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Abstract: A spatially explicit map of aboveground carbon stored in Mexico’s forests was 

generated from empirical modeling on forest inventory and spaceborne optical and radar 

data. Between 2004 and 2007, the Mexican National Forestry Commission (CONAFOR) 

established a network of ~26,000 permanent inventory plots in the frame of their national 

inventory program, the Inventario Nacional Forestal y de Suelos (INFyS). INFyS data 

served as model response for spatially extending the field-based estimates of carbon stored 

in the aboveground live dry biomass to a wall-to-wall map, with 30 × 30 m2 pixel posting 

using canopy density estimates derived from Landsat, L-Band radar data from ALOS 

PALSAR, as well as elevation information derived from the Shuttle Radar Topography 

Mission (SRTM) data set. Validation against an independent set of INFyS plots resulted in a 

coefficient of determination (R2) of 0.5 with a root mean square error (RMSE) of 14 t·C/ha  

in the case of flat terrain. The validation for different forest types showed a consistently low 

estimation bias (<3 t·C/ha) and R2s in the range of 0.5 except for mangroves (R2 = 0.2). Lower 

accuracies were achieved for forests located on steep slopes (>15°) with an R2 of 0.34. A 

comparison of the average carbon stocks computed from: (a) the map; and (b) statistical 

estimates from INFyS, at the scale of ~650 km2 large hexagons (R2 of 0.78, RMSE of 5 t·C/ha) 

and Mexican states (R2 of 0.98, RMSE of 1.4 t·C/ha), showed strong agreement.  
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1. Introduction 

1.1. Spatially Explicit Mapping of Forest Aboveground Biomass and Carbon Stocks 

Driven by the need to reduce uncertainties in the global carbon cycle, the Global Climate Observing 

System (GCOS) recognizes aboveground biomass and associated carbon stocks of the world’s forests 

as an Essential Climate Variable (ECV). Furthermore, international policy efforts in curbing emissions 

from deforestation and forest degradation require accurate estimates of carbon fluxes in vegetation.  

A field based forest inventory program is generally considered appropriate (assuming a statistically 

representative sampling design) for accurately estimating regional means of forest aboveground 

biomass and changes thereof over time across large areas (e.g., country, province, or state). However, 

even in countries with established national forest inventories (NFI), finer scale and spatially explicit 

quantifications of forest resources are increasingly desired by land managers, policy makers and 

scientists. Spatially explicit maps of aboveground biomass and carbon stocks are valuable in support of 

biodiversity conservation activities, NFI sampling simulations, planning of airborne remote sensing 

(e.g., LiDAR) campaigns to complement field inventories, or UN-REDD+ (Reducing Emissions from 

Deforestation and Forest Degradation) related activities [1–3]. 

Significant progress has been made in recent years regarding the large-area application of 

spaceborne remote sensing for the mapping of forest biophysical attributes, which manifested in the 

release of a series of regional- to global-scale maps of canopy cover, canopy height, growing stock 

volume and aboveground biomass [4–20]. The progress is founded on a number of factors, including 

recognition by space agencies and data providers of the importance of providing remote sensing 

datasets to the applications community at low or no cost (e.g., the Landsat archive), consistent global 

data acquisition strategies, ever increasing computational power as well as the maturity of processing 

routines that allow for the operational calibration and geocoding/ortho-rectification of large remotely 

sensed datasets. 

Progress notwithstanding, there has yet to be a spaceborne mission designed specifically with the 

objective of mapping forest biophysical attributes across large areas. Most large-scale mapping efforts 

utilize the passive optical data acquired by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) aboard the Aqua and Terra satellites, which have imaged the entire globe, approximately 

every two days at resolutions of 250 to 500 m, dating as far back as 2000 [4,7–10,13,14]. At regional 

scales, Landsat data with higher (30 m) spatial resolution have been used [5,17,21,22]. Mapping efforts 

utilizing passive optical imagery have relied on the fact that foliar properties, canopy gap structure and 

associated shadowing effects, etc., correlate with biophysical attributes such as aboveground biomass.  

Because of its capability to penetrate into vegetation canopies, Synthetic Aperture Radar (SAR) 

measurements more directly reflect the forests three-dimensional structure, in particular at long radar 

wavelengths such as P-band (~70 cm wavelength) since the penetration depth of the signal into the 

forest canopy increases with the wavelength. In the context of the retrieval of forest biophysical 
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attributes, however, backscatter data acquired by past spaceborne SAR missions, operating at 

wavelengths between 3 cm (X-band) and 23 cm (L-band), have shown limitations because of signal 

saturation of the backscatter intensity over forested terrain at rather low forest densities and the 

sensitivity of the measurements to environmental factors such as soil and canopy moisture variations. 

The observed correlation with forest biophysical attributes and saturation levels differed significantly 

across different forest types and environmental imaging conditions, even for a given wavelength.  

In the case of L-band, the reported saturation levels with respect to aboveground biomass retrieval 

varied between 40 and 180 t/ha [19,23–31]. A spaceborne P-band SAR, which would be less affected 

by saturation at higher biomass levels, is planned for launch in the coming years in the frame of the 

Earth Explorer Program of the European Space Agency (ESA) [32]. Advanced interferometric radar 

analysis techniques such as polarimetric and interferometric radar (PolInSAR) or radar tomography [33,34] 

have also been shown to have great potential for forest mapping applications. These interferometric 

techniques allow for a characterization of the vertical forest structure and thus a more immediate 

estimation of forest biophysical attributes. However, the potential to implement such experimental 

techniques across large areas depends on suitable configurations of future spaceborne SAR missions.  

In response to the known limitations associated with using any single sensor class, i.e., active or 

passive, multi-sensor data fusion has been utilized successfully to exploit the relative strengths of each 

of the currently available spaceborne optical and radar datasets with their complementary information 

content where forest horizontal and vertical structure is concerned. The benefit of fusing radar and 

optical datasets for the mapping of forest biophysical attributes has been demonstrated in [11,35–40].  
1.2. Mapping Forest Aboveground Carbon Density across Mexico 

Mexico has 64.8 Million hectares of forestland spanning approximately one third of the country’s 

land area [41]. The National Forestry Commission (CONAFOR) of Mexico established an extensive 

nationwide plot network [42], the Inventario Nacional Forestal y de Suelos (INFyS), to monitor the 

nation’s forest estate, and to support the conservation of biodiversity, which in Mexico includes 

roughly 12% of the global total [43]. As part of a USAID-funded Mexico-REDD+ project, which aims 

to support Mexico in developing a REDD+ Measurement, Reporting and Verification (MRV) system, 

the potential to scale up the INFyS estimates of aboveground biomass to a wall-to-wall map  

through the fusion of medium resolution (30 m) spaceborne optical and radar data was  

investigated, extending previous work on the National Biomass and Carbon Database (NBCD) for the 

United States [11,36,37,44,45]. A one-to-one transfer of the NBCD approach to Mexico was not 

feasible, primarily because of the lack of consistent wall-to-wall information on bare earth topography 

required to estimate forest height from the SRTM data.  

