
entropy

Article

Survey on Probabilistic Models of Low-Rank
Matrix Factorizations

Jiarong Shi 1,2,* ID , Xiuyun Zheng 1 and Wei Yang 1

1 School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China;
xyzhengzzf@sohu.com (X.Z.); yangweipyf@163.com (W.Y.)

2 School of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China
* Correspondence: shijiarong@xauat.edu.cn; Tel.: +86-29-8220-5670

Received: 12 June 2017; Accepted: 16 August 2017; Published: 19 August 2017

Abstract: Low-rank matrix factorizations such as Principal Component Analysis (PCA), Singular
Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF) are a large class of
methods for pursuing the low-rank approximation of a given data matrix. The conventional
factorization models are based on the assumption that the data matrices are contaminated
stochastically by some type of noise. Thus the point estimations of low-rank components can be
obtained by Maximum Likelihood (ML) estimation or Maximum a posteriori (MAP). In the past
decade, a variety of probabilistic models of low-rank matrix factorizations have emerged. The most
significant difference between low-rank matrix factorizations and their corresponding probabilistic
models is that the latter treat the low-rank components as random variables. This paper makes
a survey of the probabilistic models of low-rank matrix factorizations. Firstly, we review some
probability distributions commonly-used in probabilistic models of low-rank matrix factorizations
and introduce the conjugate priors of some probability distributions to simplify the Bayesian inference.
Then we provide two main inference methods for probabilistic low-rank matrix factorizations,
i.e., Gibbs sampling and variational Bayesian inference. Next, we classify roughly the important
probabilistic models of low-rank matrix factorizations into several categories and review them
respectively. The categories are performed via different matrix factorizations formulations, which
mainly include PCA, matrix factorizations, robust PCA, NMF and tensor factorizations. Finally,
we discuss the research issues needed to be studied in the future.

Keywords: matrix factorizations; low-rank; variational Bayesian inference; Gibbs sampling; probabilistic
principal component analysis; probabilistic matrix factorizations; probabilistic tensor factorizations

1. Introduction

In many practical applications, a commonly-used assumption is that the dataset approximately
lies in a low-dimensional linear subspace. Low-rank matrix factorizations (or decompositions, the two
terms are used interchangeably) are just a type of method for recovering the low-rank structure,
removing noise and completing missing values. Principal Component Analysis (PCA) [1], a traditional
matrix factorization method, copes effectively with the situation that the dataset is contaminated by
Gaussian noise. If the mean vector is set to be a zero vector, then PCA is transformed into Singular
Value Decomposition (SVD) [2]. Classical PCA approximates the low-rank representation according to
eigen decomposition of the covariance matrix of a dataset to be investigated. When there are outliers
or large sparse errors, the original version of PCA does not work well for obtaining the low-rank
representations. In this case, many robust methods of PCA have been extensively studied such as
L1-PCA [3], L1-norm maximization PCA [4], L21-norm maximization PCA [5] and so on.

In this paper, low-rank matrix factorizations refer to a general formulation of matrix factorizations
and they mainly consist of PCA, matrix factorizations, robust PCA [6], Non-negative Matrix
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Factorization (NMF) [7] and tensor decompositions [8]. As a matter of fact, matrix factorizations
are usually a special case of PCA and they directly factorize a data matrix into the product of two
low-rank matrices without consideration of the mean vector. Matrix completion aims to complete all
missing values according to the approximate low-rank structure and it is mathematically described as
a nuclear norm minimization problem [9]. To this end, we regard matrix completion as a special case
of matrix factorizations. In addition, robust PCA decomposes the data matrix into the superposition of
a low-rank matrix and a sparse component, and recovers both the low-rank and the sparse matrices
via principal component pursuit [6].

Low-rank matrix factorizations suppose that the low-rank components are corrupted by certain
random noise and the low-rank matrices are deterministic unknown parameters. Maximum
Likelihood (ML) estimation and Maximum a posteriori (MAP) are two most popular methodologies
used in estimating the low-rank matrices. A prominent advantage of the aforementioned point
estimate methods is that they are simple and easy to implement. However, we can not obtain the
probability distributions of the low-rank matrices that are pre-requisite in exploring the generative
models. Probabilistic models of low-rank matrix factorizations can approximate the true probability
distributions of the low-rank matrices and they have attracted a great deal of attention in the past
two decades. These models have been widely applied in the fields of signal and image processing,
computer vision, machine learning and so on.

Tipping and Bishop [10] originally presented probabilistic PCA in which the latent variables
are assumed to be a unit isotropic Gaussian distribution. Subsequently, several other probabilistic
models of PCA were proposed successively, such as Bayesian PCA [11], Robust L1 PCA [12], Bayesian
robust PCA [13] and so on. As a special case of probabilistic models of PCA, Bayesian matrix
factorization [14] placed zero-mean spherical Gaussian priors on two low-rank matrices and it was
applied to collaborative filtering. Probabilistic models of matrix factorizations also include probabilistic
matrix factorization [15], Bayesian probabilistic matrix factorization [16], robust Bayesian matrix
factorization [17], probabilistic robust matrix factorization [18], sparse Bayesian matrix completion [19],
Bayesian robust matrix factorization [20] and Bayesian L1-norm low-rank matrix factorizations [21].

As to robust PCA, we take the small dense noise into account. In other words, the data matrix
is decomposed into the sum of a low-rank matrix, a sparse noise matrix and a dense Gaussian noise
matrix. Hence, the corresponding probabilistic models are robust to outliers and large sparse noise,
and they are mainly composed of Bayesian robust PCA [22], variational Bayesian robust PCA [23] and
sparse Bayesian robust PCA [19]. As another type of low-rank matrix factorizations, NMF decomposes
a non-negative data matrix into the product of two non-negative low-rank matrices. Compared
with PCA, NMF is a technique which learns holistic, not parts-based representations [7]. Different
probabilistic models of NMF were proposed in [24–28]. Recently, probabilistic models of low-rank
matrix factorizations are also extended to the case of tensor decompositions. Tucker decomposition
and CANDECOMP/PARAFAC (CP) decomposition are two most important tensor decompositions.
By generalizing the subspace approximation, some new low rank tensor decompositions have emerged,
such as the hierarchical Tucker (HT) format [29,30], the tensor tree structure [31] and the tensor train
(TT) format [32]. Among them, the TT format is a special case of the HT and the tensor tree structure [33].
The probabilistic models of the Tucker were presented in [34–36] and that of the CP were developed
in [37–48].

For probabilistic models of low-rank matrix factorizations, there are three most frequently used
statistical approaches for inferring the corresponding probability distributions or parameters, i.e.,
Expectation Maximization (EM) [49–54], Gibbs sampling(or a Gibbs sampler) [54–62] and variational
Bayesian (VB) inference [54,62–71]. EM is an iterative algorithm with guaranteed the local convergence
for ML estimation and does not require explicit evaluation of the likelihood function [70]. Although
it has many advantages over ML, EM tends to be limited in applications because of its serious
requirements for the posterior of the hidden variables and can not be used to solve complex Bayesian
models [70]. However, VB inference relaxes some limitations of the EM algorithm and ameliorates
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its shortcomings. As a means of VB, Gibbs sampling is another method used to infer the probability
distributions of all parameters and hidden variables.

This paper provides a survey on probabilistic models of low-rank matrix factorizations. Firstly,
we review the significant probability distributions commonly-used in probabilistic low-rank matrix
factorizations and introduce the conjugate priors that are essential to Bayesian statistics. Then we
present two most important methods for inferring the probability distributions, that is, Gibbs sampling
and VB inference. Next, we roughly divide the available low-rank matrix factorization models into
five categories: PCA, matrix factorizations, robust PCA, NMF and tensor decompositions. For each
category, we provide a detailed overview of the corresponding probabilistic models.

A central task for probabilistic low-rank matrix factorizations is to predict the missing or
incomplete data. For the sake of concise descriptions, we do not consider the missing entries in
all models except the sparse Bayesian model of matrix completion. The remainder of this paper is
listed as below. Section 2 introduces the commonly-used probability distributions and the conjugate
priors. Section 3 presents two frequently used inferring methods: Gibbs sampling and VB inference.
Probabilistic models of PCA and matrix factorizations are reviewed respectively in Sections 4 and 5.
Sections 6 and 7 survey probabilistic models of robust PCA and NMF, respectively. Section 8 provides
other probabilistic models of low-rank matrix factorizations and probabilistic tensor factorizations.
The conclusions and future research directions are drawn in Section 9.

Notation: Let R be the set of real numbers and R+ the set of non-negative real numbers. We denote
scalars with italic letters (e.g., x), vectors with bold letters (e.g., x), matrices with bold capital letters
(e.g., X) and sets with italic capital letters (e.g., X). Given a matrix X, its ith row, jth column and (i, j)th
element are expressed as xi·, x·j and Xij, respectively. If X is square, let Tr(X) and |X| be the trace and
the determinant of X, respectively.

2. Probability Distributions and Conjugate Priors

This section will introduce some probability distributions commonly adopted in probabilistic
models of low-rank matrix factorizations and discuss the conjugate priors for algebraic and intuitive
convenience in Bayesian statistics.

2.1. Probability Distributions

We consider some significant probability distributions that will be needed in the following sections.
Given a univariate random variable x or a random vector x, we denote its probability density/mass
function by p(x) or p(x). Let E(x) be the expectation of x and Cov(x, x) the covariance matrix of x.

Several probability distributions such as Gamma distribution and Beta distribution deal with the
gamma function defined by

Γ(x) =
∫ +∞

0
ux−1 exp(−u)du. (1)

We summarize the probability distributions used frequently in probabilistic models of low-rank
matrix factorizations, as shown in Table 1. In this table, we list the notation for each probability
distribution, the probability density/mass function, the expectation and the variance/covariance
respectively. For the Wishart distributionW(Λ|W, v), the term B(W, v) is given by

|W|−v/2

(
2νd/2πd(d−1)/4

d

∏
i=1

Γ((v + 1− i)/2)

)−1

(2)

where the positive integer v ≥ d− 1 is named the degrees of freedom. For the generalized inverse
Gaussian distribution GIG(x|p, a, b), Kp(c) is a modified Bessel function of the second kind. For brevity
of notation, we stipulate a few simple representations of a random variable or vector. For instance, if x
follows a multivariate Gaussian distribution with mean µ and covariance matrix Σ, we can write this
distribution as x ∼ N (x|µ, Σ), or x ∼ N (µ, Σ), or p(x) = N (x|µ, Σ). In addition, some probability
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distributions can be extended to the multivariate case under identical conditions. The following cites
an example: if random variables xi ∼ St(µi, λi, vi) and x1, x2, . . . , xN are independent, then we have
x = (x1, x2, . . . , xN)

T ∼ St(µ,λ, v) with the probability density function p(x) = ∏N
i=1 St(xi|µi, λi, vi),

where µ = (µ1, µ2, . . . , µN)
T , λ = (λ1, λ2, . . . , λN)

T and v = (v1, v2, . . . , vN)
T .

