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Abstract: Asset Management is an important component of an infrastructure project. A significant
cost is involved in maintaining and updating the asset information. Data collection is the most
time-consuming task in the development of an asset management system. In order to reduce the time
and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an
equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is
discussed by deriving appropriate sensor models. Then, through calibration procedures, respective
alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning
System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by
mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and
3D point clouds are derived. After validating the quality of the derived data, the paper provides a
framework to extract road assets both automatically and manually using techniques implementing
RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques
along with a sample GIS (Geographic Information System) database structure for unified 3D asset
inventory are discussed.
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1. Introduction

The lifetime of Civil Engineering infrastructure projects are generally made up of three
phases—design and planning, construction and maintenance. The use and maintenance phase has the
longest duration and involves most of the project cost. Different construction engineering projects,
such as development of roads, bridges, parks and other utilities are expected to be in a usable state for
several years. However, damage and deterioration are unavoidable. The amount of money spent on
repair or replacement of the assets are also very high. In order to make the process of maintenance
and improvements more manageable, it is necessary to document the assets and inventories in an
appropriate format. The recent advancements in digital maps and GIS (Geographic Information
System) technology has improved the efficiency of asset and inventory management. GPS (Global
Positioning System) is an instrument that is widely used to locate and map the positions of assets.
The most important task in the development of an asset management system is the collection of
accurate spatial data and its related attributes. Manual data collection using field data loggers with
GPS and traditional survey methods are commonly seen for asset inventory data collection. Though
this methodology provides accurate results, it involves more time and manpower. Several remote
sensing products, such as aerial imageries, terrestrial photographs and laser point clouds with high
accuracies also contribute to the development of an asset inventory database. This paper focuses on
development and usage of a mobile mapping system for documenting transportation asset inventories.
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A typical mobile mapping system is equipped with a laser scanner, panoramic cameras, GPS and
IMU (Inertial Measurement Unit) positioning setup, on-board computer and a storage device for data
logging. Airborne LiDAR data and aerial images are highly suitable for extracting features, such as
building footprints, roads and vegetation cover. Mapping of infrastructure facilities may require much
higher level of detail including accurate positions of road signs and signals, curb height and width
of pavements, availability of ramps on the sidewalks, etc. Mobile mapping system tends to be more
advantageous in these scenarios. More recent mapping products with up-to date data is preferred over
highly accurate outdated data for most cartography applications. Since the field techniques are largely
subjective, it calls for a technology that is both economical and expedient. With the introduction of
low cost and portable laser scanners in the market, most of the mobile mapping systems are equipped
with laser scanners in addition to video cameras. Thus, a combination of georeferenced pictures and
three-dimensional point cloud provides a better scope for extracting information from the scene.

The paper is divided into following sections: The first section discusses the background for the
study which includes a detailed description about existing methods of data collection and literature
references supporting various advancements in applications of mobile mapping systems in the domain
of asset management. The second section describes the methodology involved which includes the
task of building the system, different components and their communication networks, co-registering
multi-sensor data, basic processing of the data and integrating multi-sensor data into a single GIS
system. Specific details about the experiments conducted, discussion about the proposed framework
and concluding remarks.

2. Background

Spatial data about roadside asset inventories and other municipal utilities are generally collected
using traditional land survey methods. There are two types of information recorded—inventory
(structures and road signs) and condition of the inventories [1]. The field survey methods use GPS
and total stations to record the location of various assets. GPS can be easily used to map street
furniture like lamp posts, sign boards, etc. [2]. Though manual survey methods are highly accurate
in two-dimensional space, it is difficult to obtain the third dimension of points with high accuracy.
These methods are time consuming and cumbersome, as well [3]. There are several other data
management and data integrity challenges associated with using traditional survey methods for
replenishing asset inventory database. The data might not be consistent since a number of manual
tasks are involved [4]. There are also cases where the data is incoherently spread across different
systems, in different formats, depending on the survey crew and temporal aspects of data collection.
There is a definite need to integrate the inventory data as a single system with a common database
structure in order to add relevant attribute data that is relevant during supervision, maintenance and
replacement jobs. A good comparison of techniques by manual and mobile mapping data collection is
explained in [5].

The introduction of field data collectors into the market has improved the consistency of survey
data and also resulted in a less cumbersome and systematic way of data collection. Field data collectors
are devices with inbuilt GPS to collect and store details of features. These devices log the location
and attribute data directly to a server or have a storage inbuilt [6–8]. Mobile GIS technology is
also increasingly used for asset inventory data collection. Mobile applications with spatial analysis
capabilities are increasingly found in the market which can be used to collect data about features using
the internal GPS of the phone. Though the process of data collection is direct and simple, the accuracy
of a phone GPS is low and the features are coarsely mapped.

When asset inventory data is collected using field survey methods, most of the time and resources
are spent on field work. The office work is limited to data migration from the data collector to the
servers and entry of attribute data [5]. While using field data collectors, it is not always possible to
verify the details without visiting the field again. However, newer instruments are equipped with
cameras which aids in review and verification of the collected data.
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Though these field data collection techniques are widely used, the procedures are labor intensive
and time consuming. There is also a considerable level of difficulty in three dimensional modelling of
the assets. These limitation factors motivated technological advancements and eventually led to the
development of a mobile mapping system which directly collects 3D data of the vicinity. The concept of
a mobile mapping system which integrates multiple sensors on a moving platform has a history dating
back to 1970s. A photo logging instrument was attached to a vehicle to collect images of transportation
asset inventories. Though satellite positioning technology like GPS were unavailable during that time,
a combination of accelerometers, gyroscopes and odometers were used to determine the course of the
vehicle movement and direction. The photos were eventually georeferenced based on the recorded
vehicle positions [9]. After the introduction of GPS, a combination of GPS, IMU and other sensors
were used for positioning. Video cameras with time-stamped frames were used to record images.
Urban development and growth in transportation infrastructure encouraged the development of more
efficient and improved techniques of mobile mapping. Further, precise positioning using GPS in
kinematic mode led to the possibility of direct geo-referencing. Combination of direct geo-referencing
concepts and digital imaging technology led to lower costs, better accuracy and increased flexibility of
MMS [10]. Cameras capture images of the scene. Though it is possible to get the third dimension by
using multiple overlapping stereo images, the process is indirect and tedious. On the other hand, laser
scanners determine the three-dimensional coordinate of each point in the scene directly by calculating
the range and direction of the laser pulse. The rise of LiDAR technology led to compact, light-weight
and inexpensive laser scanners in the market which could be easily mounted on the mobile mapping
system. Thus, integrating laser scanners along with this system provides the coordinates of points in
three dimensional space. Fusing these geo-referenced multi-sensor data provides a better opportunity
to find solutions for specific problems in geospatial domain [11].