The approach used in this study relies on L-band SAR data from ALOS PALSAR, Landsat based 

estimates of canopy density [46], land use maps [47], and geophysical gradient data from SRTM. 

ALOS PALSAR acquired wall-to-wall coverage of Mexico in the high-resolution Fine-Beam  

Dual-Polarization (FBD) mode (HH and HV polarizations) between the fall of 2006 (operational 

mission start) and the spring of 2011 (mission end). While saturation remains a limitation for mapping 

efforts based on L-band radar, the particular circumstances in Mexico suggested that ALOS PALSAR 

data should be well suited for estimating the aboveground biomass across most of Mexico’s forest 
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regions as the majority of forest types in Mexico are characterized by biomass levels well below 

100 t/ha [48].  
This paper reports on the results of a national-scale mapping effort in which the Mexican NFI is 

extended to a wall-to-wall map of aboveground carbon density using spaceborne radar and optical 

remote sensing datasets. The objective of the paper is: (i) to demonstrate the potential of the fusion of 

contemporary, globally available spaceborne datasets for mapping aboveground biomass and carbon 

stocks at medium resolution across diverse forest ecosystems in Mexico; and (ii) to provide potential 

users of the publicly available data set guidance on useful applications at appropriate scale. Section 2 

describes the pre-processing of these datasets as well as their respective roles in the retrieval approach. 

The results of the modeling, map generation and accuracy assessment at different spatial scales are 

presented and discussed in Sections 3 and 4. 
2. Data and Methods 

2.1. National Forest Inventory of Mexico 

Between 2004 and 2007, a nationwide network of ca. 26,000 permanent sample plots was 

established across Mexico in the frame of the national forest inventory (INFyS) [42]. The plot design 

generally followed that implemented by the United States Forest Service Forest Inventory and 

Analysis (FIA) program [49]. Each circular INFyS plot represents an area of 1 ha (56.42 m radius) and 

is comprised of four sub-plots each with a diameter of 22.56 m. Within each sub-plot, forest 

biophysical attributes such as diameter at breast height (DBH), stem density and tree height have been 

recorded. The sampling design follows a rectangular grid with the distance between plots varying  

from 5 km in temperate and tropical regions to 20 km in arid regions.  

The INFyS database underwent an intensive quality control based on the protocol for estimation of 

carbon stocks in forest biomass in Mexico [50]. All plots located in settlements, croplands, scrublands 

or on bare-soil were discarded. Records for dead trees as well as trees with a DBH of less than 7.5 cm 

were also discarded from the database. To estimate the aboveground biomass for each of the remaining 

plots, an allometric database was assembled, consisting of 341 DBH-based allometric equations 

already published. Following the protocol, an iterative decision tree approach was utilized to identify 

the optimal allometric equation for each plot location. In the decision tree, preference was given to 

equations that were developed for the particular tree species and DBH range in question [50]. Since the 

allometric equations in the database did not cover all species observed in the field, a set of generalized 

equations [51,52] was also utilized. Ultimately, species or genus-specific equations were used for 

about half of the plots, with the generalized equations used for the other half. Finally, the aboveground 

biomass (in t/ha) estimates were converted to aboveground carbon density (AGCD, in t·C/ha) using 

forest type specific conversion factors between 0.44 and 0.516. Ultimately, the INFyS database 

provided by CONAFOR for this study included AGCD estimates for 16,906 plots.  

Figure 1 illustrates the AGCD distribution for different forest types in Mexico [48,53]. In agreement 

with what was reported in [48], the majority of forests in Mexico have an AGCD below 50 t·C/ha. The 

highest AGCD values (i.e., >50 t·C/ha) are almost exclusively associated with humid tropical forests.  
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Figure 1. Inventario Nacional Forestal y de Suelos (INFyS) plot-level aboveground carbon 

density (AGCD) frequency distribution for different forest types in Mexico: Coniferous 

forest (CF), mixed coniferous/broadleaved forest (CBF), broadleaved forest (BF), humid 

tropical forest (THF), dry tropical forest (TDF), and mangroves (MG). 

 

2.2. Earth Observation Data 

2.2.1. L-Band SAR Data 

ALOS PALSAR data were obtained from the Alaska Satellite Facility (ASF). In total, 1010 Fine-Beam 

dual-polarization images (FBD) acquired between April and October 2007 (look angle of 35°) were 

downloaded in Single Look Complex (SLC) Level 1.1 format. Each PALSAR frame covers an area of 

~70 × 70 km2. Pre-processing with software developed by SARMAP for cluster processing [54] 

included multi-looking (2 × 8 in range and azimuth, respectively), speckle filtering [55], ortho-rectification 

with the aid of the ALOS orbit information and the 3 arc-second SRTM DEM, compensation for 

topographic alterations of the pixel scattering area [56] and geocoding and resampling to ca. 30 × 30 

m2 pixel size (0.000278° posting in geographic coordinates). The dependence of the backscatter, σ°, on 

the local incidence angle, θi, was normalized with respect to the incidence angle, θ (i.e., the local 

incidence angle over flat terrain) with [57,58]: 

 
(1)

Segmentation of the radar imagery with the ENVI Feature Extraction Module [59,60] was performed 

to: (i) further reduce the speckle noise in the intensity data (i.e., through averaging within homogeneous 

image objects with an average size of ca. one hectare); and (ii) calculate a set of object-level texture 

metrics that might aid in the retrieval of biomass. Texture metrics, derived from HV, included the 

coefficient of variation (CV) defined as the ratio of the standard deviation to the mean, as well as  

3 × 3 kernel-based metrics characterizing intensity range (TXr), variance (TXv), and entropy (TXe) [60]. 
  

σ norm
0 = σ 0 cos θ( )

cos θi( )
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2.2.2. Optical Data 

Global maps of canopy density are produced operationally at 250 to 500 m pixel postings from 

optical data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the 

TERRA/AQUA satellites [4]. With the opening of the Landsat archive, the production of canopy 

density products for larger areas became possible also at a higher spatial resolution (ca. 30 m).  