There exist close relationships among probability distributions listed in Table 1, as shown partially
in Figure 1. Refer to [54,62,66] for more probability distributions. Moreover, some continuous random
variables can be reformulated as Gaussian scale mixtures with other distributions from a hierarchical
viewpoint. Now, we give two most frequently used examples as below.

Example 1. For given parameter µ, if the conditional probability distribution of x is p(x|λ) = N (x|µ, λ−1)

and the prior distribution of λ is p(λ) = IGam(λ|1, 1), then we have p(x) = Lap
(

x|µ,
√

2/2
)

.

The probability density function of x is derived as:

p(x) =
∫ +∞

0 p(λ)p(x|λ)dλ

=
∫ +∞

0
1√
2π

λ−3/2 exp
(
− 1

λ

)
exp

(
− 1

2 λ(x− µ)2
)

dλ

λ=2t
=
∫ +∞

0
1

2
√
π

t−3/2 exp
(
− 1

2t

)
exp

(
−t(x− µ)2

)
dt

= L
{

1
2
√
π

t−3/2 exp
(
− 1

2t

)}
(x− µ)2.

(3)

Meanwhile, it holds that

L−1

{√
2

2
exp

(
−
√

2(x− µ)2
)}

(t) =
1

2
√
π

t−3/2 exp
(
− 1

2t

)
(4)

where L{·} is the Laplace transform and L−1{·} is the inverse Laplace transform. Hence, we get
x ∼ Lap

(
µ,
√

2/2
)

.

Example 2. For given parameters µ and τ, if the conditional probability distribution of x is p(x|u) =

N
(

x|µ, (τu)−1
)

and the prior distribution of u is p(u|v) = Gam(u|v/2, v/2), then it holds that p(x|v) =
St(x|µ, τ, v), where v is a fixed parameter.

The derivation process for p(x|v) is described as follows:

p(x|v) =
∫ +∞

0 p(x, u|v)du =
∫ +∞

0 p(u|v)p(x|u)du

∝
∫ +∞

0 u(v+1)/2−1 exp

(
−

u
(

v+(x−µ)2τ
)

2

)
du

∝ 1(
v+(x−µ)2τ

)(v+1)/2 .

(5)

So, p(x|v) = St(x|µ, τ, v).
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Table 1. Commonly-used probability distributions.

Probability Distribution Notation Probability Density/Mass Function Expectation Variance/Covariance

Bernoulli distribution Bern(x|µ) µx(1− µ)1−x, x ∈ {0, 1} µ µ(1− µ)

Poisson distribution Poiss(x|λ) λx

x! exp(−λ), x = 0, 1, . . . λ λ

Uniform distribution U(x|a, b) 1
b−a , x ∈ (a, b) a+b

2
(b−a)2

12

Multivariate
Gaussian distribution N (x|µ, Σ)

1
(2π)d/2|Σ|1/2 exp

(
− 1

2 (x− µ)
T

Σ−1(x− µ)
)

, Σ is

a d× d symmetric, positive definite matrix
µ Σ

Exponential distribution Exp(x|λ) λ exp(−λx), x > 0 1
λ

1
λ2

Laplace distribution Lap(x|µ, σ) 1
2σ exp

(
− |x−µ|

σ

)
µ σ2

Gamma distribution Gam(x|a, b) 1
Γ(a) baxa−1 exp(−bx), x > 0 a

b
a
b2

Inverse-Gamma distribution IGam(x|a, b) 1
Γ(a) bax−a−1 exp

(
− b

x

)
, x > 0 b

a−1 for a > 1 b2

(a−1)2(a−2)
for a > 2

Student’s t-distribution St(x|µ, λ, ν) Γ((v+1)/2)
Γ(v/2)

(
λ
πv

)1/2
(

1 + λ(x−µ)2

v

)−(v+1)/2
µ

v
λ(v−2) for v > 2

Beta distribution Beta(x|a, b) Γ(a+b)
Γ(a)Γ(b) xa−1(1− x)b−1, x ∈ [0, 1] a

a+b
ab

(a+b)2(a+b+1)

Wishart distribution W(Λ|W, v) B(W, v)|Λ|(ν−d−1)/2 exp
(
− 1

2 Tr(W−1Λ)
)

, Λ is
a d× d symmetric, positive definite matrix

vW v(W2
ij + WiiWjj) for Λij

Inverse Gaussian distribution IG(x|µ, λ)
√

λ
2πx3 exp

(
− λ(x−µ)2

2µ2x

)
, x > 0 µ µ3

λ

Generalized inverse
Gaussian distribution GIG(x|p, a, b) (a/b)p/2xp−1

2KP(
√

ab)
exp

(
− 1

2

(
ax + b

x

))
, x > 0

√
bKp+1(c)√
aKp(c)

, c =
√

ab bKp+2(c)
aKp(c)

− bK2
p+1(c)

aK2
p(c)
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Figure 1. Relationships among several probability distributions. 
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Figure 1. Relationships among several probability distributions.

2.2. Conjugate Priors

Let x be a random vector with the parameter vector z and X = {x1, x2, . . . , xN} a collection of
N observed samples. In the presence of latent variables, they are also absorbed into z. For given z,
the conditional probability density/mass function of x is denoted by p(x|z). Thus, we can construct
the likelihood function:

L(z|X) = p(X|z) =
N

∏
i=1

p(xi|z). (6)

As for variational Bayesian methods, the parameter vector z is usually assumed to be stochastic.
Here, the prior distribution of z is expressed as p(z).

To simplify Bayesian analysis, we hope that the posterior distribution p(z|X) is in the same
functional form as the prior p(z). Under this circumstance, the prior and the posterior are called
conjugate distributions and the prior is also called a conjugate prior for the likelihood function
L(z|X) [54,66]. In the following, we provide three most commonly-used examples of conjugate priors.

Example 3. Assume that random variable x obeys the Bernoulli distribution with parameter µ. We have the
likelihood function for x:

L(µ|X) =
N

∏
i=1

Bern(xi|µ) =
N

∏
i=1

µxi (1− µ)1−xi = µ∑N
i=1 xi (1− µ)N−∑N

i=1 xi (7)

where the observations xi ∈ {0, 1}. In consideration of the form of L(µ|X), we stipulate the prior distribution
of µ as the Beta distribution with parameters a and b:

p(µ) = Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1− µ)b−1. (8)

At this moment, we get the posterior distribution of µ via the Bayes’ rule:

p(µ|X) =
p(µ)p(X|µ)

p(X)
∝ p(µ)p(X|µ). (9)

Because
p(µ)p(X|µ) = p(µ)L(µ|X)

∝ µa−1(1− µ)b−1µ∑N
i=1 xi (1− µ)N−∑N

i=1 xi

∝ µa+∑N
i=1 xi−1(1− µ)b+N−∑N

i=1 xi−1

(10)
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we have p(µ|X) ∼ Beta(a + ∑N
i=1 xi, b + N−∑N

i=1 xi). The conclusion means that the Beta distribution
is the conjugate prior for the Bernoulli likelihood.

Example 4. Assume that random variable x obeys a univariate Gaussian distribution N (µ, λ−1), where λ is
also named the precision. The likelihood function of x for given µ is

L(λ|µ, X) =
N
∏
i=1
N (xi|µ, λ−1)

=
N
∏
i=1

√
λ√

2π
exp

(
− λ

2 (xi − µ)2
)

= λN/2(2π)−N/2 exp
(
− λ

2 ∑N
i=1 (xi − µ)2

) (11)

We further suppose that the prior distribution of λ is the Gamma distribution with parameters a
and b. Let p(λ|µ, X) be the posterior distribution of λ. Then we have

p(λ|µ, X) ∝ p(λ)p(X, µ|λ). (12)

Because
p(λ)p(X, µ|λ)

= 1
Γ(a) baλa−1 exp(−bλ)λN/2(2π)−N/2 exp

(
− λ

2 ∑N
i=1 (xi − µ)2

)
∝ λa+N/2−1 exp

(
−λ
(

b + ∑N
i=1 (xi − µ)2/2

)) (13)

we get p(λ|µ, X) ∼ Gam(a + N/2, b + ∑N
i=1 (xi − µ)2/2). Therefore, the conjugate prior of the

precision for a Gaussian likelihood is a Gamma distribution.

Example 5. Assume that random vector x obeys a d-dimensional Gaussian distribution N (µ, Λ−1), where
Λ, the inverse of covariance matrix, is called the precision matrix. We consider the case that both µ and Λ are
unknown. Thus, the likelihood function for x is

L(µ, Λ|X) =
N
∏
i=1
N
(
xi|µ, Λ−1)

=
N
∏
i=1

|Λ|1/2

(2π)d/2 exp
(
− 1

2 (xi − µ)T
Λ(xi − µ)

)
= |Λ|N/2

(2π)dN/2 exp
(
− 1

2 ∑N
i=1 (xi − µ)T

Λ(xi − µ)
)

.

(14)

The prior distribution of (µ, Λ) is given by a Gaussian–Wishart distributionNW(µ, Λ|µ0, β, W, v)
with the joint probability density function:

p(µ, Λ|µ0, β, W, v) = N
(
µ|µ0, (βΛ)−1

)
W(Λ|W, v) (15)

where µ0, β, W and v are the fixed hyperparameters. Hence, it holds that

p(µ, Λ|µ0, β, W, v)p(X|µ, Λ)

= N (µ|µ0, (βΛ)−1)W(Λ|W, v)L(µ, Λ|X)

∝ |Λ|(N+ν−d)/2 exp
(
− 1

2

(
(µ− µ0)

T(βΛ)(µ− µ0) + ∑N
i=1 (xi − µ)T

Λ(xi − µ) + Tr(W−1Λ)
))

.

(16)
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Denote x = ∑N
i=1 xi/N and X = (x1, x2, . . . , xN). To obtain the above probability density function,

we first derive the following formula:

(µ− µ0)
T(βΛ)(µ− µ0) + ∑N

i=1 (xi − µ)T
Λ(xi − µ)

= µT(βΛ)µ− 2µT
0 (βΛ)µ+ µT

0 (βΛ)µ0 + ∑N
i=1
(
µTΛµ− 2xi

TΛµ+ xi
TΛxi

)
= (β + N)µTΛµ− 2(Λ(βµ0 + Nx))T

µ+ Tr
((

βµ0µ
T
0 + XXT)Λ

)
= (µ− (βµ0 + Nx)/(β + N))T((β + N)Λ)(µ− (βµ0 + Nx)/(β + N))

+Tr
((

βµ0µ
T
0 + XXT − (βµ0 + Nx)(βµ0 + Nx)T/(β + N)

)
Λ
)

.