Mobile mapping systems reduce the data collection time significantly. Literature relating to the
applications of mobile mapping system in the field of transportation are explained in detail by [12].
With an appropriate set up of the sensors, the efficiency of data collection can be maximized. In
addition to imaging cameras and laser scanners, depending on the application, the system can also
be equipped with thermal cameras, hyper spectral scanners or ground penetrating radars. The laser
scanner typically rotates in a 2-D plane and collects data over 360 degrees. A vertical inclination of
the laser scanner would lead to better coverage as it collects points from overhead structures that
are even perpendicular to the vehicle movement [13]. For approaches aiming to detect the road
markings and features on the road surface, it is advantageous to orient the cameras/laser scanners
facing downward [14]. A pair of stereo-cameras in the place of normal cameras for capturing asset
information improves the accuracy of third dimension [15]. It provides a possibility to measure feature
points directly from images. The major limitation of this approach is inaccurate measurement of relative
distances between objects. This can be attributed to the different challenges leading to inaccuracies in
calibrating the cameras. In addition to the vehicle based systems, the mobile mapping system can also
be mounted on different platforms, such as, backpacks, UAVs, boats, carts or balloons depending on
the application. There are light-weight laser scanners which helps to build a system weighing less than
30 pounds paving way for multi-modal data collection [16]. The positioning components—GNSS and
IMU were used to determine the quality of a newly proposed wheelchair tires in a novel research [17].
Assessment of the condition of the pavements turns out to be a byproduct of the system setup thereby,
making it a viable technology for condition assessment for assets.

The survey grade mobile mapping systems are basically equipped with a commercial laser
scanner, panoramic cameras, GPS-INS, dead-reckoning devices, such as odometers and a dedicated
post processing software. An average absolute accuracy of 0.5 m is expected from most commercial
mobile mapping systems [18]. An important aspect to be considered while migrating to mobile
mapping technology from traditional survey methods is the high initial cost of the system. Several
approaches [19–21] explain the development of a low cost mobile mapping system with laser scanners
and cameras on-board. It should be noted that, a low cost mobile mapping system provides data
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accurate enough to detect tree canopy from it [22]. The required accuracy of positioning components
for a mobile mapping system is much lesser than that of an airborne LiDAR. Hence, the overall cost
can be reduced by choosing a less accurate GPS-IMU system.

Though mobile mapping systems reduce the data collection time tremendously, an equivalent
amount of time and resources are generally spent on extracting required information from the collected
data. Thus, most time and resources for creating an asset inventory is spent digitizing features and
entering attribute details. Due to the intensive office work involved during data digitization, research
involving semi-automatic and automatic methods of feature extraction from mobile mapping data
gained importance. Different algorithms and methodologies utilizing multi-sensor data (LiDAR point
clouds and images) have been proposed for road infrastructure modelling. There are also several
proposed methodologies for automatic/semi-automatic detection of some urban scene features from
mobile mapping data. The most prominent features include road centerlines, road boundaries, lanes,
median, sidewalk, curbs, poles, signboards and roadside vegetation/trees. Depending on the type of
the scene and the sensors used for data collection, there are some algorithms and concepts that are
commonly used to automate feature extraction. RANSAC—RANdom SAmpling Consensus method
of plane detection is used to detect and classify road planes from LiDAR data [23]. A method of
classification of urban features using multi-level segmentation and then connecting coherent planar
components is explained by [24]. This paper also describes region growing, mean-shift and connected
component algorithms. An innovative method of detecting curbstones from high density LiDAR
data prove that LiDAR point clouds from mobile platform provides better extraction accuracy when
compared with airborne LiDAR data [25]. Experiments prove that automated detection of road
markings by using a range dependent thresholding function on the rasterized LiDAR data can be
used for detecting lane markings. Several other approaches for detecting road corridor features from
multi-sensor data are given in [26–30].

An ideal solution for asset inventory data collection would be a fast and cost effective technology
providing an easy method of data collection. Though most existing mobile mapping systems cater to
the current requirements, there is a high cost involved. Time consuming manual feature extraction
also adds to the disadvantage. This paper describes the process of building a cost-effective mobile
mapping system using mobile LiDAR and cameras for data collection. The paper also discusses various
semi-automatic and automatic techniques of feature extraction for detecting transportation assets.

3. Methodology

Transportation assets mainly consists of roads and pavements. However, other assets such as
sign boards, signal lights, poles and electric, telecommunication and water utilities which are found
above and below the roads and pavements also belong to the major components of transportation
assets. These assets help to improve the efficiency of the roadway network thereby adding safety of
transportation [31]. Additionally, it should be possible to monitor the assets regularly, which would
help detect overshooting trees, condition of roads/pavements and roadside vegetation changes. Mobile
mapping data can also be used for specific purposes, such as determining the presence of ramp in the
sidewalk and adherence with other ADA (Americans with Disabilities) policies. Since it is important to
collect and maintain a detailed inventory of these assets in an appropriate format, the mobile mapping
system which helps in collecting images and three-dimensional point cloud data of the scene can be
used to document the position and condition of the above mentioned assets.

