
to pass the verification procedures of the authentication

server S and the application server B. The ephemeral secret rA with DIDA2 are able to compute
the session key SKAB = f6(IDA, IDB, US, KAB, AuthAB, AuthBA). Hence, the proposed protocol
can withstand an unknown key-shared attack.

• Key control Resilience. In the proposed protocol, the session key SKAB =

f6(IDA, IDB, US, KAB, AuthAB, AuthBA), where KAB = ê
(

rA · Ppub + KAS, USA1 + USA2

)
=

ê
(

USB1 + USB2, rB · Ppub + KBS

)
= KBA is determined by all participants’ private keys and

corresponding ephemeral secrets. None of the participants can force a session key to be
predetermined or predict the value and control the outcome of the session key. Hence, the
proposed protocol ability to prevent the session key is created only by the authentication server S
or other two participants.

4.2. Formal Analysis Using AVISPA

Besides the above analysis we also provide a formal analysis of the proposed protocol
using AVISPA. AVISPA is a push-button tool which is one of the commonly used automated security
validation tools for Internet security-sensitive protocols and applications [19]. AVISPA was developed
based on the Dolev-Yao intruder model [35]. In this model, the intruder has full control over the
network and the intruder can intercept, inject, analyze and modify messages in transit. In addition,
the intruder can play the role of a legitimate participant and gain knowledge of the compromised
participant, but he is not allowed to crack the underlying cryptography. The first step in using AVISPA
is to implement the analyzed protocol in High-Level Protocol Specification Language (HLPSL) that is
an expressive, modular, role-based formal language for security protocol description and specifying
their security properties. The HLPSL presentation of the analyzed protocol is translated into a lower
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level language called Intermediate Format (IF) using HLPSL2IF. IF the analyzed protocol is used as
an input to different back-ends, the current version of AVISPA tool comprises four back-ends that
implement a variety of automatic analysis techniques, namely, On-the-fly Model-Checker (OFMC),
Constraint-Logic-based Attack Searcher (CL-AtSe), SAT-based Model-Checker (SATMC), and Tree
Automata based on Automatic Approximations for the Analysis of Security Protocols (TA4SP) [30].
The four back-ends perform the analysis and output the results in precisely defined output format
stating whether problems exist in the protocol or not. Thus, AVISPA is appropriate for the analysis of
large-scale security protocols and applications.

To evaluate the proposed protocol security using AVISPA, we implemented the proposed protocol
using the HLPSL and the role specifications of the client, the application server and the authentication
server are given in Appendix A. We simulated the proposed protocol using the AVISPA web tool [36].
The proposed protocol is analyzed in the OFMC and CL-AtSe back-ends. Both of the two back-ends
are helpful for the verification of the proposed protocol and detection of attacks. Note that intruder
knowledge of the proposed protocol comprises the ephemeral secret rA of the client. After executing
the code in AVISPA web tool, both OFMC and CL-AtSe back-ends outputs were generated and shown
in Figures 4 and 5. From the simulated results, there are no major attacks to the protocol and the
simulated results also confirm the correctness of the protocol security analysis. The security goals of
the proposed protocol are achieved and thus the proposed protocol confirms security against various
active and passive attacks.

Figure 4. Simulation result of the proposed protocol on On-the-fly Model-Checker (OFMC)
model checker.

Figure 5. Simulation result of the proposed protocol on Constraint-Logic-based Attack Searcher
(CL-AsSe) model checker.
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4.3. Performance Analysis

In this section, the performance and the simulation results of the proposed protocol are analyzed.
For convenience, the following notations are used to analyze the computational cost:

• TGe: the execution time for a bilinear pairing operation ê : G1 × G1 → G2 .
• TGmul : the execution time for points in G1 multiplication operation.
• Texp: the execution time for a modular exponential operation in G2.
• TGH : the execution time for a map-to-point hash function in G1.
• TGadd: the execution time for an addition operation of points in G1 or a multiplication operation

in G2.
• TH : the execution time for a one-way hash function.

The total computational cost for the client side in this proposed protocol is TGe + 5TGmul +

TGH + 3TGadd + 4TH . However, the computation in Step 1 of the mutual authentication and key
agreement phase for the client side can be pre-computed using offline computation. The total cost
for on-line computation on the client side is TGe + 2TGmul + 2TGadd + 4TH . The total computational
cost for the application server side is 3TGe + 6TGmul + TGH + 4TGadd + 5TH . On the other hand,
the authentication server side performs Steps 2 and 4 to authenticate the client, the application server
and constructs the session key. The total computational cost for the authentication server side is
7TGe + 13TGmul + 4TGH + 7TGadd + 8TH .