(17)

Then we get

p(µ, Λ|µ0, β, W, v)p(X|µ, Λ)

∝ |Λ|1/2 exp
(
− 1

2 (µ− (βµ0 + Nx)/(β + N))T((β + N)Λ)(µ− (βµ0 + Nx)/(β + N))
)

|Λ|(N+ν−d−1)/2 exp
(
− 1

2 Tr
((

W−1 + βµ0µ
T
0 + XXT − (βµ0 + Nx)(βµ0 + Nx)T/(β + N)

)
Λ
))

.

(18)

Because p(µ, Λ|X) ∝ p(µ, Λ|µ0, β, W, v)p(X|µ, Λ), we have

p(µ, Λ|X) ∼

NW
(

βµ0+Nx
β+N , β + N,

(
W−1 + βµ0µ

T
0 + XXT − (βµ0+Nx)(βµ0+Nx)T

(β+N)

)−1
, N + v

)
.

(19)

This example shows that the conjugate prior of (µ, Λ) for a multivariate Gaussian N (x|µ, Λ) is a
Gaussian–Wishart distribution.

There are some other conclusions on the conjugate priors. For instance, given Gaussian likelihood,
the conjugate prior for the mean is another Gaussian distribution, the conjugate prior for the precision
matrix is a Wishart distribution. All probability distributions discussed in Section 2.1 belong to a
broad class of distributions, that is, the exponential family. It is shown that the exponential family
distributions have conjugate priors [54,66,72].

3. Gibbs Sampling and Variational Bayesian Inference

Due to the existence of the latent variables or unknown parameters, computing the posterior
distribution is analytically intractable in general. In this section, we will provide two approximation
inference methods: Gibbs sampling and variational Bayesian inference.

3.1. Gibbs Sampling

As a powerful framework for sampling from a probability distribution, Markov chain Monte
Carlo (MCMC) methods, also called Markov chain simulation, construct a Markov chain such that its
equilibrium distribution is the desired distribution [73–80]. Random walk Monte Carlo methods are a
large subclass of MCMC and they include mainly Metropolis–Hastings [54,62,66,81], Gibbs sampling,
Slice sampling [54,62,66], Multiple-try Metropolis [82,83].

Gibbs sampling or Gibbs sampler, a simple MCMC algorithm, is especially applicable for
approximating a sequence of observations by a specified probability distribution when direct
sampling is intractable. In addition, the basic version of Gibbs sampling is also a special case of
the Metropolis–Hastings algorithm [54,62]. In detailed implementation, Gibbs sampling adopts
the strategy of sampling from a conditional probability distribution instead of marginalizing the
joint probability distribution by integrating over other variables. In other words, Gibbs sampling
generates alternatively an instance from its corresponding conditional probability distribution by
fixing other variables.



Entropy 2017, 19, 424 9 of 33

Let z1, z2, . . . , zM be M blocks of random variables and set z = (z1, z2, . . . , zM). The joint
probability distribution of z is written as p(z) = p(z1, z2, . . . , zM). In this subsection, we only consider
the case that it is difficult to directly sampling from the joint probability distribution p(z). To this end,
we can sample each component zi from marginal distribution in order. The marginal distribution of zi
can be theoretically obtained by the following formulation:

p(zi) =
∫ ∫

· · ·
∫

p(z1, z2, . . . , zM)dz1 · · ·dzi−1dzi+1 · · ·dzM. (20)

Generally speaking, the integrating term in the above formula is not tractable. A wise sampling
strategy is that we generate zi according to the conditional probability distribution p(zi|z\zi), where
z\zi = (z1, . . . , zi−1, zi+1, . . . , zM). By using Bayes’ rule, the relationship between the conditional
probability distribution and the joint probability distribution is given as follows:

p(zi|z\zi) =
p(z1, z2, . . . , zM)

p(z1, . . . , zi−1, zi+1, . . . , zM)
∝ p(z1, z2, . . . , zM). (21)

The sampling procedure is repeated by cycling through all variables. We summarize the outline
of Gibbs sampling as below.

1. Initialize zi = z(0)i , i = 2, . . . , M.
2. For k = 1, 2, . . . , T

For i = 1, 2, . . . , M

Generate z(k)i from the conditional probability distribution

p(zi|z
(k)
1 , . . . , z(k)i−1, z(k−1)

i+1 , . . . , z(k−1)
M ).

End
End

In the above sampling procedure, T is the maximum number of iterations. Therefore, we have T
samples z(k) = (z(k)1 , z(k)2 , . . . , z(k)M ), k = 1, 2, . . . , T. To alleviate the influence of random initializations,
we can ignore the samples within the burn-in period. Although Gibbs sampling is commonly efficient
in obtaining marginal distributions from conditional distributions, it can be highly inefficient for some
cases such as sampling from Mexican hat like distribution [53].

The Metropolis algorithm is an instance of MCMC algorithms and walks randomly with an
acceptance/rejection rule until the convergence is achieved. As the generalization of Metropolis
algorithm, the Metropolis–Hastings algorithm modifies the jumping rules and its convergence speed
is improved [66]. Broadly speaking, the advanced Gibbs sampling algorithm can be regarded as a
special case of the Metropolis–Hastings algorithm. The Gibbs sampler is applicable for models that are
conditionally conjugate, while the Metropolis algorithm can be used for not conditionally conjugate
models. Hence, we can combine both the Gibbs sampler and the Metropolis algorithm to sample from
complex distributions [66].

3.2. Variational Bayesian Inference

Another widely used class of approximating the marginal probability distribution p(zi) is the
variational Bayesian (VB) inference [54]. We still use the notation X = (x1, x2, . . . , xN) to represent a
matrix composed of N observed datum and z = (z1, z2, . . . , zM) to represent a vector constructed by
M blocks of latent variables. In VB methods, both X and z are assumed to be stochastic.

Given the prior distribution p(z) and the data likelihood p(X|z), the probability distribution of
data matrix X, also called the evidence, can be calculated as p(X) =

∫
p(z)p(X|z)dz. Then we derive

the conditional probability distribution of z via Bayes’ rule:

p(z|X) = p(z)p(X|z)∫
p(z)p(X|z)dz

. (22)
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However, the integrating term
∫

p(z)p(X|z)dz is analytically intractable under normal conditions.
Now, we harness VB methods to approximate the posterior distribution p(z|X) as well as p(X).

Let q(z) be the trial probability distribution of p(z|X). The log of the probability distribution p(X)
is decomposed as below:

ln p(X) =
∫

q(z) ln p(X)dz =
∫

q(z) ln p(X,z)
p(z|X)dz

=
∫

q(z) ln p(X, z)dz−
∫

q(z) ln p(z|X)dz

=
∫

q(z) ln p(X, z)dz−
(∫

q(z) ln p(z|X)
q(z) dz +

∫
q(z) ln q(z)dz

)
= L(q) + KL(q||p) ≥ L(q)

(23)

where L(q) =
∫

q(z) ln p(X,z)
q(z) dz and KL(q||p) = −

∫
q(z) ln p(z|X)

q(z) dz. The term KL(q||p) is called the
Kullback–Leibler (KL) divergence [54,84–87] between q(z) and p(z|X), and L(q) is the lower bound of
ln p(X) that achieves its lower bound if and only if KL(q||p) = 0 (or equivalently q = p). The above
divergence can also be explained as the information gain changing from the prior q(z) to the posterior
p(z|X) [85].

Another perspective for Equation (23) is that,

ln p(X) = ln
∫

p(X, z)dz = ln
∫

q(z)
p(X, z)

q(z)
dz ≥

∫
q(z) ln

p(X, z)
q(z)

dz = L(q). (24)

The above inequality is obtained by Jensen’s inequality. The negative lower bound −L(q) is called the
free energy [88,89].

The KL divergence KL(q||p) can be regarded as a metric for evaluating the approximation
performance of the prior distribution q(z) over the posterior distribution p(z|X) [54]. In the light of
Equation (23), minimizing KL(q||p) is equivalent to maximizing L(q). What’s more, the lower bound
can be further derived as below:

L(q) =
∫

q(z) ln p(X|z)dz +
∫

q(z) ln p(z)dz−
∫

q(z) ln q(z)dz

=
∫

q(z) ln p(X|z)dz +
∫

q(z) ln p(z)
q(z) dz

= Eq(z) ln p(X|z)− KL(q||p).

(25)

The above Equation means that ln p(X) can also be regarded as the expectation of the log likelihood
function ln p(X|z) with respect to z.

To reduce the difficulty of approximating the trial distribution q(z), we partition all latent
variables into M disjoint block variables {z1, z2, . . . , zM} and assume that z1, z2, . . . , zM are mutually
independent. Based on the above assumption, we have

q(z) = q(z1)q(z2) · · · q(zM). (26)

Afterwards, we utilize the mean field theory to obtain the approximation of q(z). Concretely speaking,
we update each q(zi) in turn. Let q(zi) be unknown and q(zj)(j 6= i) be fixed. Under this circumstance,
we can get the optimal q(zi) by solving the following variational maximization problem:

q∗(zi) = argmax
q(zi)

L(q(z)) (27)



Entropy 2017, 19, 424 11 of 33

Plugging Equation (26) into the lower bound of ln p(X), we have

L(q) =
∫ M

∏
j=1

q(zj) ln p(X, z)
M
∏
j=1

dzj −
∫ M

∏
j=1

q(zj)
M
∑

j=1
ln q(zj)

M
∏
j=1

dzj

=
∫

q(zi)

(∫
ln p(X, z)∏

j 6=i
q(zj)∏

j 6=i
dzj

)
dzi −

∫
q(zi) ln q(zi)dzi + const

=
∫

q(zi) ln p̃(X, zi)dzi −
∫

q(zi) ln q(zi)dzi + const

=
∫

q(zi) ln p̃(X,zi)
q(zi)

dzi + const

(28)

where “const” is a term independent of zi and p̃(X, zi) is a new probability distribution whose log is
defined by

ln p̃(X, zi) =
∫

ln p(X, z)∏
j 6=i

q(zj)∏
j 6=i

dzj + const

= Ez\zi
[p(X, z)] + const.

(29)

Therefore, p̃(X, zi) is the optimal solution of problem (27) obtained by minimizing the KL divergence
between q(zi) and p̃(X, zi).

An advantage of the VB methods is that they are immune to over fitting. But they also have
some shortcomings. For example, the probability distributions derived via VB have always less
probability mass in the wings than the true solution and this systematic bias may break applications.
A VB method approximates a full posterior distribution by maximizing the corresponding lower
bound on the marginal likelihood and it can only handle a smaller dataset. In contrast, the stochastic
variational inference optimizes a subset at each iteration. This batch inference algorithm is scalable
and outperforms traditional variational inference methods [90,91].

3.3. Comparisons between Gibbs Sampling and Variational Bayesian Inference

Evaluating the posterior distribution p(z|X) is a central task in probabilistic models of low-rank
matrix factorizations. In many practical applications, it is often infeasible to compute the posterior
distribution or the expectations with respect to this distribution. Gibbs sampling and VB inference
are two dominant methods for approximating the posterior distribution. The former is a stochastic
approximation and the latter is a deterministic technique.