3.1. Development of MMS That Meets the Requirements

3.1.1. Required Sensors

The primary components of the mobile mapping system being built for the purpose of
transportation asset inventory data collection includes:
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‚ One or more Cameras—Nikon 3200, 3300: Cameras capture pictures/video frames of the scene,
thereby providing the asset managers with digital pictures portraying the conditions of assets.

‚ One or more laser scanners—Velodyne HDL-32E: LiDAR records 3D point data of the vicinity in
the mapping frame, which, helps create 3D model of the scene and extract features.

‚ One or more GPS receivers, Gyros, Accelerometers—Geodetics, Geo-iNav: GPS-IMU integrated
solution improves the frequency of recording positions from 1 Hz (GPS) to 125 Hz. The integrated
navigation solution includes the position as well as the orientation of the vehicle (X, Y, Z, heading,
roll and pitch).

‚ On-board computer—Brix: The software for controlling the functioning of the sensors are installed
on the computer. It is important to Wi-Fi enable the computer, in order to connect it remotely
using a laptop/tablet.

‚ External storage device—Samsung 1TB Solid State drive (SSD): The laser scanner can record up
to 700,000 points per second. The navigation data is also quite voluminous. Since, the velocity
of data recording is high, it is necessary to use a Solid state drive which provides high speed
data logging.

Velodyne HDL-32E

The Velodyne laser scanner is widely used for mapping applications. There are a few survey
grade laser scanners, such as Optech Lynx and Riegl VQ, which have accurate and high precision
GPS-IMU solution. While, these scanners are very expensive, there are several inexpensive laser
scanners that are cheaper than Velodyne. For instance, Hokoyu and ProtoX2D are some examples
of cheap laser scanners. These scanners have just one laser diode and are mostly used for obstacle
detection in robotics applications. They have a small range and insufficient accuracy for mapping
applications. Velodyne has 32 laser channels covering a vertical swath of +10.67 to ´30.67 degrees.
The LiDAR head can rotate 360 degrees in the two-dimensional plane. The sensor works on infra-red
band with wavelength of 905 nm. The sensor is light weight and compact. The HDL-32E Lidar collects
up to 700,000 points per second. The time of flight method is used to determine the range of these
points. The sensor typically has a range of 1 m to 70 m. i.e., points from the scene within a range of
70 m from the sensor are measured. These attributes make Velodyne an obvious choice for developing
low-cost mapping solution. The points are stored as frames. Each frame corresponds to a 360 degree
rotation of the laser scanner in the 2D plane.

Nikon Cameras—3200, 3300

Cameras have been deployed in asset mapping. Charge Coupled Device (CCD) cameras were
used initially which were soon replaced by SLR cameras. The large CCD arrays and pixel size of DSLR
cameras when compared to the point and shoot digital ones makes it more apt for mobile mapping
applications. Nikon D3200 has a fixed focal length of 35 mm and an angle of view which is 1.5 times
the format equivalent of the focal length. Nikon D3300 has a variable focal length of 15 mm to 55 mm.
The angle of view is also 1.5 times the format equivalent of the focal length. Both cameras capture
either 30 or 50 frames per second in the video mode depending on the chosen resolution. The duration
per video is 20 min and requires about 1.3 GB of memory. Technologically advanced cameras, such as
GoPro, are also widely discussed about their role in mobile mapping. However, the fish-eye lens of
GoPro is prone to create distortions and decrease the quality of the cartography product.

Geodetics—Geo-iNav

The Geo-iNav instrument from Geodetics provides a GPS-IMU integrated solution. It consists of
a GPS which provides positions with a horizontal accuracy of 5 cm and vertical accuracy of 10 cm on
L1/L2 real time kinematic mode and horizontal accuracy of 1.5 m and vertical accuracy of 2.5 m on L1
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Standalone mode. The Inertial measurement unit consists of accelerometers and gyros. The IMU has
the following specifications,

‚ Gyroscope Dynamic Range: ˘150˝/s.
‚ Gyroscope Bias In-run stability (1 σ): 3˝/h.
‚ Accelerometer Dynamic Range: ˘3 g.
‚ Accelerometer Bias In-run stability (1 σ): <0.1 mG.

For a mapping application, the expected absolute accuracy of feature points is <20 cm. Hence, it is
necessary to deploy an IMU with less than 3˝/h of gyro bias. The Geo-iNav unit weighs 567 gram and
has size of 550 cubic cm which makes it portable and apt for mobile mapping applications. It provides
navigation solution at a frequency of 125 Hz. The navigation and geodetic data provided by Geo-iNav
includes, navigation solution (position, velocity and attitude) and raw GPS/IMU data which could be
used for post processing.

3.1.2. Assembly of Sensors

Since the mobile mapping system could be mounted on a variety of mobile platforms from trucks
to boats, it is essential to create a robust system on which these sensors could be assembled. The first
important aspect to consider is the stability of the platform. The IMU, GPS antenna, cameras and
the laser scanner are required to be in a stable position throughout the data collection. Additional
care should also be taken to ensure that the IMU does not receive undesired vibrations due to the
vehicle’s internal mechanics. The second aspect of consideration is the position of the GPS antenna.
It is important to mount the GPS antenna in a position such that the signal from the GPS satellites are
not occluded. The orientation of the laser scanner and cameras also play a major role in the efficiency
of data collection. By changing the vertical orientation of the laser scanner, it is possible to collect
points from the roads as well as overhead structures. The laser scanner is mounted on top of an arm
which could rotate about the horizontal axis as shown in the Figure 1. In addition to the sensors and
navigation instruments, the mobile mapping system also needs a laptop/tablet computer which would
connect to the brix thru Wi-Fi or wired network and allows the operator to control the sensors.
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Figure 1. Different vertical orientations of the laser scanner. Practically, an angle of 130–140 degrees
provides a good data coverage for typical urban environments.