Hansen et al. (2011) produced canopy density maps for the United States and Mexico that were 

generated from multi-annual sets of Landsat observations [46]; a first global Landsat map was 

published recently [61]. For the mapping of canopy density, Landsat Level-1 terrain corrected (L1T) 

imagery was used to generate radiometrically consistent monthly, seasonal and annual mosaics of 

reflectances for bands 3 to 5 and 7, the thermal band (6), as well as the Normalized Difference 

Vegetation Index (NDVI). For Mexico, Landsat imagery acquired between 2000 and 2004 was 

required to obtain a sufficient number of cloud-free observations.  

Additional forest type information for Mexico was available from the land use and vegetation 

database released by the Instituto Nacional de Estadística y Geographía (INEGI). The year 2007/2008 

version of the map (Series IV) was generated by means of manual interpretation of SPOT data [47]. 

Previous versions were produced from aerial photography and Landsat. The maps provide land 

use/vegetation type information (ca. 70 classes) at a scale of 1:250,000.  

2.3. Implementation of the AGCD Retrieval  

2.3.1. Spatial Datasets  

To use SAR data for large-area forest mapping purposes, the sensitivity of the measurements to 

environmental and weather effects, such as precipitation and the associated canopy and soil moisture 

variations or freeze/thaw transitions, need to be accounted for [27,29,62–73]. Ideally, models relating 

radar measurements to the forest biophysical attribute of interest are calibrated adaptively to account 

for temporal and spatial variations in the imaging conditions [15,18,19]. In this study, we utilized the 

INFyS plot data for model calibration, which, with 5 to 20 km distances between plots, did not provide 

a sampling density sufficient to support model calibration at the frame or even sub-frame level.  

We therefore proceeded with the generation of radiometrically harmonized PALSAR mosaics. For the 

generation of wall-to-wall HH and HV mosaics, we first selected, in regions characterized by  

multi-temporal coverage, those images that were acquired during the dry season. The initial mosaics 

that were generated showed consistent backscatter characteristics for most of the country with only 

minor banding effects (low sub-dB range) between neighboring orbits. Three orbits (covering 

Southeastern Mexico) that were acquired during the rainy season presented higher backscatter. 
Figure 2 exemplifies the effect of wet imaging conditions on the backscatter measurements in HH 

and HV polarization. Each point denotes the backscatter measured at INFyS plot locations at two 

acquisition dates. Here it can be seen that in both polarizations: (i) the backscatter intensity in the 

image from August 4th was higher, in particular in the lower backscatter ranges; and (ii) the dynamic 

range was reduced compared to the image from 20 May. In accordance with what has been shown in 

other studies [31,58,72,74], the multi-temporal consistency of the PALSAR HH and HV L-band 

observations was high. Throughout Mexico, we observed correlations mostly above 0.8 (in HH and HV) 
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when comparing the per-plot intensities for pairs of images acquired during different sensor 

overpasses. The high consistency suggested that a simple linear normalization approach would be 

appropriate for normalizing images acquired under wet conditions with respect to images acquired in 

the dry season. Linear normalization functions, determined by comparing the backscatter statistics of 

images acquired under rainy conditions in areas of overlap with neighboring images, were hence used 

to produce radiometrically harmonized wall-to-wall mosaics for both (HH and HV) polarizations; the 

final HV mosaic is shown in Figure 3. During mosaic generation, feathering was applied in areas of 

image overlap to further reduce banding effects. Texture mosaics were generated accordingly by 

selecting, in regions with multi-temporal PALSAR coverage, those images that were acquired under 

dry conditions, and applying feathering between overlapping frames.  
Figure 2. Multi-temporal consistency of L-HH and HV backscatter (dB) at INFyS plot 

locations between images acquired during the dry (May) and rainy (August) seasons. 
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Figure 3. PALSAR L-HV (top), and Landsat canopy density (bottom) mosaics of Mexico. 

 

All other spatial datasets were already available in the form of wall-to-wall raster maps. The Landsat 

canopy density data set (Figure 3, bottom) was provided in the same projection as the ALOS imagery 

(Lat/Lon Projection, WGS84 Datum). The pixel posting differed slightly however, which necessitated 

resampling into the exact grid of the PALSAR mosaics. The SRTM DEM with ca. 90 m pixel posting 

was used to generate a wall-to-wall slope map using Geospatial Data Abstraction Library tools [75]. 

The SRTM datasets were oversampled to match the PALSAR pixel grid. 

2.3.2. Modeling, Map Generation and Validation 

Modeling Framework 

Building on the development of the NBCD database for the United States [11,36,37,44,45] as well 

as a recent study on the fusion of L-band radar and Landsat optical data for estimating forest 
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biophysical attributes [39], we employed the randomForest ensemble regression tree algorithm [76]  

for modeling the relationship between the INFyS AGCD and the multi-sensor imagery. Ensemble 

regression tree algorithms such as randomForest provide powerful data mining potential that have 

proven robust and computationally efficient and that have successfully been applied in several  

large-scale forest mapping efforts [10,11,14,17,20,36,37,39,77]. As a non-parametric modeling 

approach, randomForest does not require a priori information about the statistical characteristics of the 

different predictors, which makes it particularly well suited for the fusion of multi-sensor datasets.  

Model Development and Validation Databases 

For each of the plots in the INFyS database, the average pixel values in the raster datasets (L-HH and  

L-HV backscatter, the PALSAR texture measures, Landsat canopy density, SRTM elevation and slope) 

were linked to the field records in the INFyS database. Plots for which less than the dedicated four  

sub-plots had been surveyed were not considered (1184 plots). Outlier removal was performed by 

fitting exponential models to the observed relationship between Landsat canopy density, HV 

backscatter and INFyS AGCD for each of the six forest types (Figure 1), and discarding plots for 

which the residuals exceeded a range of two times the residual standard deviation (189 plots). 

CONAFOR reported that the geolocation accuracy of plots located on steep slopes might have been 

significantly in error (i.e., on the order of tens of meters) regionally. Given the lower spatial resolution 

of the SRTM-3 DEM compared to the PALSAR imagery, it could also be expected that, even after 

normalization, topographic distortions in the radar datasets would affect the modeling and retrieval 

performance for plots located on steep slopes. After evaluating the changes in retrieval performance 

when iteratively excluding plots located on steep slopes using different slope thresholds, it was decided 

not to include those plots located: (i) in layover/shadow areas; and (ii) on slopes > 15° for model 

development (a total of 6290 plots).  
In randomForest, regression trees are grown using a random selection of training samples.  