The fatal shortcoming of Expectation Maximization (EM) algorithm is that the posterior
distribution of the latent variables should be given in advance. Both Gibbs sampling and VB inference
can ameliorate the shortcoming of EM algorithm. Gibbs sampling is easy to implement due to the fact
it adopts a Monte Carlo procedure. Another advantage of Gibbs sampling is that it can generate exact
results [54]. But this method is often suitable for small-scale problems because it costs a large amount
of computation. Compared with Gibbs sampling, VB inference does not generate exact results and has
small computation complexity. Therefore, their strengths and weaknesses are complementary rather
than competitive.

4. Probabilistic Models of Principal Component Analysis

Principal Component Analysis (PCA) is a special type of low-rank matrix factorizations.
This section first introduces the classical PCA and then reviews its probabilistic models.

4.1. Principal Component Analysis

The classical PCA converts a set of samples with possibly correlated variables into another set of
samples with linearly uncorrelated variables via an orthogonal transformation [1]. Based on this, PCA
is an effective technique widely used in performing dimensionality reduction and extracting features.
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Let X = {x1, x2, . . . , xN} be a collection of N samples with d dimensions and Ir(r < d) an
r-by-r identity matrix. Given a projection transformation matrix W ∈ Rd×r, the PCA model can be
expressed as

xi = Wzi + x + εi, i = 1, 2, . . . , N (30)

where the mean vector x = ∑N
i=1 xi/N, W satisfies WTW = Ir, zi is a representation coefficient

vector with r dimensions and ε1, ε2, . . . , εN ∼ N (0,σ2Id) are independent and identically distributed
noise vectors. Denote X = (x1, x2, . . . , xN), Z = (z1, z2, . . . , zN), X = (x, x, . . . , x) ∈ Rd×N and
E = (ε1, ε2, . . . , εN). Then PCA can be rewritten as the following matrix factorization formulation:

X = WZ + X + E. (31)

According to the maximum likelihood estimation, the optimal W and Z can be obtained by solving
the minimization problem:

min
W,Z
‖X− X−WZ‖2

F, s.t. WTW = Ir (32)

where ‖ · ‖F is the Frobenious norm of a matrix. Although this optimization problem is not convex, we
can obtain the optimal transform matrix W∗ by stacking r singular vectors corresponding to the first r
largest singular values of the sample covariance matrix S = ∑N

i=1 (xi − x)(xi − x)T/(N − 1). Let z∗i be
the optimal low-dimensional representation of xi. Then it holds that z∗i = W∗T(xi − x).

The PCA technique only supposes that the dataset is contaminated by isotropic Gaussian noise.
The advantage of PCA is that it is very simple and effective in achieving the point estimations of W
and Z. But we can not obtain their probability distributions. In fact, the probability distributions of
parameters are more useful and valuable than the point estimations in exploiting the intrinsic essence
and investigating the procedure of data generation. Probabilistic models of PCA are just a class of
methods for inferring the probability distributions of parameters.

4.2. Probabilistic Principal Component Analysis

In Equation (30), the low-dimensional representation zi is an unknown and deterministic
parameter vector. In contrast, the original probabilistic PCA [10] regards zi as a stochastic vector.
This probability model provides a general form of decomposing a d-dimensional input sample x:

x = Wz + µ+ ε (33)

where the latent random vector z ∼ N (0, Ir), the noise ε ∼ N (0, σ2Id) and µ is the mean vector.
In the following, a Maximum Likelihood (ML) method is proposed to obtain the point estimations of
W, µ and σ2.

It is obvious that p(x|z) = N (x|Wz + µ, σ2Id). Hence we have

p(x) =
∫

p(x|z)p(z)dz = N (x|µ, σ2Id + WWT). (34)

Given the observed sample set X = {x1, x2, . . . , xN}, the log-likelihood function is

L(W,µ, σ2|X) =
N

∑
i=1

ln p(xi) =
N

∑
i=1

lnN (xi|µ, σ2Id + WWT). (35)

The optimal W,µ, σ2 can be obtained by maximizing L(W,µ, σ2|X). By letting the partial
derivative of L(W,µ, σ2|X) with respect to µ be the zero vector, we can easily get the maximum
likelihood estimation of µ: µML = x. Hence, the optimal W and σ2 can be achieved by the stationary
points of L(W,µML, σ2|X) with respect to W and σ2.
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The aforementioned method is slightly complex when computing W and σ2. For this purpose, an
Expectation Maximization (EM) algorithm was also presented to solve probabilistic PCA. If W, µ and
σ2 are given, then the joint probability distribution of z and x can be derived as follows:

p(z, x|W,µ, σ2) = p(z|W,µ, σ2)p(x|z, W,µ, σ2)

= N (z|0, Ir)N (x|Wz + µ, σ2Id).
(36)

The posterior distribution of z for given x is

p(z|x, W,µ, σ2) =
p(z, x|W,µ, σ2)

p(x|W,µ, σ2)
∝ N (z|0, Ir)N (x|Wz + µ, σ2Id). (37)

Because

N (z|0, Ir)N (x|Wz + µ, σ2Id)

∝ exp
(
− 1

2 zTz
)

exp
(
− 1

2σ2 (x−Wz− µ)T(x−Wz− µ)
)

∝ exp
(
− 1

2

[
z−

(
σ2I + WTW

)−1WT(x− µ)
]T

σ2I+WTW
σ2

[
z−

(
σ2I + WTW

)−1WT(x− µ)
]) (38)

we have
p(z|x, W,µ, σ2) ∼ N (〈z〉, Σz) (39)

where Σz = Cov(z, z) = σ2(σ2I + WTW
)−1 is the covariance matrix of z and 〈z〉 = ΣzWT(x− µ)/σ2

is the mean of z. Based on the above analysis, we give the complete-data log-likelihood function:

LC(W,µ, σ2|X) =
N
∑

i=1
ln p(xi, zi|W,µ, σ2)

=
N
∑

i=1
lnN (zi|0, Ir) + lnN (xi|Wzi + µ, σ2I)

= − dN
2 ln σ2 − 1

2

N
∑

i=1

(
zT

i zi + (xi −Wzi − µ)T(xi −Wzi − µ)/σ2
)
+ const

= − dN
2 ln σ2 − 1

2σ2

N
∑

i=1

(
zT

i (σ
2I + WTW)zi + (xi − µ)T(xi − µ) + 2(xi − µ)TWzi

)
+ const

(40)

where “const” is a term independent of W,µ and σ2.
In the expectation step, we take expectation on LC(W,µ, σ2|X) with respect to z:

Ez
[
LC(W,µ, σ2|X)

]
= − dN

2 ln σ2 − 1
2σ2

N
∑

i=1

(
tr
(
(σ2I + WTW)E

[
zizT

i
])

+ (xi − µ)T(xi − µ)− 2(xi − µ)TWE[zi]
)

+const.

(41)

According to Equation (39), we have E[zi] = ΣzWT(xi − µ)/σ2 and E
[
zizT

i
]
= Σz +E[zi]E[zi]

T .
In the maximization step, we first obtain the maximum likelihood estimation of µ: µML = x by

setting the partial derivative of Ez
[
LC(W,µ, σ2|X)

]
with respect to µ be a zero vector. Similarly, we can

also obtain the optimal estimations of W and σ2 by solving the equation set:{
∂

∂WEz
[
LC(W,µML, σ2|X)

]
= 0,

∂
∂σ2 Ez

[
LC(W,µML, σ2|X)

]
= 0.

(42)



Entropy 2017, 19, 424 14 of 33

Moreover, a mixture model for probabilistic PCA was proposed in [92]. Khan et al. replaced the
Gaussian noise with Gaussian process and incorporated the information of preference pairs into the
collaborative filtering [93].

4.3. Bayesian Principal Component Analysis

In probabilistic PCA, both z and ε obey Gaussian distributions, and both W and µ are
non-stochastic parameters. Now, we further treat w·1, w·2, . . . , w·r and µ as independent random
variables, that is, w·i ∼ N (0, α−1

i Id) and µ ∼ N (0, β−1Id). At this moment, the corresponding
probabilistic model of PCA is called Bayesian PCA [11]. Set α = (α1, α2, . . . , αr)

T and τ = σ−2. Then
we give the prior distributions of α and τ as follows:

p(α) =
r

∏
i=1

Gam(αi|a0, b0), p(τ) = Gam(τ|c0, d0) (43)

where a0, b0, c0, d0 are four given hyperparameters.
The true joint probability distribution of complete data is given by

p(X, W, α, Z,µ, τ)

= p(W, α, Z,µ, τ)p(X|W, α, Z,µ, τ)

= p(α)p(W|α)p(Z)p(µ)p(τ)p(X|W, Z,µ).

(44)

We suppose that the trial distribution of p(X, W, α, Z,µ, τ) has the following form:

q(W, α, Z,µ, τ) = q(W)q(α)q(Z)q(µ)q(τ). (45)

By making use of VB inference, we can obtain the trial probability distributions of W, α, Z,µ and
τ respectively. In detailed implementation, the hyperparameters a0, b0, c0, d0, β can be set to be small
positive numbers to obtain the broad priors. Unlike other approximation methods, the proposed
method maximizes a rigorous lower bound.

4.4. Robust L1 Principal Component Analysis

The probabilistic model of robust L1 PCA [12] regards both µ and W as deterministic parameters
and µ is set to a zero vector without loss of the generality. We still suppose that z obeys a spherical
multivariate Gaussian distribution, that is, z ∼ N (0, Ir). To improve the robustness, the noise εi is
assumed to follow a multivariate Laplace distribution:

p(εi|σ) =
(

1
2σ

)d/2
exp

(
− 1

σ
‖εi‖1

)
(46)

where ‖ · ‖1 is the L1 norm of a vector. Due to the fact that the Laplace distribution has heavy tail, the
proposed model in [12] is more robust against data outliers.

We use the hierarchical model to deal with the Laplace distribution. The probability density
distribution of a univariate Laplace distribution Lap(0, σ) can be rewritten as

p(ε|σ) =
∫ √

β

2πσ2 exp
(
− β

2σ2 ε2
)

1
2

β−2 exp
(
− 1

2β

)
dβ (47)

Hence, we can set εi ∼ N
(
0, (σ2/βi)Id

)
and βi ∼ IGam(1, 1/2). Let ρ = 1/σ2 and give its

prior distribution:
p(ρ) = Gam(ρ|a, b) (48)

where a and b are two given hyperparameters.
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We take Z,β and ρ as latent variables and W as the hyperparameters. For fixed W, the true joint
probability distribution of all latent variables is

p(Z,β, ρ, X|W) = p(ρ)p(β)p(Z)p(X|W, Z). (49)

The trial joint distribution of Z,β and ρ is chosen as q(Z,β, ρ) = q(Z)q(β)q(ρ). By applying the VB
inference, the probability distributions of Z,β and ρ are approximated respectively. What’s more, W is
updated by minimizing the robust reconstruction error of all samples.