Once the components are put together on the platform, the sensors must be calibrated before
they are deployed. Amongst a number of systematic errors that reflect on the data, the error due to
boresight calibration is very significant. Calibration is the process of compensation for the misalignment
between different sensors belonging to the system [32–34]. In general, the misalignment involves both
translation and rotation components. This misalignment is measured between the centers of all other
sensors and the IMU center. Translation and rotation between the following pairs are measured.

1. GPS antenna center to the center of IMUThe origin and axes of the IMU are marked on its
box. Since, the centers of IMU and GPS antenna are physically separated and identifiable, the
distance between their centers can be manually measured along the X, Y and Z directions of
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the IMU as shown in Figure 2. The GPS antenna does not have any orientation. Hence, there
are only translation components (dx, dy, dz). The body frame of the sensor platform has its
positive X-axis aligned in the direction of the vehicle, positive Y-axis extends out on the side
(right hand) and positive Z-axis pointing down. Based on current setup of the IMU, the negative
X- axis of IMU is aligned along the forward direction of the body-frame, the Z- axis of IMU is
set along the vertical axis of the body-frame but point up and the Y-axes of both body frame
and IMU frame are aligned. Based on the specified mounting parameters, the GPS is located in
IMU’s positive X direction. Hence, the displacement between IMU origin and GPS antenna along
IMU’s X-axis should be subtracted from the sensor measurements. Thus, while computing the
boresight misalignment parameters, the value of dx is negative. For similar reasons, dy and dz
are positive. These translation values are used by the IMU while integrating the GPS-IMU data.
The measurement should be accurate to 10 cm or less in order for the post-processing software to
accurately determine the offset.
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Figure 2. Boresight misalignment between the Inertial Measurement Unit (IMU) and GPS.

2. LiDAR (origin from which laser pulse is triggered) to the center of IMUThe origin and axes of the
IMU are marked on the box. On the other hand, it is difficult to manually identify the axes of
the laser scanner. Hence, the translation and rotation between the two origins are determined by
using a Terrestrial Laser Scanner (TLS). The TLS and the mobile mapping unit are placed on a
levelled plane. Both the mobile laser scanner and the TLS scans the vicinity. The mobile scanner
is fine scanned by the TLS such that the IMU markings are clearly visible on the point cloud.
Points from the TLS point cloud belonging to the IMU center and IMU axes are picked. The origin
and axes of the TLS point cloud are shifted to the IMU center and axes of the mobile mapping
system. Since, the scale component is fixed, 3-D Helmert rigid body transformation is applied [35].
Now, the translation and rotation between the point clouds from mobile laser scanner and TLS
(centered at IMU) are measured using Iterative Closest Point (ICP) methodology introduced
by [36,37]. One implementation of ICP as an open source software—CloudCompare [38] is used.
The translation and rotation values determine the boresight misalignment between IMU and
Laser Scanner.

3. Camera Calibration [39–41]

a Interior Orientation—Interior orientation is a part of camera calibration where the
measurements relating to the camera, such as the perspective center and focal length
are determined. It also involves finding the scaling, skew factors and lens distortion.
The interior orientation is performed in lab conditions by clicking pictures of a regular grid
from different angles. By transforming the image pixels to real world lengths, the metrics of
imaging can be determined.
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b Exterior Orientation—Exterior orientation parameters change for every picture. It is the
position and orientation of the camera with respect to a coordinate system, while capturing
each photo. Space Resection is a conventional method used to determine exterior orientation
parameters. It involves the measurement of ground control points and digitizing them on
overlapping images to determine the camera position (X, Y, Z) and orientation (omega,
phi, kappa).

3.2. Co-Registration of Multi-Sensor Data

The mobile mapping system consists of two cameras, a laser scanner and a GPS-IMU instrument.
Once the data collection is complete, the trajectory needs to be smoothed and the data from different
sensors should be synchronized. The trajectory appears rugged mostly at places where there is a GPS
signal outage. We smooth the trajectory, by creating a piecewise polynomial function.

3.2.1. Trajectory Interpolation

The frequency of Geo-iNav is 125 Hz. The combined solutions of GPS and IMU records a position
for every 1/125th of a second. However, the Velodyne laser scanner collects up to 700,000 points per
second. In order to geo-reference the points, ideally, we would need a position/orientation of the
vehicle for approximately every 1/20,000th of a second. Since, the frequency of the laser scanner is
much higher than that of the INS, the trajectory curve is interpolated using piecewise polynomial
function in the shape of a cubic Spline (B-Spline) with timestamp (t) as its parameter as shown in
Equation (1). Piecewise cubical Spline is preferred over linear interpolation because, it provides better
continuity and also considered as the best fitting curve for the road trajectory [42,43].

f px, yq “
n
ď

i“0

pait3 ` bit2 ` cit` di, eit3 ` fit2 ` git` hiq (1)

3.2.2. Time Synchronization

Coordinates of points on the trajectory, images and LiDAR point clouds are uniquely identified
by their timestamp. The GPS time from Geo-iNav is considered as the standard and the clocks of all
other sensors are corrected for GPS time.

The Velodyne laser scanner records two timestamps: System time in microseconds and GPS time
in seconds. The system time is the number of microseconds calculated from the beginning of the hour
in UTC (Universal Time Coordinated). Thus, offset between the system time of Velodyne and GPS
time is corrected using the GPS timestamp recorded by the Velodyne laser scanner.