The remaining samples, referred to as “out-of-bag” (OOB), are used to generate an unbiased estimate 

of the retrieval error when comparing the OOB predictions against the response variable (i.e., in this 

case the INFyS AGCD). Although previous studies have found the OOB error to be a robust measure 

of modeling performance [17,36,39], we did not rely solely on the OOB statistic here. The plots 

remaining in the database after screening were divided into independent training and testing datasets. 

A stratified random selection of 80% of plots per forest type and 10 t·C/ha AGCD interval was 

assigned to the training dataset with the remaining 20% used for independent testing. To assess the 

impact of topographic distortions in the remotely sensed imagery, the randomForest models developed 

from the training dataset were also used to predict the AGCD for the plots that were discarded as 

a result of their location on steep slopes. As measures of agreement we have considered the root mean 

square error (RMSE), the relative RMSE (RMSEr) with respect to the average INFyS AGCD, 

the coefficient of determination (R2) as well as the estimation bias, i.e., the difference between 

the average predicted and INFyS AGCD. 
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Modeling and Mapping 

The PALSAR L-HH (HH) and L-HV (HV) backscatter, PALSAR texture (CV/TXr/TXe/TXv), 

Landsat canopy density (CD), SRTM elevation (ALT), and INFyS forest type (TYP) were used as an 

initial set of spatial predictors and the INFyS AGCD was used as the response variable. First, a single 

national-scale randomForest model was developed for predicting AGCD across all forest areas in 

Mexico. The default randomForest settings were used in terms of the number of trees that were grown 

(500), the number of predictors considered at each node (square root of total number of predictors) as 

well as the number of OOB samples (33%) included. To quantify the relative contribution of the 

optical, radar and ancillary predictors in the retrieval, model calibration was repeated with different 

combinations of the spatial predictor datasets (Section 3.2). 

Ecoregions are typically defined considering similarities in landform, soils, hydrology, climate, 

species composition and biodiversity. Previous studies [7,11] focused on the mapping of forest 

biomass across the United States showed that ecoregions provide a suitable framework for 

regionalizing mapping efforts (i.e., for optimizing the modeling with respect to more local conditions). 

For the production of the NBCD 2000 biomass map, for instance, an ecoregional mapping approach 

had been implemented in which model calibration and mapping were conducted for 66 distinct 

ecoregions [11]. For Mexico, the potential to improve the AGCD retrieval by regionalizing the AGCD 

modeling and mapping compared to application of one national model was assessed using the World 

Wildlife Fund (WWF) terrestrial ecoregion map [78]. Models were separately generated for 21 WWF 

ecoregions (Figure 4) in Mexico where small or mostly unforested ecoregions with only few INFyS 

plots were omitted. The AGCD predictions from the ecoregional models for the plots in the 

independent test dataset were then compared to the predictions from the national model.  

Figure 4. WWF ecoregions in Mexico for which regionalization of the AGCD retrieval 

was tested. 
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Following calibration, randomForest was used to produce a wall-to-wall map with 30 × 30 m2 pixel 

posting. The AGCD was predicted for all pixels in the spatial predictor datasets for which the Landsat 

canopy density map reported a non-zero canopy density. This was done to allow for some flexibility in 

applying different forest definitions to the map retroactively. The implications of using different 

datasets (i.e., Landsat CD, INEGI land use maps) for defining forest/non-forest are addressed in 

Section 3.4.  

Multi-Scale Comparison of INFyS and Map 

To identify potential spatial patterns of over- and underestimation in the AGCD map, the average 

carbon stocks computed from: (a) the map; and (b) statistical estimates from INFyS, were compared at 

different aggregated scales: 

(1) A hexagonal grid with ~27 km distance between hexagon centers (i.e., ~650 km2 large 

hexagons) was generated, and the average AGCD per hexagon according to INFyS and map 

was calculated. The hexagonal grid was produced in accordance with the US hexagonal grid 

that served as a basis for the FIA sampling design [49]. For each hexagon, the average AGCD 

was calculated from the map using the INEGI Series IV land use map as a forest mask to 

exclude AGCD estimates for non-forest woody vegetation (see Section 3.4). The average 

AGCD per hexagon according to INFyS was calculated as a weighted mean of all of  

the 16,906 INFyS plots (cf. Section 2.1) located within the boundaries of the respective 

hexagons. The proportion of the hexagon area covered by forest according to the INEGI land 

use map was used as weight. To facilitate the identification of regional patters of over- and 

under-estimation, the Local Moran’s-I statistic [79] for the differences between INFyS and 

the remote sensing predictions of AGCD was computed. 

(2) The average AGCD per state was calculated accordingly. The average AGCD in the map for 

each of the 32 states (including Distrito Federal) was calculated using as well the INEGI Series 

4 land use map as a forest/non-forest mask. From INFyS plots, the average forest carbon stock 

per state was calculated as a weighted average of plot AGCD per forest type, using the 

proportion of the total state area covered by each forest type according to the INEGI land use 

map as weight. For plot stratification, forest types in the INEGI database were aggregated to six 

classes (Figure 1) to avoid specific forest types in a state to be only represented by a few plots; 

note that due to the lower number of plots, a stratification of plots per forest type was not 

feasible for the hexagon-scale comparison. 

3. Results  

3.1. Model Performance 

The performance of the AGCD retrieval when using all available optical, radar and ancillary 

predictor datasets in a single national-scale prediction model is illustrated in Figure 5. The figure 

shows the retrieval results for the INFyS plots that were part of: (1) the independent test dataset; and 

(2) the dataset comprising all plots located on steep slopes. Figure 5 also provides information on the 

RMSE, the R2 as well as the bias. The OOB statistics are reported in parentheses. Overall, the results 
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for the OOB predictions and the predictions for the independent test dataset were similar with an 

RMSE of ~14 t·C/ha (RMSEr of 54%), an R2 of ~0.5 and a low bias of less than 1 t·C/ha, respectively. 

As indicated by the 4th order polynomial fit (black line in Figure 5), the predicted and INFyS AGCD 

were aligned along the 1:1 line for AGCDs up to about 40 to 50 t·C/ha. For AGCDs below 50 t·C/ha, 

the residuals were approximately normally distributed with a mean close to zero (2 t·C/ha); a tendency 

towards overestimation was observed for the lowest AGCDs. Conversely, for AGCDs above 50 t·C/ha, 

a clear tendency towards underestimation was observed. The predictions obtained for the plots located 

on steep slopes revealed a lower R2 of 0.34 but similar RMSE of 14.4 t·C/ha (RMSEr of 63%).  

The estimation bias was also low for the predictions over steep terrain (1.4 t·C/ha).  