4.5. Bayesian Robust Factor Analysis

In previous probabilistic models of PCA, the noise ε obeys the same Gaussian distributions.
However, different features maybe have different noise levels in practical applications. Now, we
set ε ∼ N (0, diag(τ)), where τ = (τ1, τ2, . . . , τd)

T and diag(τ) is a diagonal matrix. Probabilistic
Factor Analysis (or PCA) [13] further assumes that Wij ∼ N (0, τ−1

i α−1
j ), µi ∼ N (0, τ−1

i β−1). In other
words, different Wij or µi have different variances and the variances of Wij and µi also have a coupling
relationship. Given W, z,µ,τ, the conditional probability distribution of x is written as

p(x|W, z,µ,τ) = N (x|Wz + µ, diag(τ)). (50)

Meanwhile, the prior distributions for τi, αj and β are given as follows:

τi ∼ Gam(a0, b0), αj ∼ Gam(c0, d0), β ∼ Gam(e0, f0) (51)

where {a0, b0, c0, d0, e0, f0} is the set of hyperparameters.
The robust version of Bayesian factor analysis [13] considers the Student’s t-distributions instead of

Gaussian noise corruptions due to the fact that the heavy tail of Student’s t-distributions makes it more
robust to outliers or large sparse noise. Let ε ∼ St(0,τ.−1, v), where τ.−1 = (1/τ1, 1/τ2, . . . , 1/τN)

T

and v = (v1, v2, . . . , vN)
T . In this case, the probability distribution of x for given W, z,µ,τ, v is

p(x|W, z,µ,τ, v) = St(x|Wz + µ,τ.−1, v). (52)

We can represent hierarchically the above Student’s t-distributions. Firstly, the conditional
probability distribution of xk can be expressed as:

p(xk|W, zk,µ,τ, uk) = N
(

xk|Wzk + µ, diag(τ.−1. ∗ uk.−1)
)

(53)

where uk is a d-dimensional column vector, “.∗” is the Hadamard product (also known as entrywise
product). Then we give the prior of uk for fixed d-dimensional hyper parameter vector v as below:

p(uk|v) = Gam(uk|v/2, v/2). (54)

Another Bayesian robust factor analysis is on the basis of the Laplace distribution. At this moment,

we assume that ε ∼ Lap(0,τ.−1/2), where τ.−1/2 =
(

τ−1/2
1 , τ−1/2

2 , . . . , τ−1/2
N

)T
. In this case, we have

p(x|W, z,µ,τ) = Lap(x|Wz + µ,τ.−1/2) (55)

The Laplace distribution generally leads to adverse effects on inferring the probability distributions of
other random variables. Here, we still employ the hierarchical method, that is,

p(x|W, z,µ,τ, u) = N (x|Wz + µ, diag
(
τ.−1. ∗ u.−1)), p(u) = IGam(u|1, 1/2). (56)
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Under this circumstance, we have

p(x|W, z,µ,τ) =
∫

p(x, u|W, z,µ,τ)du =
∫

p(x|W, z,µ,τ, u)p(u)du

=
∫
N (x|Wz + µ, diag

(
τ.−1. ∗ u.−1))IGam(u|1, 1/2)du

∝
∫ N

∏
i=1

(τiui)
1/2 exp

(
− 1

2 τiui(x−Wz− µ)2
i

)
ui
−2 exp

(
− 1

2ui

)
dui

∝
N
∏
i=1

∫
u−3/2

i exp
(
− 1

2ui

)
exp

(
− 1

2 τi(x−Wz− µ)2
i ui

)
dui

∝
N
∏
i=1
L
{

u−3/2
i exp

(
− 1

2ui

)}(
1
2 τi(x−Wz− µ)2

i

)
(57)

where (x−Wz− µ)i is the i-th element of vector x−Wz− µ. Because

L−1

{√
2

2
exp

(
−
√

τi(x−Wz− µ)2
i

)}
(t) =

1
2
√

π
t−3/2 exp

(
− 1

2t

)
(58)

we have p(x|W, z,µ,τ) ∝
N
∏
i=1

exp
(
−|√τi(x−Wz− µ)i|

)
. Hence, Equation (56) holds.

For the aforementioned two probabilistic models of robust factor analysis, the VB inference was
proposed to approximate the posterior distributions [13]. In practice, the probability distribution of
the noise should be chosen based on the application. The probabilistic models of PCA are compared in
Table 2.

Table 2. Probabilistic models of Principal Component Analysis (PCA) with the factorization
x = Wz + µ+ ε.

Probabilistic
Model

Deterministic
Variables Random Variables Prior Distributions Solving

Strategy

Probabilistic
PCA [10] W,µ ε ∼ N (0, σ2Id),

z ∼ N (0, Ir).
- ML

EM

Bayesian
PCA [11] -

ε ∼ N (0, σ2Id),
z ∼ N (0, Ir),
w·i ∼ N (0, α−1

i Id),
µ ∼ N (0, β−1I).

p(α) =
r

∏
i=1

Gam(αi|a0, b0),

p(τ) = Gam(τ|c0, d0),
τ = σ2.

VB

Robust L1
PCA [12]

W,µ
(µ = 0)

εi ∼ N
(
0, (σ2/βi)Id

)
,

z ∼ N (0, Id).

βi ∼ IGam(1, 1/2),
p(ρ) = Gam(ρ|a, b),
ρ = 1/σ2.

VB

Probabilistic
factor analysis

[13]
-

ε ∼ N (0, σ2Id),
z ∼ N (0, Ir),
wij ∼ N (0, τ−1

i α−1
j ),

µi ∼ N (0, τ−1
i β−1).

τi ∼ Gam(a0, b0),
αj ∼ Gam(c0, d0),
β ∼ Gam(e0, f0).

VB

Bayesian robust
PCA I [13] -

εk ∼ N (0, diag
(
τ.−1 ∗ uk

−1)),
z ∼ N (0, Ir),
Wij ∼ N (0, τ−1

i α−1
j ),

µi ∼ N (0, τ−1
i β−1).

p(uk|v) = Gam(uk|v/2, v/2),
τi ∼ Gam(a0, b0),
αj ∼ Gam(c0, d0),
β ∼ Gam(e0, f0).

VB

Bayesian robust
PCA II [13] -

ε ∼ N (0, diag
(
τ.−1 ∗ u−1)),

z ∼ N (0, Ir),
wij ∼ N (0, τ−1

i α−1
j ),

µi ∼ N (0, τ−1
i β−1).

p(u) = IGam(u|1, 1/2),
τi ∼ Gam(a0, b0),
αj ∼ Gam(c0, d0),
β ∼ Gam(e0, f0).

VB

5. Probabilistic Models of Matrix Factorizations

Matrix factorizations are a type of methods to approximating the data matrix by the product of
two low-rank matrices. They can be regarded as a special case of PCA without considering the mean.
This section will discuss the existing probabilistic models of matrix factorizations.
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5.1. Matrix Factorizations

For given data matrix X, its low-rank factorization model is written as

X = WZ + E (59)

where W ∈ Rd×r, Z ∈ Rr×N , E is the noise matrix and r < d. We assume that Eij ∼ N (0, σ2) are
independent and identically distributed. We can get the optimal W and Z according to the maximum
likelihood estimation. More specifically, we need to solve the following minimization problem:

min
W,Z
‖X−WZ‖F. (60)

The closed-form solution to problem (60) can be obtained by the Singular Value Decomposition (SVD).
To enhance the robustness to outliers or large sparse noise, we now assume that Eij ∼ Lap(0, σ).

For the moment, we solve the following optimization problem:

min
W,Z
‖X−WZ‖1 (61)

where ‖ · ‖1 is the L1-norm of a matrix (i.e., the sum of the absolute value of all elements). This problem
is also called L1-norm PCA and the corresponding optimization methods were proposed in [3,4].
Srebro and Jaakkola considered the weighted low-rank approximations problems and provided an EM
algorithm [94].

5.2. Probabilistic Matrix Factorization

We still consider Gaussian noise corruptions, that is, Eij ∼ N (0, σ2). Furthermore, the zero-mean
spherical Gaussian priors are respectively imposed on each row of W and each column of Z:

p(W|σ2
W) =

d

∏
i=1
N (wi·|0, σ2

wIr), p(Z|σ2
Z) =

N

∏
j=1
N (z·j|0, σ2

z Ir). (62)

Probabilistic matrix factorization (PMF) [15] regards both σ2
w and σ2

z as two deterministic parameters.
The point estimations of W, Z can be obtained by maximizing the posterior distribution with the
following form:

p(W, Z|X, σ2, σ2
w, σ2

z ) ∝ p(W, Z, X|σ2, σ2
w, σ2

z )

∝ p(W|σ2
w)p(Z|σ2

z )p(X|W, Z, σ2).
(63)

If the priors are respectively placed on σ2
w and σ2

z , we can obtain the generalized model of
probabilistic matrix factorization [15]. In this case, the likelihood function is derived as

p(W, Z, σ2, σ2
w, σ2

z |X) ∝ p(W, Z, σ2, σ2
w, σ2

z , X)

∝ p(X|W, Z, σ2)p(W|σ2
w)p(Z|σ2

z )p(σ2
w)p(σ2

z ).
(64)

By maximizing the above posterior distribution, we can obtain the point estimations of parameters
{W, Z} and hyperparameters

{
σ2

w, σ2
z
}

. Furthermore, two derivatives of PMF are also presented, i.e.,
PMF with a adaptive prior and PMF with constraining user-specific feature vectors.

In [89], a fully-observed variational Bayesian matrix factorization, an extension of PMF, was
discussed. Meanwhile, it is shown that this new probabilistic matrix factorization can weaken the
decomposability assumption and obtain the exact global analytic solution for rectangular cases.
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5.3. Variational Bayesian Approach to Probabilistic Matrix Factorization

In PMF, Wik are independent and identically distributed and so are Zkj. Variational Bayesian
PMF [14] assumes the entries from different columns of W or ZT have different variances, that is,
Wik ∼ N (0, σ2

k ), Zkj ∼ N (0, ρ2
k), k = 1, 2, . . . , r. For given hyperparameters {σ2,σ2

W,ρ2
Z}, we get the

joint probability distribution:

p(X, W, Z|σ2,σ2
W,ρ2

Z) = p(X|W, Z, σ2)p(W|σ2
W)p(Z|ρ2

Z) (65)

where σ2
W = (σ2

1 , σ2
2 , . . . , σ2

r )
T and ρ2

Z = (ρ2
1, ρ2

2, . . . , ρ2
r )

T .
We assume that the trial joint distribution of W and Z is decomposable, that is, q(W, Z) =

q(W)q(Z). Using VB method, we can update alternatively q(W) and q(Z). The variances
{

σ2,σ2
W,ρ2

Z
}

can be determined by maximizing the following lower bound:

L(q(W, Z)) = Eq(W),q(Z)

[
ln p

(
X, W, Z|σ2,σ2

W,ρ2
Z

)
− ln q(W)q(Z)

]
. (66)

The experimental results in Netflix Prize competition show that the Variational Bayesian approach
has superiority over MAP and greedy residual fitting.