A video file has the following properties that can be used to timestamp the image frames –

1 Modified date (timestamp)—Timestamp recorded when the video was stored to the SD card
(Assumed as the finishing time of the video)

2 Duration of the video
3 Frames per second (fps)

The SLR cameras record the system time when the videos are saved to the SD card. This is
arbitrarily assumed as the finishing time of a video. The beginning timestamp of the video is calculated
from the duration and finishing time. Using the value of fps, the timestamp for every image frame is
interpolated. The timestamp of the image frames are calculated based on the camera’s system time
which is prone to have an offset from the GPS time. In order to determine the offset between camera’s
clock and the GPS time, a picture of the GPS log (Latitude, Longitude, Altitude, GPS Week/Second)
from the visualization screen is captured before the data collection. The difference between the system
time of the camera and the GPS time on the captured picture gives the offset between the two clocks.
The timestamps of the video frames are corrected for this measured offset.
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3.2.3. Direct Geo-Referencing

Direct Geo-referencing is the process of determining the position and orientation of the laser
scanners and cameras (sensors) of the mobile mapping system by using the navigation data from the
GPS-IMU device. The LiDAR and the cameras capture points in the scene which are external of the
platform. The position and orientation of these sensors determined through direct geo-referencing
techniques help in determining the coordinates of the points captured by these sensors in the mapping
coordinate system [44].

The point clouds were registered by applying the interpolated rotation values (heading, roll, pitch)
obtained from the INS, corresponding X, Y, Z position from GPS-IMU integrated navigation data and
the boresight rotation and translation between IMU and the laser scanner as shown in Equation (2).

PG “ pECEF ` RlGRba pRsbPs ` dTsbq (2)

where,

PG—Coordinate of the captured point in ECEF system,
pECEF—GNSS sensor position in global ECEF system,
RlG´ Rotation matrix from origin of WGS system to origin of local frame,

RiG “

»

—

–

´sin
`

longi
˘

´sin platiq ˚ cos
`

longi
˘

cos platiq ˚ cos
`

longi
˘

cos
`

longi
˘

´sin platiq ˚ sin
`

longi
˘

cos platiq ˚ sin
`

longi
˘

0 cos platiq sin platiq

fi

ffi

fl

(3)

longi, lati are geodetic coordinates of pECEF,
Rba´ Rotation matrix from body frame to local frame,
Rsb—Rotation matrix from scanner to IMU (b-frame)—boresight rotation matrix
Ps—Coordinate of the point in scanner frame (as recorded by Laser Scanner)
dTsb—Offset between scanner frame and IMU center (b-frame)—boresight translation.

In order to improve the accuracy of direct geo-referencing, GCPs (ground control points) are
collected and used to rectify any errors in the geo-referenced point cloud. It is important to choose
control points that are clearly identifiable on the point cloud as well as images. The points ought
to be well-distributed in the area where data is collected. The survey is carried out using GPS and
total stations. The coordinates are recorded in WGS System. The measured points are identified
on the registered point clouds. The point clouds are corrected by applying 3D Helmert rigid body
transformation using the GCPs as parameters.

3.2.4. Geo-Referencing Images

The mobile mapping system captures images/video frames continuously. A scene is captured by
multiple images with significant overlap between the frames. Hence, the first step in geo-referencing
is to connect the consecutive images using common points—tie points [45]. The traditional
aero-triangulation (AT) methodology is used to orient and connect the images. The indirect method of
exterior orientation is considered very accurate and commonly used for registering images. It involves
the use of ground control points to geo-reference the images. Once AT is performed, the measured
values of the control points are used to geo-reference the images. With more accurate GPS-IMU
navigation sensors, direct geo-referencing of images using the position of the sensor and calibration
parameters are increasingly used in several mobile platforms, such as UAVs, mobile mapping systems
etc. In order to use the direct method of geo-referencing, it is important to accurately determine the
boresight misalignment parameters. That is, the separation of the sensor origin (camera) from the
origin of the IMU. Since, it is unlikely to measure this separation with centimeter level of accuracy, a
combination of direct and indirect geo-referencing techniques could be used in this case. Once bundle
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block adjustment is performed on the set of images using the GPS-IMU position data, the GCPs can be
used to correct for the errors in calibration [46,47].

3.2.5. Quality Check Methodology

It is important to assure the mapping quality of the collected data before populating the asset
inventory database or using them for feature extraction. The measures of quality for the survey data
involves determining the relative and absolute accuracies. A particular feature might be recorded
in multiple image or point cloud frames. This may be due to overlapping frames or multi-path
(repeat trajectory) data. Relative accuracy is the measure of drift between the same features measured
on different frames. The major cause for inconsistency between consecutive frames are systematic
or random errors of the sensors involved. Positioning error will reflect in the relative accuracy of
multi-path data. Features like sign boards, pavement boundaries and building corners can be used to
quantify relative errors. Absolute accuracy is the closeness of the collected data to the true position
of the features. In order to check absolute accuracy of the collected data, a combination of the set
of GCPs used for geo-referencing and a new set of GCPs are used. The coordinates of points from
the geo-referenced point cloud and images are checked against the GCPs collected thru field survey.
The root mean square deviation of these two sets of values determines the absolute accuracy of the
laser scanning data and images. Once, the quality of data is assured, the data is processed so that,
outliers are removed and only the relevant data is used for the experiment.

3.3. Processing the Data

3.3.1. Filtering of Data

Laser scanning data may contain noise and erroneous returns. The first step is to filter these
erroneous points. Different errors due to laser scanner and the ways they affect the quality of data
are explained by [48]. Sparse returns which fall out of the typical range of the laser scanner may be
considered as noisy returns and can be removed from the data. Further, unrealistic elevation values
might also be the result of inconsonant returns or incorrect range calculation. Noisy points are filtered
from the data by using a basic range threshold. Points not belonging to the range are treated as outliers
and are removed.