Figure 5. Comparison of predicted versus INFyS AGCD for the independent test (left) and 

“steep topography” (right) datasets. The “out-of-bag” (OOB) statistics are reported in 

parentheses. The black line shows the fit of a 4th order polynomial. 

 

3.2. Predictor Importance 

The randomForest predictor importance ranking (Figure 6), obtained by randomly permuting the 

values of a particular predictor and evaluating the change in the OOB retrieval accuracy [80], indicated 

that the Landsat canopy density was the most important predictor for the AGCD retrieval, followed by 

HV backscatter, SRTM elevation, and HH backscatter. The texture metrics and forest type information 

appeared to be of low importance for the retrieval performance.  

To quantify for each forest type the contribution of different predictors to the overall retrieval 

performance, various model scenarios were assessed by excluding different variables from the 

predictor stack: Case (1) All available predictors used (benchmark); Case (2) Excluding forest type 

information; Case (3) Excluding PALSAR intensity and texture; Case (4) Excluding Landsat canopy 

density; Case (5) Excluding SRTM elevation. For each case scenario, one hundred randomForest 

models were trained each with a new stratified random selection of INFyS plots.  
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Figure 6. RandomForest predictor importance ranking for the model developed using all 

available spatial predictor layers: L-HH/HV (HH/HV), textures (coefficient of variation 

(CV), range (TXr), variance (TXv), entropy (TXe)), Landsat canopy density (CD), Shuttle 

Radar Topography Mission (SRTM) elevation (ALT), INFyS forest type (TYP). 

 

Figure 7 illustrates for each of the forest types the range (mean +/− standard deviation) of R2, 

RMSE and bias for the predictions obtained for the independent test dataset. When using all predictors, 

the R2 values were in the range of 0.5. Only for the MG class was the R2 significantly lower (0.2). 

Average RMSE values were in a range of 11 t·C/ha (CBF, BF) to 21 t·C/ha (MG). The spread of 

accuracies between the different iterations was particularly large for MG. This was likely due to the 

much lower number of INFyS plots and an overall low sensitivity of the remote sensing datasets to the 

AGCD of MG. The estimation bias was consistently low (<1 t·C/ha) for all forest types. The exclusion 

of the INFyS forest type information had only a minor impact on the retrieval performance. For the 

CF, CBF, BF, THF, and MG classes, the range of the obtained R2, RMSE as well as bias changed only 

marginally. Only in the case of TDF, the R2 decreased for about 4% and the RMSE and bias increased 

for 1 and 2 t·C/ha, respectively. The exclusion of Landsat CD (i.e., the most important predictor 

according to randomForest) affected the retrieval performance for all forest types with decreases in R2 

between 7% (BF) and 20% (MG) and increases in RMSE in the range of 1 to 3 t·C/ha. The exclusion 

of the ALOS PALSAR datasets had an overall similar impact on the retrieval performance. For all 

forest classes, the exclusion of the PALSAR datasets resulted in a 4 (MG) to 14% lower R2. Finally, 

the exclusion of the SRTM elevation was found to affect the retrieval performance for all forest types  

(3% to 10% lower R2) except MG (which is limited to low elevations). 

The modeling with varying predictor combinations revealed systematic differences in the 

contribution of the radar and optical datasets in specific AGCD intervals. Figure 8 illustrates for the 

example of CBF that the retrieval accuracy (RMSEr) for plots with low AGCD < 20 t·C/ha appeared to 

depend mostly on Landsat CD since the RMSEr for the retrieval with all predictors (Case 1) and with 

Landsat CD and DEM (Case 3) produced similar results. For sparse forests with low AGCD, the 

retrieval error would have been much higher when using only PALSAR and DEM (Case 4). With 

increasing AGCDs, however, the retrieval increasingly depended on the PALSAR data.  
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Figure 7. Retrieval performance for different forest types when repeatedly training 

randomForest with a stratified random selection of INFyS plots using: (1) all predictors, or 

when excluding (2) forest type; (3) PALSAR intensity and texture; (4) Landsat CD; or 

(5) SRTM, respectively. Error bars denote the range (mean +/- standard deviation) of the 

R2, root mean square error (RMSE) and bias. 

 

Figure 8. RMSEr in 10 t·C/ha AGCD intervals for pine-oak forests when using 

CD/PALSAR/ALT (Case 1), CD/ALT (Case 3), or PALSAR/ALT (Case 4) as predictors. 

 

3.3. National Versus Ecoregional Modeling 

Only minor differences were detected in the retrieval performance when predicting the AGCD for 

the plots in the independent test dataset using a national-scale model and models calibrated for each 
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ecoregion, respectively (Figure 9). In each ecoregion, the AGCD predictions from the national and the 

ecoregional models were highly correlated and, when plotted against each other, aligned along  

the 1:1 line. In contrast to Kellndorfer et al. [11] or Blackard et al. [7], who implemented ecoregional 

modeling approaches to map the biomass across the United States using SRTM/Landsat and MODIS, 

respectively, we observed only minor differences in the predictor importance between the different 

ecoregions. Landsat CD and PALSAR HV were generally the most important predictors; HV 

backscatter ranked first for some of the pine-oak forest dominated ecoregions in the Sierra Madre 

Mountain range. As expected, the importance of elevation depended strongly on the topography in the 

respective ecoregions. 

Figure 9. AGCD retrieval performance for 21 WWF ecoregions when estimating AGCD 

with a single national model, or when calibrating models for each ecoregion separately. 

  
3.4. Wall-to-Wall AGCD Map 

A wall-to-wall AGCD map with 30 × 30 m2 pixel posting was produced using all available spatial 

datasets except forest type (see Section 4) as predictors in a single national-scale prediction model 

(Figure 10). According to the map, the highest carbon densities (> 50 t·C/ha) in Mexico can be found 

on the Yucatan Peninsula (Figure 10, inset b) as well as along the ridges of the Sierra Madre Del Sur 

and at the higher elevations of the Trans-Mexican Volcanic Belt (Figure 10, inset a). Because AGCD 

was predicted for all areas with a canopy density > 0% (Section-Modeling and Mapping), the map 

includes AGCD estimates for large portions of the arid wood/scrublands in Northern Mexico for which 

no biomass information was provided in the INFyS database (Section 2.1), i.e., for which strictly 

speaking the retrieval models were not appropriately calibrated. When applying a canopy density 

threshold of >0% to define forest, the total AGCD in Mexico according to the map was 2.21 Pg·C, 

which is 30% higher than the 1.69 Pg·C of forest aboveground carbon stocks that Mexico reported for 

the FAO Forest Resource Assessment 2010 [41] based on INFyS and the INEGI land use dataset and 

38% higher than the 1.60 Pg·C that CONAFOR currently estimates based on the latest version of the 

INFyS and INEGI land use (Series V) data sets (unpublished CONAFOR draft report for FRA 2015). 