5.4. Bayesian Probabilistic Matrix Factorizations Using Markov Chain Monte Carlo

Variational Bayesian approach to PMF only discusses the case that Wik (or Zkj) are independent
and identically distributed and their means are zeros. However, Bayesian PMF [16] assumes that
wi· (or z·j) are independent and identically distributed and their mean vectors are not zero vectors.
Concretely speaking, we stipulate that

p(W|µW, ΛW) =
d

∏
i=1
N
(

wi·|µW, Λ−1
W

)
, p(Z|µZ, ΛZ) =

N

∏
j=1
N
(

z·j|µZ, Λ−1
Z

)
. (67)

Let ΘW = {µW, ΛW}, ΘZ = {µZ, ΛZ}. We further suppose the prior distributions of ΘW and ΘZ are
Gaussian–Wishart priors: p(ΘW|Θ0) = p(µW|ΛW)p(ΛW) = N

(
µW|µ0, (β0ΛW)−1

)
W(ΛW|W0, v0)

p(ΘZ|Θ0) = p(µZ|ΛZ)p(ΛZ) = N
(
µZ|µ0, (β0ΛZ)

−1
)
W(ΛZ|W0, v0)

(68)

where Θ0 = {µ0, v0, W0}, β0 is a hyper parameter.
We can initialize the parameters Θ0 as follows: µ0 = 0, v0 = d, W0 = Id. In theory,

the predictive probability distribution of X∗ij can be obtained by marginalizing over model parameters
and hyperparameters:

p(X∗ij|X, Θ0) =
∫ ∫ ∫ ∫

p(X∗ij, W, Z, ΘW, ΘZ|X, Θ0)dWdZdΘWdΘZ

=
∫ ∫ ∫ ∫

p(X∗ij|wi·, z·j)p(W, Z|X, ΘW, ΘZ)p(ΘW|Θ0)p(ΘZ|Θ0)dWdZdΘWdΘZ.
(69)

However, the above integral is analytically intractable due to the fact that it is very difficult to
determine the posterior distribution. Based on this, Gibbs sampling, one of the simplest Markov chain
Monte Carlo, was proposed to approximate the predictive distribution p(X∗ij|X, Θ0). It is noted that
MCMC methods for large-scale problems require especial care for efficient proposals and may be very
slow if the sample correlation is too long.
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5.5. Sparse Bayesian Matrix Completion

We consider the case that some elements of data matrix X are missing and the observed index
set is denoted by Ω. Matrix completion assumes that X is approximately low-rank and its goal is to
recover all missing elements from observed elements.

For noise matrix E, we assume that Eij ∼ N (0, β−1). In sparse Bayesian matrix completion [19],
the Gaussian distributions are imposed on two low-rank matrices, that is,

p(W|γ) =
r

∏
i=1
N
(

w·i|γ−1
i Id

)
, p(Z|γ) =

r

∏
i=1
N
(

zi·|γ−1
i Ir

)
. (70)

Moreover, the priors of γi are given by γi ∼ Gam(a, b) and the prior of β is assigned the
noninformative Jeffrey’s prior: p(β) ∝ β−1. It is obvious that

p(X|W, Z, β) = ∏
(i,j)∈Ω

N
(

Xij|wi·z·j, β−1
)

. (71)

Then the joint probability distribution is

p(X, W, Z,γ, β) = p(X|W, Z, β)p(W|γ)p(Z|γ)p(γ)p(β). (72)

Let q(W, Z,γ, β) be the approximated distribution of p(W, Z,γ, β). The approximated procedure can
be achieved by VB inference. It is demonstrated that the proposed method achieves a better prediction
error in recommendation systems.

5.6. Robust Bayesian Matrix Factorization

In previous probabilistic models of matrix factorizations, there is no relationship among the
variances of Wik, Zkj, Eij. Now, we reconsider the probability distributions of Wik, Zkj, Eij. The noise Eij
is chosen as the heteroscedastic Gaussian scale mixture distribution:

Eij ∼ N (0, (ταiβ j)
−1) (73)

and the probability distributions of wi· and z·j are given by:

p(wi·|αi) = N (wi·|0, (αiΛw)
−1), p(z·j|β j) = N (z·j|0, (β jΛz)

−1). (74)

We also impose Gamma distribution priors on αi and β j:

p(αi) = Gam(αi|a0/2, b0/2), p(β j) = Gam
(

β j|c0/2, d0/2
)

(75)

where {a0, b0, c0, d0} is a given set of hyper-parameters. To reduce this problem’s complexity, we restrict
ΛW and ΛZ to be diagonal matrices, that is,

Λ−1
W = diag

(
σ2

1 , . . . , σ2
r

)
, Λ−1

Z = diag
(

ρ2
1, . . . , ρ2

r

)
. (76)

Let θ = {τ, ΛW, ΛZ, a0, b0, c0, d0}. For the fixed parameters θ, the joint probability distribution is

p(X, W, Z,α,β|θ) = p(X|W, Z,α,β, θ)p(W|α)p(Z|β)p(α|θ)p(β|θ). (77)

We consider two types of approximated posteriors of p(W, Z,α,β|X, θ), one is

q(W, Z,α,β) = q(W)q(Z)q(α)q(β) (78)
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and another has the form
q(W, Z,α,β) = q(W,α)q(Z,β). (79)

For the above two cases, we can obtain respectively the trial probability distribution q(W, Z,α,β) by
VB method [17].

In addition, a structured variational approximation was also proposed in [17]. We assume that
the variational posteriors of W and Z obey Gaussian distributions:

q(W|α) =
d

∏
i=1
N (wi·|wi·, αiSi), q(Z|β) =

N

∏
j=1
N (z·j|z·j, β jRj). (80)

The free energy function is defined by the negative lower bound:

− L(q) = −
∫ ∫ ∫ ∫

q(W, Z,α,β) ln
p(X, W, Z,α,β|θ)

q(W, Z,α,β)
dWdZdαdβ (81)

By directly minimizing the free energy function with respect to wi·, Si, z·j, Rj, we can obtain the optimal
wi·, Si, z·j, Rj. The variational posteriors of scale variables α and β can also be recognized as the
generalized inverse Gaussians.

The parameters θ can be estimated by type II maximum likelihood or empirical Bayes. In other
words, we update the parameters by minimizing directly the negative lower bound. Robust Bayesian
matrix factorization shows that the heavy-tailed distributions are useful to incorporate robustness
information to the probabilistic models.

5.7. Probabilistic Robust Matrix Factorization

The model of probabilistic robust matrix factorization [18] considers the sparse noise corruptions.
In this model, the Gaussian distributions are also imposed on Wik and Zkj:

p(Wik|λW) = N (Wik|0, λ−1
W ), p(Zkj|λZ) = N (Zkj|0, λ−1

Z ) (82)

and the Laplace noise is placed on Eij, that is, Eij ∼ Lap(0, λ).
From Bayes’ rule, we have

p(W, Z|X, λ, λW, λZ) ∝ p(X|W, Z, λ)p(W|λW)p(Z|λZ). (83)

We construct the hierarchical model for the Laplace distribution:

p(Xij|W, Z, T) = N
(
Xij|wi·z·j, Tij

)
, p(Tij|λ) = Exp

(
Tij|λ/2

)
. (84)

We regard T as a latent variable matrix and denote θ = {W, Z}, θ̂ =
{

Ŵ, Ẑ
}

, where θ̂ is the current
estimation of θ. An EM algorithm was proposed to inferring W and Z [18]. To this end, we construct
the so-called Q-function:

Q(Z|θ̂) = ET
[
log p(Z|Ŵ, X, T)|X, θ̂

]
. (85)

The posterior of complete-data is

p(Z|Ŵ, X, T) = p(Z,X|Ŵ,T)
p(X|Ŵ,T)

∝ p(Z, X|Ŵ, T)

∝ p(X|Z, Ŵ, T)p(Z)
(86)
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Hence, its log is

log p(Z|Ŵ, X, T) = −1
2

d

∑
i=1

N

∑
j=1

T−1
ij (Xij − ŵi·z·j)

2 − λZ

2 ∑
j

zT
·jz·j + const (87)

where “const” is a term independent of Z.
To compute the expectations of T, we derive the conditional probability distribution of T

as follows:

p(T|X, Ŵ, Ẑ) =
p(T, X|Ŵ, Ẑ)

p(X|Ŵ, Ẑ)
∝ p(T, X|Ŵ, Ẑ) ∝ p(T)p(X|T, Ŵ, Ẑ). (88)

Hence, T−1
ij follows an inverse Gaussian distribution and its posterior expectation is given by

E
[

T−1
ij |X, Ŵ, Ẑ

]
=

√
λ

|Xij − (ŴẐ)ij|
. (89)

Thus, we get Q(Z|θ̂).
To obtain the update of Z, we maximize the function Q(Z|θ̂) with respect to z·j. By setting

∂
∂z·j

Q(Z|θ̂) = 0, we can get the closed-form solution of z·j. The update rule for W is similar to that of Z.
The proposed probabilistic model is robust again outliers and missing data and equivalent to robust
PCA under mild conditions [18].

5.8. Bayesian Robust Matrix Factorization

Another robust probabilistic model of matrix factorizations is Bayesian robust matrix
factorization [20]. Gaussian distributions are still imposed on W and Z, that is,

wi· ∼ N (µW, Λ−1
W ), z·j ∼ N (µZ, Λ−1

Z ), i = 1, 2, . . . , d, j = 1, 2, . . . , N. (90)

We further assume both (µW, ΛW) and (µZ, ΛZ) follow Gaussian–Wishart distributions:

ΛW ∼ W(W0, v0),µW ∼ N (µ0, (β0ΛW)−1), ΛZ ∼ W(W0, v0),µZ ∼ N (µ0, (β0ΛZ)
−1) (91)

where W0, v0,µ0, β0 are the hyperparameters.
To enhance the robustness, we suppose the noise is the mixture of a Laplace distribution and a

GIG distribution. Concretely speaking, the noise term Eij ∼ Lap(0, ηij) and the prior of ηij is given by
GIG(p, a, b), where p, a, b are three hyperparameters. Hence, Eij ∼ Lap(0, ηij) can be represented by
two steps: Eij ∼ N (0, Tij), Tij ∼ Exp(ηij/2). According to the above probability distributions, we can
generate ΛW,µW, W,µZ, ΛZ, Z,η , T and X in turn.