Secondly, it is important to narrow down the entire dataset to the regions related to the domain of
interest and eliminate unrelated parts of the data. A transportation asset inventory database would
typically contain roads and roadside features. In order to localize the point cloud, road centerline
and road width are extracted from the TIGER (Topologically Integrated Geographic Encoding and
Referencing) dataset [49]. The TIGER shapefile shows the centerline of the roads, the attribute data
holds the type of the road which would provide a fair idea about the width of the road. The extent is
determined by providing a buffer to the prescribed road width, in order to accommodate the roadside
landscape, pavement and other features of interest. This process of localizing the point cloud to
contain only the features of interest is very helpful in avoiding misclassification of features and also
significantly reduces the processing and computation time.

3.3.2. Automatic Bare-Earth for Cross Section

The raw LiDAR data consists of returns from all features in the vicinity which includes both
ground and non-ground points. In a road scene, there could be ground points, such as the road surface,
sidewalk, median and there are also points from non-ground features like trees, electric lines, cars,
poles, sign boards and other roadside structures. The easiest and straight-forward method to classify
ground points from non-ground points is by exploiting their planarity property. Almost all ground
points lie on well-defined planes. For example, the roads and pavements are typically planar. RANSAC
method determines the best fit plane on a set of points. RANSAC algorithm, when run repeatedly
on the outliers of each iteration, results in a number of significant planes that fits the point cloud.
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The points belonging to these planes are classified as the ground points (bare-earth) and the outliers of
the final iteration of RANSAC are non-ground points. Thus, ground points can be differentiated from
non-ground points using this procedure.

3.4. Creation of GIS Database for Asset Management

The concept of using GIS technology for Asset Management is well-established. GIS provides a
concrete mapping between spatial data and its corresponding attribute details, which helps in making
well-informed decisions about infrastructure management and maintenance [31]. Displaying an asset
with its location on a scaled map provides better visualization and helps in decision making. Applying
spatial relationship constraints like connectivity, containment and adjacency helps maintain data
integrity and consistency. A number of commercial software tools with rich Computerized Maintenance
Management System (CMMS) capabilities are very popular in the GIS industry for almost a decade.
Beginning from electric and water up to transportation and public safety, GIS asset management
systems are being implemented for almost every utility domain. Most of these frameworks have a
customized database structure with internal relationships mapped between different components of
the asset management system. Largely, they are exclusive for a particular utility.

As discussed in the previous sections, most transportation asset management frameworks use
the traditional methods of data collection using GPS and other field data collectors. The data is then
imported into CAD format which is later converted into GIS compatible formats. The pioneers in
asset management software support almost all data formats belonging to common field data collection
methods. However, the best practice of integrating data from mobile mapping systems directly into a
GIS database is a state-of-the-art research domain. The structure of databases and spatial relationships
between the assets do not depend on the data collection methodology. However, mobile mapping
system is not a direct method of data collection. It involves a number of processing tasks before
documenting the actual assets of interest. It involves tasks that range from geo-referencing to feature
extraction. An ideal framework for managing asset data collected using a mobile mapping system
should include these processing tasks along with the implementation of a GIS database for asset
inventory. Characteristics of an asset management framework using mobile mapping data:

‚ Ability to manage voluminous data efficiently—large point clouds
‚ Maintain consistency between multi-sensor data—images, LiDAR point clouds, thermal/

hyperspectral data etc.
‚ Appropriate versioning of collected datasets.
‚ Implementation of basic automatic feature extraction algorithms and interface to manually

digitize features.
‚ Relational database design to store assets and their spatial relationships.
‚ Visualization, rendering and fluid user interface.

4. Experiments

The mobile mapping system with the described components are assembled as shown in Figure 1.
The GPS antenna and IMU are fixed upright. The system is mounted on a uniformly levelled surface.
The arm of the laser scanner is adjusted depending on the mounting of the mobile mapping system so
that maximum points from the scene are collected. The system also requires a battery to supply power
for the components to function. Once, the system is set up, boresight misalignment of each sensor
with respect to the IMU center is measured. The center of the IMU and its axes are marked on its cover.
The x, y and z misalignment values between GPS and IMU center are fed into the IMU processing
software so that the integrated navigation solution is automatically corrected for this misalignment.
The second set of calibration values which includes the rotation and translation between IMU and laser
scanner/cameras are applied to the data during the process of geo-referencing. The system is powered
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and individual components are tested for their functionality. The SSD is also tested for proper data
logging and completeness of data.

Once, the data collection is complete, the trajectory is post-processed to apply differential
corrections and to integrate GPS-IMU using “GeoRTD” from Geodetics. The data is converted
into appropriate format for synchronizing with data from other sensors. The GPS-IMU data which
is originally in binary format is converted into ASCII (American Standard Code for Information
Interchange). The point cloud data from laser scanner is converted from PCAP (Packet Capture) to
CSV (Comma Separated Values) format. Further, the videos recorded by the camera in MP4 (MPEG-4
AVC – Advanced Video Coding) format are converted to individual frames which are images in
JPEG (Joint Photographic Experts Group). The data from different sensors are synchronized based
on the recorded timestamp. The system time of all sensors are measured in UTC system. The data
is compensated for the 17 s offset measured between UTC and GPS time. However, there can also
be a possible drift between the internal system time recorded by the cameras and GPS time. A drift
of 24.5 s and 28.5 s are measured between the system times of the two cameras and the GPS time
respectively. At the end of this synchronization step, each return from the laser scanner, each frame
recorded by the camera and each position recorded by the GPS-IMU sensors will be timestamped
based on GPS time. A piece-wise polynomial, spline function is fitted for X, Y, Z, heading, roll and
pitch values with timestamp as the parameter. Thus, the navigation data corresponding to each point
from the laser point clouds/each image can be determined from the spline functions based on their
respective timestamps. Additionally, the rotation and translation values corresponding to boresight
misalignment/sensor calibration are also applied. Once the data is geo-referenced, the point clouds
that are initially in sensor’s coordinate system were converted to a global coordinate system.