When using the INEGI land use map (Series 4) as a forest/non-forest mask, the total aboveground 
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carbon stocks according to the map reduced to 1.53 Pg·C, which is only 4% below CONAFOR’s 

current estimate. 

Figure 10. Map of aboveground carbon density of Mexico’s forests. 

 

3.5. Multi-Scale Comparison of INFyS and Map 

3.5.1. Hexagon-Scale Comparison 

The per-hexagon differences between the AGCD estimates obtained from the remote sensing data 

and those from INFyS revealed a rather uniform distribution of over- and underestimation throughout 

the country (Figure 11). With an R2 of 0.78 and an RMSE of 5 t·C/ha, the agreement between  

the per-hexagon AGCD estimates from INFyS and map was high. The differences between INFyS and 

predicted AGCD tended to increase from North to South, along with a general increase in AGCD from 

North to South. The Moran’s-I statistics indicated no clustering of over- or underestimation for most of 

the forest areas in Mexico. Significant (0.05 level) clustering was observed for the Southeast and parts 

of the Yucatan Peninsula, in particular. For the northwestern Yucatan, where dry tropical forests 

dominate, the observed AGCD estimates appeared to be systematically higher than the INFyS 

estimates. For the humid tropical forests of the southeastern Yucatan Peninsula (state of Quintana Roo), 

instead, AGCD appeared to be underestimated. As a consequence, the map in Figure 10 (inset b) 

presents a relatively constant carbon density across the Yucatan Peninsula, whereas the INFyS 

database reports a clear gradient with AGCD increasing from NW to SE. Some clustering was also 

observed for part of the mountain ranges (i.e., the Chiapas Highlands in Southern and the Sierra Madre 

Occidental in Northern Mexico). 
  



Remote Sens. 2014, 6 5575 
 

 

3.5.2. State-Level Comparison 
With a RMSE of 1.4 t·C/ha and a R2 of 0.98, the comparison of the average carbon stocks according 

to the map and INFyS (Figure 12) at the state-level confirmed that the up-scaling of INFyS to a  

wall-to-wall map with the remote sensing imagery preserved the major patterns in the distribution of 

the aboveground carbon stocks across Mexico. As for the hexagon-scale comparison, the biggest 

difference (−4 t·C/ha) between map and INFyS was observed for Quintana Roo, Yucatan Peninsula.  

Figure 11. Spatial distribution of the difference between per-hexagon estimates of AGCD 

from the national prediction model and INFyS. Warmer colors indicate areas where the 

average AGCD in the map was higher than the INFyS estimates; cooler colors indicate 

areas where the average AGCD in the map was lower. 

 

3.6. Results in the Context of Published Accuracy Requirements 

The scientific community has published accuracy requirements for biomass and carbon  

stock estimation in the recent past. Hall et al. [1] suggested that a retrieval error for biomass of better 

than 20% or 20 t/ha (i.e., an AGCD of ~10 t·C/ha), respectively, for aboveground biomasses below 

100 t/ha and for at least 80% of predictions at the hectare scale would be required to reduce the current 

uncertainty in the terrestrial carbon budget to a level comparable to that associated with the oceanic 

carbon uptake. Dependent on the forest type, the estimates for Mexico were within the 20%/10 t·C/ha 

range for 52% to 76% of 1 hectare INFyS plots (test dataset) with an AGCD below 50 t·C/ha located 

on flat terrain (CF: 74%, CBF: 76%, BF: 74%, THF: 52%, TDF: 70%, MG: 54%); the requirements 

were fulfilled for 49 to 67% of the INFyS plots located on steep terrain (CF: 63%, CBF: 65%,  

BF: 67%, THF: 49%, TDF: 70%). 
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Figure 12. Comparison of average AGCD per state according to INFyS and map. 

 

4. Discussion  

The modeling approach and map presented here for Mexico demonstrate both the potential as well 

as limitations of the fusion of contemporary, globally available spaceborne datasets for large-scale 

mapping of aboveground biomass and associated carbon stocks at medium spatial resolutions. 

The results clearly show the benefit of radar/optical fusion as with either data set alone, the retrieval 

performance would have been significantly reduced. The comparison against INFyS and remote 

sensing predictions at different spatial scales (plots, hexagons, states) showed that a single  

national-scale prediction model, with few regional exceptions (Figure 11), allowed the mapping of 

forest aboveground carbon stocks without significant regional biases. However, at the scale of 

the INFyS plots (i.e., the hectare scale), the uncertainty of the AGCD predictions is large and retrieval 

accuracies postulated by the scientific community [1] at this spatial scale are not met. Higher retrieval 

accuracies at the hectare scale with L-band radar and multi-spectral optical imagery have been reported 

in the literature for smaller study areas [40]. The results for Mexico hence demonstrate the limitations 

associated with mapping forest aboveground biomass across a large number of images, varying 

imaging conditions and diverse forest ecosystems.  
Landsat data, in the form of a canopy density product, was an important predictor for the 

aboveground biomass of forests in Mexico (Figure 6). Optical remote sensing based estimates  

of canopy density have been used to predict forest biophysical attributes such as height, growing  

stock volume, and aboveground biomass for forests in the US [11,36], for tropical forests in the 

Amazon [12], for boreal forests in Sweden and Central Siberia [81], as well as for an arid forest area in 

North Central Mexico [82]. A limitation of canopy density metrics as predictors of aboveground 

biomass is that they function well only as long as the canopies are not closed (i.e., primarily during 

early-successional stages of forest development). Biomass differences between forests with closed 

canopies are not captured [81]. Recent studies focused on large-area mapping of aboveground biomass 

in the tropics with passive optical imagery (Landsat, MODIS) have suggested that there is sensitivity 

in optical imagery (Landsat, MODIS) to aboveground biomass beyond the correlation of biomass and 

percent canopy cover, which essentially derives from the spectral contrast between the tree canopies 
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and the underlying forest floor. In particular, the short wave infrared (SWIR) bands, which are most 

sensitive to canopy moisture differences and shadowing effects, have been found to be sensitive to 

aboveground biomass even for forests with closed canopies [10,17]. The results of these studies 

suggest that the biomass retrieval for Mexico can be further improved by adding actual Landsat 

reflectance data to the predictor stack. In particular in the tropical regions of Mexico, where cloud 

cover is persistent, the creation of radiometrically consistent seasonal or even monthly reflectance 

mosaics is a complex task that typically requires imagery from multiple years. The creation of such 

mosaics was beyond the scope of this study.  