Gibbs sampling is proposed to infer the posterior distributions. For this purpose, we need to
derive the posterior distributions of all random variables. Due to the fact that the derivation process
of {µZ, ΛZ, Z} is similar to that of {µW, ΛW, W}, the following only considers approximating the
posterior distributions of (µW, ΛW, W) for brevity. Firstly, the posterior distribution of (µW, ΛW) is a
Gaussian–Wishart distribution because that

p(µW, ΛW|W, W0,µ0, v0, β0) ∝ p(µW, ΛW, W, W0,µ0, v0, β0)

∝
d

∏
i=1

p(wi.|µW, ΛW) p(ΛW|W0, v0)p(µW|µ0, ΛW, β0)
(92)
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Then, we compute the conditional probability distribution of wi.:

p(wi·|X, Z,µW, ΛW, T) ∝ p(wi·, X, Z,µW, ΛW, T)

∝ p(xi·|wi·z·j, ti·)p(wi·|µW, ΛW)

∝
N
∏
j=1
N (Xij|wi·z·j, Tij)N (wi·|µW, ΛW).

(93)

According to the above Equation, p(wi·|X, Z,µW, ΛW, T) is also Gaussian. Next, for given{
Xij, wi·, z·j, ηij

}
, the probability distribution of Tij is derived as below:

p(Tij|Xij, wi·, z·j, ηij) ∝ p(Tij, Xij, wi·, z·j, ηij)

∝ p(Xij|wi·, z·j, tij)p(Tij|ηij).
(94)

So, Tij|Xij, wi·, z·j, ηij ∼ GIG(1/2, ηij, r2
ij), where rij = Xij −wi·z·j.

Finally, the posterior of ηij satisfies that

p(ηij|Tij, p, a, b) ∝ p(ηij, Tij, p, a, b) ∝ p(Tij|ηij)p(ηij|p, a, b) (95)

Hence, it holds ηij|Tij, p, a, b ∼ GIG(p+ 1, Tij + a, b). Bayesian robust matrix factorization incorporates
spatial or temporal proximity in computer vision applications and batch algorithms are proposed to
infer parameters.

5.9. Bayesian Model for L1-Norm Low-Rank Matrix Factorizations

For low-rank matrix factorizations, L1-norm minimization is more robust than L2-norm
minimization in the presence of outliers or non-Gaussian noises. Based on this, we assume that the
noise Eij follows the Laplace distribution: Eij ∼ Lap(0,

√
λ/2). Since the Laplace noise is inconvenient

for Bayesian inference, a hierarchical Bayesian model was formulated in [21]. Concretely speaking,
a two-level hierarchical prior is imposed on the Laplace prior:

Eij ∼ N (0, Tij), Tij ∼ Exp(λ). (96)

The generative models of W and Z are constructed as follows:

wi· ∼ N (0, τWIr), z·j ∼ N (0, τZIr), i = 1, 2, . . . , d, j = 1, 2, . . . , N. (97)

In addition, Gamma priors are placed on the precision parameters of the above Gaussian distributions:

τW ∼ Gam(a0, b0) , τZ ∼ Gam(c0, d0). (98)

The trial posterior distribution for {W, Z, τW, τZ, T} is specified as:

q(W, Z, τW, τZ, T) =
d

∏
i=1

q(wi·)
N

∏
j=1

q(z·j)q(τW)q(τZ). (99)

And the joint probability distribution is expressed as

p(W, Z, τW, τZ, T, X) = p(X|W, Z, T)p(W|τW)p(Z|τZ)p(τW)p(τZ)p(T). (100)

VB inference was adopted to approximate the full posterior distribution [21]. Furthermore,
varying precision parameters are also considered for different rows of W or different columns of Z.
All parameters are automatically tuned to adapt to the data, and the proposed method is applied in
computer vision problems to validate its efficiency and robustness.
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In Table 3, we list all probabilistic models of matrix factorizations discussed in this section, and
compare their probability distributions, priors and solving strategy.

Table 3. Probabilistic models of matrix factorizations with X = WZ + E.

Probabilistic Model Random Variables Prior Distributions Solving Strategy

PMF [15]

Eij ∼ N (0, σ2),

P(W|σ2
W) =

r
∏
i=1
N (w·i|0, σ2

WId),

P(Z|σ2
Z) =

N
∏
j=1
N (z·j|0, σ2

ZIr).

- MAP

Variational Bayesian
PMF [14]

Eij ∼ N (0, σ2),
Wik ∼ N (0, σ2

k ),
Zkj ∼ N (0, ρ2

k).
- VB

Bayesian PMF [16]

Eij ∼ N (0, β−1),

p(W|µW, ΛW) =
d
∏
i=1
N
(

wi·|µW, Λ−1
W

)
,

p(Z|µZ, ΛZ) =
N
∏
j=1
N
(

z·j|µZ, Λ−1
Z

)
.

p(ΘW|Θ0) =

N
(
µW|µ0, (β0ΛW)−1

)
W(ΛW|W0, v0),

p(ΘZ|Θ0) =

N
(
µZ|µ0, (β0ΛZ)

−1
)
W(ΛZ|W0, v0).

Gibbs sampling

Sparse Bayesian matrix
completion [19]

Eij ∼ N (0, β−1),

p(W|γ) =
r

∏
i=1
N
(

w·i|γ−1
i Id

)
,

p(Z|γ) =
r

∏
i=1
N
(

zi·|γ−1
i Ir

)
.

γi ∼ Gam(a, b),
p(β) ∝ β−1.

VB

Robust Bayesian matrix
factorization [17]

Eij ∼ N (0, (ταiβ j)
−1),

p(wi·|αi) = N (wi·|0, (αiΛw)−1),
p(z·j|β j) = N (z·j|0, (β jΛz)

−1).

p(αi) = Gam(αi|a0/2, b0/2),
p(β j) = Gam

(
β j|c0/2, d0/2

)
.

VB, type II ML,
empirical Bayes

Probabilistic robust
matrix factorization [18]

Eij ∼ N
(

Xij|0, Tij

)
,

p(Wik|λW) = N (Wik|0, λ−1
W ),

p(Zkj|λZ) = N (Zkj|0, λ−1
Z ).

Tij ∼ Exp(λ/2). EM

Bayesian robust matrix
factorization [20]

Eij ∼ N
(

0, Tij

)
,

wi· ∼ N (µW, Λ−1
W ),

z·j ∼ N (µZ, Λ−1
Z ).

Tij ∼ Exp(ηij/2),
ΛW ∼ W(W0, v0),
µW ∼ N (µ0, (β0ΛW)−1),
ΛZ ∼ W(W0, v0),
µZ ∼ N (µ0, (β0ΛZ)

−1).

Gibbs sampling

Bayesian model for
L1-norm low-rank

matrix factorizations [21]

Eij ∼ N (0, Tij),
wi· ∼ N (0, τWIr),
z·j ∼ N (0, τZIr).

Tij ∼ Exp(λ),
τW ∼ Gam(a0, b0),
τZ ∼ Gam(c0, d0).

VB

6. Probabilistic Models of Robust PCA

Compared with traditional PCA, robust PCA is more robust to outliers or large sparse noise.
Stable robust PCA [95], a stable version of robust PCA, decomposes the data matrix into the sum of a
low-rank matrix, a sparse noise matrix and a dense noise matrix. The low-rank matrix obtained by
solving a relaxed principal component pursuit is simultaneously stable to small noise and robust to
gross sparse errors. This section will review probabilistic models of robust PCA.

6.1. Bayesian Robust PCA

In [22], a stable robust PCA is modeled as:

X = W(DΛ)Z + B. ∗ S + E (101)

where D = diag(d11, d22, . . . , drr), Λ = diag(λ11, λ22, . . . , λrr), B ∈ {0, 1}d×N . The three terms
W(DΛ)Z, B. ∗ S and E are the low-rank, the sparse noise and the dense noise terms respectively.
If we do not consider the sparse noise term B. ∗ S, then Equation (101) is equivalent to Equation (59).
If all columns of B. ∗ S are same, then the stable robust PCA becomes to be the PCA model (31).
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The following considers the probability distributions of all matrices in the right of Equation (101).
We assume that w·i ∼ N (0, Id/d), dii ∼ Bern(pi), λ ii ∼ N (0, τ−1), z·j ∼ N (0, Ir/r), b·j ∼

r
∏

k=1
Bern(πk), s·j ∼ N (0, v−1Id), Eij ∼ N (0, γ−1), i = 1, 2, . . . , r, j = 1, 2, . . . , N. The priors of pi,

τ, πk, v and γ are given by pi ∼ Beta(α0, β0), τ ∼ Gam(a0, b0), πk ∼ Beta(α1, β1), v ∼ Gam(c0, d0)

and γ ∼ Gam(e0, f0) respectively.
Two methods were proposed in [22], that is, Gibbs sampling and VB inference. For the second

method, the joint probability distribution is

p(X, W, Z, D, Λ, B, S, p, τ,π, v, γ)

= p(X|W, Z, D, Λ, B, S, γ)p(W)p(Z)p(τ)p(Λ|τ)p(D|p)p(p)

p(π)p(B|π)p(v)p(S|v)p(γ).

(102)

VB inference is employed to approximating the posterior distribution
p(W, Z, D, Λ, B, S, p, τ,π, v, γ|X). Bayesian robust PCA is robust to different noise levels without
changing model hyperparameters and exploits additional structure of the matrix in video applications.

6.2. Variational Bayes Approach to Robust PCA

In Equation (101), if both D and Λ are set to be identical matrices, then we have another form of
stable robust PCA:

X = WZ + B. ∗ S + E. (103)

Essentially, both Equations (101) and (103) are equivalent. Formally, Equation (103) can also be
transformed into another formula:

X = WZ + B. ∗ S + (1− B). ∗ E. (104)

We assume that w·i ∼ N (µ0, σ2
0 Id), zj· ∼ N (v0, σ2

0 IN), bi j ∼ Bern(b0). Let the means of Sij and
Eij be zeros and their precision be τS and τE respectively. The priors of τS and τE are given by

τS ∼ Gam(αS, βS), τE ∼ Gam(αE, βE). (105)

A naïve VB approach was proposed in [23]. The trial distribution is stipulated as

q(W, Z, B, τS, τE) = q(W)q(Z)q(B)q(τS)q(τE). (106)

The likelihood function is constructed as

L = p(X|W, Z, B, τS, τE) = ∏
i,j
N (Xij −wi·z·j|τS)

BijN (Xij −wi·z·j|τE)
1−Bij . (107)

The prior distribution is represented by

π(W, Z, B, τS, τE) = p(W|µ0, σ2
0 Id)p(Z|v0, σ2

0 IN)p(B)p(τS)p(τE). (108)

We first construct a function: G(q) = Eq[log L]− DKL(q||π). To simplify this problem, we let

q(wi·) ∼ N (µwi, Σwi), q(z·i) ∼ N (µzi, Σzi). (109)

To find the updates for W, Z, we can maximize the function G with respect to µwi, Σwi,µzi, Σzi
respectively. The main advantage of the proposed approach is that it can incorporate additional
prior information and cope with missing data.
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6.3. Sparse Bayesian Robust PCA

In Equation (101), we replace B. ∗S by S for the sake of simplicity. Thus, we have a model of sparse
Bayesian robust PCA [19]. Assume that w·k ∼ N (0, γ−1

k Id), zk· ∼ N (0, γ−1
k IN), Sij ∼ N (0, α−1

ij ) and

Eij ∼ N (0, β−1), where k = 1, 2, . . . , r, i = 1, 2, . . . , d, j = 1, 2, . . . , N. The priors of γk are given by
γk ∼ Gam(a, b). What’s more, we assign Jeffrey’s priors to αij and β:

p(β) = β−1, p(αij) = α−1
ij , i = 1, 2, . . . , d, j = 1, 2, . . . , N. (110)

The joint distribution is expressed as

p(X, W, Z, S,γ,α, β) = p(X|W, Z, S, β)p(W|γ)p(Z|γ)p(S|α)p(γ)p(α)p(β). (111)

VB inference was used to approximate the posterior distributions of all variables matrices [19].
Experimental results in video background/foreground separation show that the proposed method is
more effective than MAP and Gibbs sampling.