Ground Control Points are required to determine the exterior orientation (EO) parameters of
images and also to check the quality of geo-referenced point clouds. Points that are well-defined on
the ground, on images and on point clouds are considered for GCPs. GPS and Total Stations are used
to measure GCPs. Based on rough reconnaissance of the area, GPS stations are determined. There are
locations from which maximum number of GCPs lie in the vicinity. The GPS instrument is set up on
these locations in static mode to record the station coordinates. A total station is then set up at these
locations to determine the coordinates of the GCPs. The EO parameters of the images are determined
by using the ground control points in addition to calibration values and navigation data. The quality
of geo-referenced point clouds is determined by calculating the root mean square deviation between
the measured GCPs and the corresponding points on the point cloud.

The data collection was carried out by mounting the system on a truck (Figure 3a) and a golf cart
(Figure 3b). The former was primarily used to collect asset inventories for the City of Dania Beach—a
larger area with high speed vehicles and traffic. The latter was used for data collection within the FAU,
Boca Raton Campus. Since, the golf cart is limited to be used on pavements, it is unlikely that it covers
wider roads in a single run. Additionally, golf carts are not equipped with shock absorbers. Hence, the
undulations in the pavement reflect in the navigation data as noise. The vehicles were driven at an
average speed of 10 mph in order to have good coverage of data.

The laser scanning data is stored as number of frames with each frame having a time range of
0.2 s. The density of the point cloud depends on the number of returns. Since, the scanner is oriented
at an approximate angle of 135 degrees as shown in Figure 1, the road surface is clearly captured.
There are larger number of returns from the road surface because it is closer to the scanner. In an urban
road side environment, an average of 100,000 points (returns) are collected in a frame. Pictures are
collected at the rate of 30 frames per second by the Digital SLR camera. The pictures are extracted from
the video at an interval of 0.2 s which is the same as the duration of a LiDAR frame.
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Figure 3. Mobile mapping system mounted on a truck (a) and a golf cart (b) for data collection.

The LiDAR frames are loaded in Leica Cyclone environment to digitize the features of interest.
The assets of interest for transportation inventory management includes, sidewalks, medians,
guardrails, fencing, misc. concrete structures, lighting, landscape areas, delineators, striping,
symbols and messages, crosswalks, stop bars, raised pavement markers, attenuators and highway
signs. In addition to the spatial component, the attributes for these assets are also populated.
The typical database structure for transportation asset inventory data management includes attributes,
e.g., condition and dimensions. However, road signs should also be tagged with the symbol
represented by the sign. The spatial component of the assets may be points, lines or polygons
depending on its geometry and may also require some customized attributes. Hence, each asset is
stored in an individual table with attributes as shown in Table 1. The Asset Id is unique for every asset.
In addition to the process of manual digitization of assets, there are a few established automatic and
semi-automatic methods of feature extraction that can be implemented in future.

Table 1. Asset attributes stored in a GIS database.

Asset Attributes (Format/Type)

Sidewalk

Width (Double)
Curb Height (Double)

Length of the segment (Double)
Availability of ramp (Boolean—true/false)

Condition (Integer; range—1–10)
Comments (Text)

Geometry (Polygon)

Median

Width (Double)
Height (Double)

Length of the segment (Double)
Condition (Integer; range: 1–10)

Comments (Text)
Geometry (Polygon)

Guard Rail

Height (Double)
Length of the segment (Double)
Condition (Integer; range: 1–10)

Comments (Text)
Geometry (Line)

Fencing

Height (Double)
Length of the segment (Double)
Condition (Integer; range: 1–10)

Comments (Text)
Geometry (Line)
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Table 1. Cont.

Asset Attributes (Format/Type)

Lighting

Height (Double)
Type (Text)

Condition (Integer; range: 1–10)
Comments (Text)
Geometry (Point)

Landscape Areas

Area of landscaping (Double)
Condition (Integer; range: 1–10)

Comments (Text)
Geometry (Polygon)

Delineators

Height (Double)
Type of Delineator (Text)

Condition (Integer; range: 1–10)
Comments (Text)
Geometry (Point)

Lanes

Type of striping (Text)
Condition (Integer; range: 1–10)

Comments (Text)
Geometry (Line)

Road Markings

Type of striping (Text)
Condition (Integer; range: 1–10)

Comments (Text)
Geometry (Line)

Road Signs/Boards

Message (Text)
Type of sign (Text)

Condition (Integer; range: 1–10)
Comments (Text)
Geometry (Point)

4.1. Extraction Methodology

As discussed in the previous section, mobile mapping reduces the data collection time greatly.
However, digitizing individual features from the geo-referenced point clouds and images requires
huge amount of human effort and is time-consuming. Since, we have cameras and a laser scanner
onboard, it improves the scope for automatic/semi-automatic feature extraction. Algorithms involving
geometry of feature points can be used in combination with image processing algorithms to get better
results. There are a number of different methods being proposed by researchers in geomatics and
data mining scientists for automatic feature detection and extraction. Some common methods used in
feature detection that can be used to extract different transportation asset inventories are described in
this section.