In theory, the sensitivity of L-band backscatter to aboveground biomass should exceed that of 

(optical) canopy density metrics since the backscatter from forest is not only governed by the extent of 

gaps (i.e., canopy density) but also the depth and vertical structure of the canopy; note that a relatively 

simple way of modeling backscatter from forest is to consider the measured backscatter a sum of 

backscatter from forest floor and canopy weighted by the gap extent and the signal attenuation within 

the canopy, with the latter being a function of the canopy height [83]. However, this study found that 

PALSAR backscatter measurements in co- and cross-polarization (HH, HV) were overall less 

correlated to AGCD than the Landsat derived canopy density estimates (Pearson correlation for 

different forest types of AGCD and HV: 0.22–0.54, HH: 0.18–0.47, VCF: 0.5–0.58) and hence, with 

few regional exceptions (Section 3.3), ranked lower in the randomForest importance ranking (Figure 6). 

This was most likely a consequence of the sensitivity of the radar measurements to environmental 

factors, most prominently soil and canopy moisture variations at stand- to landscape-scales that have 

been shown to affect the form and strength of the relationship between the backscatter measurements 

and forest biophysical attributes [19,29,66,68,72,73,84]. Model investigations in Wang et al. [85] 

indicated that also other factors (forest floor roughness, litter depth) could introduce significant 

variability in L-band observations of forest, in particular at HH polarization. The retrieval of forest 

biophysical parameters based on L-band data generally performs best when the effect of moisture 

variations in soils and vegetation are minimized, for instance in arid regions or during extended dry 

periods [30,84]. As discussed in Lucas et al. [29], the limited availability of multi-temporal 

observations from ALOS PALSAR hampers the possibility to generate large-area ALOS PALSAR  

L-band backscatter mosaics that consistently represent dry conditions. ALOS PALSAR locally 

acquired between one and five dual-polarization images per year [86]. In the case of Mexico, only few 

images had to be adjusted radiometrically to generate mosaics without major banding effects. The fact 

that radar backscatter was less correlated to AGCD than optically based canopy density estimates 

suggests, however, that local variations in PALSAR imaging conditions (beyond the landscape scale 

moisture variations that show up in mosaics as stripes) affected the radar’s performance in the 

retrieval, in particular for sparse forests with low biomass (Figure 8).  

Significant improvements in the retrieval performance with L-band radar have been reported when 

integrating multi-temporal radar observations, either as additional predictors or by combining estimates 

obtained for each image in a multi-temporal stack [19,35,39,71,72,87], as with multi-temporal stacks of 

data the influence of environmental effects, as well as the radar inherent speckle noise, can be reduced. 

The results in [19] indicated, for the Northeastern United States, that aboveground biomass could be 

mapped consistently up to biomass levels of ~180 t/ha when having at least four PALSAR  

dual-polarization L-band acquisitions. Because of the lack of a consistent multi-temporal PALSAR 
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coverage, multi-temporal retrieval approaches such as those presented in [15,19] for C- and L-band, 

respectively, could not be implemented in the case of Mexico. It remains to be seen whether the 

limitations associated with the multi-temporal acquisition strategy of ALOS PALSAR will be 

overcome in the coming years with the launch of the next generation L-Band SAR missions: the 

Japanese mission, ALOS-2 (launch 2014), the Argentinian SAOCOM mission (launch 2017), and the 

planned NASA/ISRO L-band/S-band radar mission (launch 2020).  

Recently published studies showed that texture metrics derived from radar imagery correlate with 

forest attributes such as stand age or aboveground biomass [88,89]. The results of these studies 

suggested that the use of texture metrics jointly with backscatter measurements could improve the 

biomass retrieval performance. In the case of Mexico, however, texture metrics derived from L-band 

radar hardly contributed to the overall retrieval performance (Figure 6). On one side, this might be 

explained with the limited number of texture metrics that were computed (cf., [89]). However, the 

promising results in [88,89] were achieved for smaller test sites and a limited number of field plots.  

It remains unclear how consistent the relationship between texture metrics and aboveground biomass is 

across a large number of images, varying imaging conditions and heterogeneous forest ecosystems. 

In the case of Mexico, the low sensitivity of the available optical and radar datasets to differences in 

AGCD beyond ~50 t·C/ha was somewhat counterbalanced by the fact that in mountainous regions, the 

biomass increases with increasing elevation (because of concurrent increases in annual precipitation) 

so that AGCDs above 50 t·C/ha could be predicted with the aid of a DEM (Figure 10, inset a). In areas 

with high biomass densities at low elevations, foremost in parts of the Yucatan Peninsula, high AGCD 

ranges were instead underestimated (Figure 11). On the other hand, overestimation of AGCD was 

observed specifically for the dry tropical forests of the Yucatan Peninsula even though, for dry tropical 

forests across the entire country, the retrieval accuracy was comparable to other forest classes (Figure 7). 

An explanation for the overestimation of the dry tropical forest’s biomass on the Yucatan could be 

seasonal leaf-on/loaf-off effects in the Landsat VCF product. A comparison of INFyS AGCD and 

Landsat canopy density showed locally very high canopy densities for plots with low AGCD according 

to INFyS, which was not observed for similar types of forests in other parts of the country.  

A contributing factor may have been the limited Landsat data availability over the tropical parts of 

Mexico where cloud cover tends to be persistent. The overall lowest retrieval accuracy (R2 of 0.2) was 

achieved for mangroves, a forest type that due to permanent or periodic flooding presents distinct 

characteristics in remote sensing imagery. L-band radar has shown some potential for the mapping  

of aboveground biomass of mangroves [90]. The results here, however, indicate that a simple  

national-scale modeling approach is underperforming for the retrieval of mangrove biomass. 