7. Probabilistic Models of Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) decomposes a non-negative data matrix into the product
of two non-negative low-rank matrices. Mathematically, we can formulate NMF as follows:

X = WZ + E (112)

where Xij, Wik, Zkj are non-negative. Multiplicative algorithms [96] are often used to obtain the point
estimations of both W and Z. This section will introduce probabilistic models of NMF.

7.1. Probabilistic Non-Negative Matrix Factorization

Equation (112) can be rewritten as X ≈ WZ = ∑r
k=1 w·kzk·. Let θk = {w·k, zk·} and θ =

{θ1, θ2, . . . , θr}. Probabilistic non-negative matrix factorization [24] introduces a generative model:

Xij =
r

∑
k=1

Ck,ij, Ck,ij ∼ p(Ck,ij|θk). (113)

The probability distributions of Ck,ij can be assumed to follow Gaussian or Poisson distributions
because they are closed under summation. This assumption means that we can get easily the probability
distributions of Xij. Four algorithms were proposed in [24], that is, multiplicative, EM, Gibbs sampling
and VB algorithms.

7.2. Bayesian Inference for Nonnegative Matrix Factorization

For arbitrary k ∈ {1, 2, . . . , r}, Bayesian non-negative matrix factorization [25] introduces variables
Sk =

{
Sikj|i = 1, 2, . . . , d, j = 1, 2, . . . , N

}
as latent sources. The hierarchical model of Xij is given by

Sikj ∼ Poiss(WikZkj), Xij =
r

∑
k=1

Sikj. (114)

In view of the fact that a Gamma distribution is the conjugate prior to Poisson distribution, the
hierarchical priors of Wik and Zkj are proposed as follows

Wik ∼ Gam(aW
ik , bW

ik ), Zkj ∼ Gam(aZ
ik, bZ

ik). (115)

Let Θ =
{

aW
ik , bW

ik , aZ
ik, bZ

ik
}

and S = {S1, S2, . . . , Sr}. For given Θ and X, the posterior distribution
is expressed as p(W, Z, S|X, Θ). We assume the trial distribution of p(W, Z, S|X, Θ) is factorable:
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q(W, Z, S) = q(W)q(Z)q(S). Both VB inference and Gibbs sampling were proposed to infer the
probability distributions of all variables [25].

The above Bayesian nonnegative matrix factorization is not a matrix factorization approach
to latent Dirichlet allocation. To this end, another Bayesian extension of the nonnegative matrix
factorization algorithm was proposed in [27]. What’s more, Paisley et al. also provided a correlated
nonnegative matrix factorization based on the correlated topic model [27]. The stochastic variational
inference algorithms were presented to solve the proposed two models.

7.3. Bayesian Nonparametric Matrix Factorization

Gamma process nonnegative matrix factorization (GaP-NMF) was developed in [26].
This Bayesian nonparametric matrix factorization considers the case that the number of sources
r is unknown. Let non-negative hidden variable θk be the overall gain of the k-th source and L a large
number of sources. We assume that

Wik ∼ Gam(a, a), Zkj ∼ Gam(b, b), Xij ∼ Exp(
r

∑
k=1

θkWikZkj), θk ∼ Gam(α/L, αc). (116)

The posterior distribution is expressed as p(W, Z,θ|X, a, b, α, c) for given hyperparameters a, b, α, c.
The trial distribution of θ, W, Z is assumed to be factorable, that is, q(W, Z,θ) = q(W)q(Z)q(θ).
The flexible generalized inverse-Gaussian distributions are imposed on Wik, Zkj and θk respectively,

q(Wik) ∼ GIG(γW
ik , ρW

ik , τW
ik ), q(Zkj) ∼ GIG(γZ

kj, ρZ
kj, τZ

kj), q(θk) ∼ GIG(γθ
k , ρθk , τθ

k ). (117)

The lower bound of the marginal likelihood is computed as

log p(X, a, b, α, c) ≥ Eq[log p(X|W, Z,θ)]

+Eq[log p(W|a)]−Eq[log q(W)]

+Eq[log p(Z|b)]−Eq[log q(Z)]

+Eq[log p(θ|α, c)]−Eq[log q(θ)]

(118)

By maximizing the lower bound of log p(X, a, b, α, c), we can yield an approximation distribution
of q(W, Z,θ). GaP-NMF is applied in recorded music and the number of latent sources is
discovered automatically.

7.4. Beta-Gamma Non-Negative Matrix Factorization

For the moment, we do not factorize the data matrix X into the product of two low-rank matrices.
Different from previous probabilistic models of NMF, we assume that Xij is generated from a Beta
distribution: Beta(Aij, Bij). For two matrices A and B, we jointly factorize them as

A ≈ CH, B ≈ DH (119)

where C ∈ Rd×r
+ , D ∈ Rd×r

+ , H ∈ Rr×N
+ .

In Beta-Gamma non-negative matrix factorization [28], the generative model is given by

Xij ∼ Beta(
r
∑

k=1
Cik Hkj,

r
∑

k=1
Dik Hkj), Cik ∼ Gam(µ0, α0), Dik ∼ Gam(υ0, β0), Hkj ∼ Gam(ρ0, ς0) (120)

Variational inference framework was adopted and a new lower-bound was proposed to
approximate the objective function to derive an analytically tractable approximate solution of the
posterior distribution. Beta-Gamma non-negative matrix factorization is used in source separation,
collaborative filtering and cancer epigenomics analysis.
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8. Other Probabilistic Models of Low-Rank Matrix/Tensor Factorizations

Besides the probabilistic models discussed in foregoing sections, there are many other types
of probabilistic low-rank matrix factorization models. A successful application of probabilistic
low-rank matrix factorization is the collaborative filtering in recommendation systems. In collaborative
filtering, there are several other Poisson models in which the observations are usually modeled with
a Poisson distribution, and these models mainly include [97–105]. As a matter of fact, the Poisson
factorization roots in the nonnegative matrix factorization and takes advantage of the sparse essence
of user behavior data and scales [103].For some probabilistic models with respect to collaborative
filtering, the Poisson distribution is changed into other probability distributions and this change
deals with logistic function [106–108], Heaviside step function [107,109], Gaussian cumulative density
function [110] and so on. In addition, side information on the a low-dimensional latent presentations
is integrated into probabilistic low-rank matrix factorization models [111–113], and the case that the
data is missing not at random is taken into consideration [109,114,115].

It is worthy to pay attention to other applications of probabilistic low-rank matrix factorization
models. For instance, [116] developed a probabilistic model for low-rank subspace clustering. In [88],
a sparse additive matrix factorization was proposed by a Bayesian regularization effect and the
corresponding model was applied into a foreground/background video separation problem.

Recently, probabilistic low-rank matrix factorizations have been extended into the case of tensor
decompositions (factorizations). Tucker decomposition and CP decomposition are two popular
tensor decomposition approaches. The probabilistic Tucker decomposition models mainly include
probabilistic Tucker decomposition [34], exponential family tensor factorization [35] and InfTucker
model [36]. Probabilistic Tucker decomposition was closely related to probabilistic PCA. In [35],
an integration method was proposed to model heterogeneously attributed data tensors. InfTucker,
a tensor-variate latent nonparametric Bayesian model, conducted Tucker decomposition in an infinite
feature space.

More probabilistic models of tensor factorizations focus on CP tensor decomposition model.
For example, Ermis and Cemgil investigated variational inference for probabilistic latent tensor
factorization [37]. Based on hierarchical dirichlet process, a Bayesian probabilistic model for
unsupervised tensor factorization was proposed [38]. In [39], a novel probabilistic tensor factorization
was proposed by extending probabilistic matrix factorization. A probabilistic latent tensor factorization
was proposed in [40] to address the task of link pattern prediction. Based on the Polya-Gamma
augmentation strategy and online expectation maximization algorithm, [41] proposed a scalable
probabilistic tensor factorization framework. As the generalization of Poisson matrix factorization,
Poisson tensor factorization was presented in [42]. In [43], a Bayesian tensor factorization models
was proposed to infer the latent group structures from dynamic pairwise interaction patterns. In [44],
a Bayesian non-negative tensor factorization model was presented for count-valued tensor data
and scalable inference algorithms were developed. A scalable Bayesian framework for low-rank
CP decomposition was presented and it can analyses both continuous and binary datasets [45].
A zero-truncated Poisson tensor factorization for binary tensors was proposed in [46]. A Bayesian
robust tensor factorization [47] was proposed and it is the extension of probabilistic stable robust PCA.
And in [48], the CP factorization was formulated by a hierarchical probabilistic model.

9. Conclusions and Future Work

In this paper, we have made a survey on probabilistic models of low-rank matrix factorizations and
the related works. To classify the main probabilistic models, we divide low-rank matrix factorizations
into several groups such as PCA, matrix factorizations, robust PCA, non-negative matrix factorization
and so on. For each category, we list representative probabilistic models, describe the probability
distributions of all random matrices or latent variables, present the corresponding inference methods
and compare their similarity and difference. Besides, we further provide an overview of probabilistic
models of low-rank tensor factorizations and discuss other probabilistic matrix factorizations models.



Entropy 2017, 19, 424 28 of 33

Although probabilistic low-rank matrix/tensor factorizations have made some progresses, we still
face some challenges in theories and applications. Future research may concern the following aspects:

• Scalable algorithms to infer the probability distributions and parameters. Although both
Gibbs sampling and variational Bayesian inference have their own advantages, they need
large computation cost for real large-scale problems. A promising future direction is to design
scalable algorithms.

• Constructing new probabilistic models of low-rank matrix factorizations. It is necessary to develop
other probabilistic models according to the actual situation. For example, we can consider different
types of sparse noise and different probability distributions (including the prior distributions) of
low-rank components or latent variables.

• Probabilistic models of non-negative tensor factorizations. There is not much research on this
type of probabilistic models. Compared with probabilistic models of tensor factorizations,
the probabilistic non-negative tensor factorizations models are more complex and difficult in
inferring the posterior distributions.

• Probabilistic TT format. In contrast to both CP and Tucker decompositions, the TT format provides
stable representations and is formally free from the curse of dimensionality. Hence, probabilistic
model of the TT format would be an interesting research issue.
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