4.1.1. Automatic Road Marking Extraction

The major advantage of a mobile mapping system with multiple sensors onboard is that the data
from each sensor complements the other and helps extract maximum information about the scene.
Implementing a combination of image processing and geometry algorithms on images and point cloud
data helps in detecting the road markings with almost nil manual intervention. The edges of the
sidewalk detected from the images are used to define the boundary of the road and the bare-earth
LiDAR points within the boundary are considered as road points. In order to ensure clear visibility for
the drivers, road lane markings have a much higher reflectance when compared to the road surface.
The boundaries of the road markings can be extracted from the images [27] as well as by classifying the
LiDAR point cloud based on the intensity of the return pulse [14]. An example of such road marking
extraction is illustrated in Figure 4. Once the parts of the image corresponding to the road markings
are localized (Figure 4a), the image is segmented. The segmented image is a smoothened form of the
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original image with less noise (Figure 4b). Finally, edges are detected from the segmented image using
Canny’s edge detection algorithm [50]. These edges are processed to extract road markings (Figure 4c).
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highly reflective and also clearly distinguishable on the point cloud. The shape of the sign board can 
be determined from the boundary of clusters of high intensity returns [29,51]. Signboards are of fixed 
dimension range, height and shape. Hence, by using the height and dimension constraints, points 
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Figure 4. Extraction of road markings from images—(a) Localization of road marking; (b) Segmented
image; (c) Edges extracted from segmented image showing boundaries of road markings.

4.1.2. Road Sign Extraction

Road signs are important components of the transportation asset inventory database. Road signs
are non-ground points and do not lie on a definite plane. They are made up of aluminum which is
highly reflective and also clearly distinguishable on the point cloud. The shape of the sign board can
be determined from the boundary of clusters of high intensity returns [29,51]. Signboards are of fixed
dimension range, height and shape. Hence, by using the height and dimension constraints, points that
do not belong to road signs can be eliminated and the precise shape of the sign board can be obtained
(Figure 5a). It is also important to know the symbol on the road sign to add attribute information
to the extracted spatial data. Since the content on the sign board cannot be well identified from the
point cloud, geo-referenced images are used for this purpose. The location of the signboard can be
determined on the set of referenced images by using the coordinate corresponding to the centroid of
the sign board extracted from the point cloud (Figure 5b).Sensors 2016, 16, 367 15 of 18 
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Figure 5. Extraction of road signs from Lidar point clouds and images. (a) Points from point cloud
whose intensity >100 (high reflectance of aluminum); height from curb > 5 ft.; dimension between
0.4 m and 1.6 m; (b) Locating the signboard on the image using the coordinate of its centroid.

4.1.3. Extraction of Other Assets

Several methods utilizing the geometry of point clouds and also the intensity of returns are used
to extract assets like poles and lamp posts. Considering a high density LiDAR point cloud, the poles
and lamp posts can be modeled as cylinders with a height and volume threshold [30]. However, in
a sparse point cloud, poles and lamp posts are seen as upright lines. RANSAC Line Fit can be used
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to distinguish poles from lamp posts [23]. Other features of interest include building faces and road
side landscape. Building faces can be extracted by using their planar property because they are always
planes perpendicular to the ground surface [26]. Landscape on the sides of the road are typically
ground points reflecting green. Combining intensity values from image pixels with the classified
LiDAR ground points, roadside landscape can be extracted.

5. Discussion

Field data collection methods possess a number of potential challenges such as high data collection
time, increased manual effort, safety constraints and limitation of information collected. Additionally,
several data management aspects like data transformation, storage and integrity are not efficiently
streamlined when field data collection methods are used. For instance, the workflow currently adopted
by the FDOT (Florida Department of Transportation) involves field data collection through traditional
survey methods. The data is converted into CAD (Computer-Aided Design) format; the images
captured are converted to appropriate GIS raster format and are used as an overlay on as-built
drawings. These methods often involve multi-step processes which are difficult to automate for
an organized work-flow. It is also challenging to integrate newly collected data with existing data.
A mobile mapping technology overcomes almost all of these limitations. Though the initial cost of
the system is high, once the system is built, it makes frequent data collection easier and helps procure
up-to-date information. The experiment developed a very economic system whose cost sums up to
65,000 USD. Considering the recurring cost of man power involved in traditional field survey methods,
the initial cost involved with a mobile mapping system providing mapping grade accuracy turns out
to be optimally advantageous. Major challenges involved in using a mobile mapping system is the
processing of voluminous data and laborious digitization of individual features. These limitations
can be overcome using improved data management techniques and automatic feature extraction
methodologies. The use of field data collection methods using improved positioning instruments and
hand-held mapping devices is a huge leap from traditional surveying methods in the last decade and
now, mobile mapping system is the newer mapping technique owing to the number of advantages
over its predecessors.

Advantages of a mobile mapping system:

‚ Less laborious data collection process.
‚ Possibility of frequent data collection for constantly changing scenarios
‚ Data can be reviewed for condition assessment at the comfort of office
‚ Minimum field work involved
‚ Direct and accurate elevation information from mobile LiDAR data
‚ Easy to conduct survey over inaccessible areas.
‚ Minimum/nil hindrance to commuters and traffic.

6. Conclusions

Considering the importance of a detailed asset inventory database and the limitations of
traditional surveying methods to achieve that, there is a need for an economic solution with improved
capabilities. Eventually, a cost-effective mobile mapping system was built to provide a solution to
the limitations posed by the previous techniques. The geo-referenced data from the mobile mapping
system provides a three-dimensional model of the entire scene. This provides a direct method to
accurately determine the three-dimensional coordinates of road assets in the corridor. Though, there
is no single well-established methodology for automatic extraction of features from the point clouds
and images, a number of proven techniques to detect individual assets have been demonstrated with
the experimental data. Additionally, the advantages of mobile mapping system over other techniques
makes it an important technology for asset inventory mapping. The current framework includes
geo-referencing tools and quality check methods for point clouds and images. The current research
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involve building a UAV-based mobile mapping system to monitor the condition of overhead road
infrastructure. The future work will also include developing more automated feature extraction
methods to further improve office processing cost in asset inventory management.
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