In contrast to other studies [17,36], the inclusion of forest type information in the biomass retrieval 

did not improve the retrieval performance significantly. While in some forested ecoregions, forest 

types readily explain biomass differences, Mexico presents a complex environmental setting where 

variations in aboveground biomass due to environmental factors like precipitation, forest management 

practices, and disturbance regimes [91,92] are more pronounced than the differences in biomass 

between most of the major forest types (Figure 1). Also, the INEGI maps for Mexico at the scale  

of 1:250,000 are rather generalized, and imply significant uncertainty at the hectare-scale targeted for 

the mapping of AGCD across Mexico. It therefore appeared preferable not to use the INEGI land use 

maps for the production of the biomass map of Mexico. 
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The pre-processing of the remote sensing datasets that were used to map AGCD across Mexico 

utilized state-of-the-art methods for geocoding, ortho-rectification and signal calibration. For the 

generation of the Landsat canopy density product [46], for instance, USGS Level 1 terrain-corrected 

(L1T) Landsat ETM+ data had been used, for which radiometric calibration and geometric corrections 

were applied using a DEM. For the pre-processing of the ALOS PALSAR data, a new approach for 

compensating for the dependence of the pixel scattering area contributing to the measured backscatter 

on topography was applied that has been shown to allow significant improvements in the calibration of 

radar data over mountainous terrain compared to previously developed approaches when having a 

DEM with a spatial resolution comparable to that of the radar imagery [56,93]. However, due to 

licensing restrictions for use at non US government facilities only SRTM 3-arcsec data were available 

to calibrate the SAR data in Mexico, which contributed to a lower accuracy of the AGCD estimates 

over steep terrain. Regionally, geo-location inaccuracies in the INFyS plot database might have 

contributed to the reduced biomass retrieval performance over steep terrain. Overall, the results 

showed, however, that topographic distortions over steep terrain are still a significant constraint for 

large area mapping applications, at least without DEMs with a spatial resolution on the order or better 

than the remote sensing imagery to correct for topographic effects.  
Although nominally providing sub-hectare scale information on aboveground carbon density, the 

map will be of limited use for stand-level analysis of aboveground carbon stocks. However, in 

particular in the context of the ongoing preparations in Mexico for putting in place a REDD+ MRV 

system, the map is expected to provide valuable information on forest carbon stocks at spatial scales 

(e.g., communal, municipal) at which the number of INFyS plots will be insufficient to produce 

localized estimates of carbon stocks. To evaluate whether the spatially explicit map is a viable 

alternative to “Stratify and Multiply” [94] approaches, i.e., in the case of Mexico an extrapolation of 

INFyS with the aid of land cover products such as the INEGI products, it is necessary to quantify the 

map uncertainty at different spatial scales. Different error sources that propagate to the final per-pixel 

estimates of AGCD in the map have to be considered: (i) field measurements; (ii) allometric equations, 

(iii) sampling error; (iv) remote sensing predictions. The time difference between the collection of the 

INFyS inventory (2004–2007), and acquisition of the Landsat (2000–2004) and ALOS PALSAR data 

sets (2007) also has to be acknowledged as a possible local source of uncertainty. The largest 

uncertainty is associated with the remote sensing predictions. Dependent on the biomass level (Figure 8), 

the error at the plot-level is between 30% and 150%. The uncertainty related to the field (i.e., DBH) 

measurements can be expected to be low since DBH measurement errors for single trees tend to 

average out when summing over all trees in a plot. Given the large number of plots in the Mexican 

NFI, the sampling error can also be expected to be low [95]. The uncertainty related to the set of 

allometric equations (cf. Section 2.1) that were used to estimate aboveground carbon density from  

in situ DBH measurements has not yet been assessed. The allometric error should be in the range  

of 10% to 30% [52,95]. Future work will address, in collaboration with CONAFOR, the propagation 

of errors associated with the inventory data and remote sensing predictions at the plot level as well as 

the spatial propagation of errors when aggregating the pixel estimates to coarser scales [96], with a 

particular focus on scales relevant for the Mexican MRV system (i.e., communal, municipal).  
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5. Conclusions and Outlook  

A first spatially explicit map of the aboveground biomass and carbon stocks of forests across 

Mexico with 30 m pixel posting was produced. The map provides decision makers and land managers 

in Mexico a new tool for forest resource management and carbon stock assessment at spatial scales at 

which the density of field plots in the national forest inventory database is too sparse. The map will be 

publicly available.  

The results of this study demonstrate that the fusion of medium resolution optical and  

dual-polarization L-band data augmented by geophysical gradient information (i.e., a DEM), all of 

which are available globally and will also be in the foreseeable future (ALOS-2, SAOCOM, 

NASA/ISRO DESDynI-R, Landsat-8), provides a relatively straightforward, off-the-shelf approach for 

extending plot-level forest inventory estimates of aboveground biomass to spatially explicit  

large-area maps. While the benefit of fusing medium resolution L-band radar and optical datasets for 

mapping forest biomass and carbon stocks has been demonstrated for smaller study areas [40],  

our results here show that radar/optical fusion allows for consistent improvements in the retrieval 

performance when mapping across large areas and a wide range of temperate, sub-tropical and tropical 

forest types. Furthermore, we were able to show that radar/optical fusion is particularly beneficial in 

the case of sparse forests with low biomass (<20 t·C/ha) for which the radar backscatter is strongly 

affected by variations in the environmental imaging conditions (most prominently soil moisture 

variations). A comparison of the average carbon stocks computed from: (a) the map; and (b) statistical 

estimates from the national forest inventory for ~650 km2 large hexagons and Mexican states, showed 

that a single national-scale prediction model allows the mapping of the distribution of aboveground 

carbon stocks across diverse forest ecosystems without significant regional biases.  

The map should be regarded first and foremost as a tool for carbon stock assessments at the 

jurisdictional (e.g., communal, municipal) level. With about 50% of biomass variability being 

explained in the case of forests located on flat terrain and even less in the case of mountainous terrain, 

the limitations of the map at the hectare scale (i.e., the scale of anthropogenic and natural disturbance) 

emphasize the need for exploring additional data sources and methods to complement the national 

dataset with more accurate information on local forest condition, biomass, and carbon stocks.  

In the frame of the USAID funded Mexico-REDD+ project [97] airborne lidar transects are therefore 

currently (years 2013/14) being acquired in six critical forest areas across Mexico (Yucatan, Chiapas, 

Oaxaca, Michoacán, Jalisco, Chihuahua). Also, in April/May 2013, the AMIGA lidar campaign 

acquired transects of lidar data with the NASA G-LiHT sensor [98]. The lidar data will provide 

additional means to: (i) investigate forest structural and carbon stock differences related to disturbance 

and forest management; and (ii) improve AGCD mapping by extending field inventory data via lidar 

transects to wall-to-wall maps [20,39,40] using new spaceborne remote sensing datasets from the 

Landsat-8 optical or the soon to be launched ALOS-2 and SENTINEL-1 L- and C-band radar missions. 

Lidar transects will also be acquired over mangrove forest sites to investigate alternative options for 

Mexico to quantify mangrove biomass, which is not well represented in the produced biomass map. 
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