Note that compared with TGadd and TH , TGe, TGmul , Texp and TGH are more time-consuming [31].
The proposed protocol adopts an imbalanced computation technique and an online/offline
computation technique to reduce the computational load for the client side. From the analysis result
mentioned above, the computational burdens are major on the authentication server and the application
server which are powerful servers and the offline pre-computation reduces the computational cost
required for the client side. Although, bilinear pairing operations are still required for the client side, the
proposed protocol captures all basic desirable security attributes including the ESL resistance and the
authentication server is able to monitor the transferred messages to prevent and trace network crime.
The required computation cost of the proposed protocol is also reasonable.

4.4. Software Performance

Scott et al. [37] and Oliveira et al. [38] implemented the related pairing-based operations for
low-power computing devices (i.e., smartcards and sensor nodes) in 2006 and 2011, respectively.
Scott et al. used the processor on the Philips HiPersmart card offers the maximum clock speed of
36 MHz for related pairing-based operations. Scott et al. pointed out that for the security level of the Ate
pairing system, a popular and valid choice would be to use a supersingular curve or non-supersingular
curve over a finite field E

(
Fp
)
, with p = 512 bits and a large prime order q = 160 bits. The simulations

are performed with a simulator implemented in Android system. We used the Jpair library to execute
the simulations, which is a Java implementation of bilinear pairings to implement the software and a
mobile device (Android 5.0 and 2.3 GHz Intel Atom with 4 GB of RAM) for the client side. Since the
Weil pairing evaluation is more time-consuming than the Tate pairing [39], simulations are provided
based on the Tate pairing on a supersingular elliptic curve. In the proposed protocol security level,
the parameters will be the same as Scott et al.’s experimental data mentioned above. Table 1 lists
the simulations data for related pairing-based operations on the client side. The execution time
results for the client side have an average of 1000 simulations. Table 2 lists the computational cost
and the execution time (in seconds) on the client side, where the execution time is measured using
Table 1. The proposed protocol adopts an online/offline computation technique in which the online
execution time on the client side requires 0.553 s. Although, the bilinear pairing operations are still
required for the client side, the proposed protocol is still efficient and suitable for mobile distributed
computing environments.
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Table 1. Computational cost on the client side.

TGe TGmul Texp TGH TGadd TH

Android 5.0 and 2.3 GHz Intel
Atom with 4 GB of RAM 0.251 s 0.148 s 0.076 s 0.002 s 0.001 s 0.001 s

Table 2. Execution time on the client side.

Computational Cost
(Total)

Computational Cost
(Online)

Execution Time
(Total)

Execution Time
(Online)

Client Side TGe + 5TGmul +
TGH + 3TGadd + 4TH

TGe + 2TGmul +
2TGadd + 4TH

; 1.0 s ; 0.553 s

5. Conclusions

We proposed an ESL-secure ID-based three-party AKA protocol for mobile distributed
computing environments. The proposed protocol employs Tseng et al.’s ESL-secure ID-AKE
protocol [7] against ESL attacks. The proposed protocol keeps all of the merits of KTAP regarding
security including the authentication server is able to monitor the communication messages to prevent
and trace network crime and solves the problems of KTAP in which the session key is only created
by the authentication server. Each participant can contribute information to derive the common
session key. In the security analysis, the proposed protocol resists ESL attacks and also satisfies
the security attributes required for AKA protocols: known-key security, partial forward secrecy,
key-compromise impersonation resilience, unknown key-share resilience and key control resilience.
In addition, the formal validation of the proposed protocol is performed using an automated validation
tool AVISPA. The simulations results show that the proposed protocol is secure against active and
passive adversaries. In the performance analysis, the proposed protocol adopted an imbalanced
computation technique to shift the computational burden to the powerful servers. The software
performance simulation result shows that the mobile client could perform offline pre-computation
to reduce the online computation cost. Furthermore, a parallel version of the proposed protocol is
proposed to enhance the protocol run performance.

In the future, we will implement the proposed in the “To Say” APP. The “To Say” APP allows users
store the last words (text, image, audio, and video) in the application server and send the last words to
the designated receivers in a secure channel. The authentication server is responsible for authenticate
the users and helps them to construct a common session key with the receivers. When the APP detects
the users are not active, the server will automatically send the last words to the designated receivers.
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Appendix

The HLPSL code of the proposed protocol.
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Figure A1. Role specification of the client in HLPSL.

Figure A2. Cont.
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Figure A2. Role specification of the authentication server in HLPSL.
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Figure A3. Cont.
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Figure A3. Role specification of the application server in HLPSL.
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