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Abstract: A sub-grid multiple relaxation time (MRT) lattice Boltzmann model with curvilinear
coordinates is applied to simulate an artificial meandering river. The method is based on the D2Q9
model and standard Smagorinsky sub-grid scale (SGS) model is introduced to simulate meandering
flows. The interpolation supplemented lattice Boltzmann method (ISLBM) and the non-equilibrium
extrapolation method are used for second-order accuracy and boundary conditions. The proposed
model was validated by a meandering channel with a 180◦ bend and applied to a steady curved
river with piers. Excellent agreement between the simulated results and previous computational and
experimental data was found, showing that MRT-LBM (MRT lattice Boltzmann method) coupled with
a Smagorinsky sub-grid scale (SGS) model in a curvilinear coordinates grid is capable of simulating
practical meandering flows.

Keywords: multiple relaxation time lattice Boltzmann model (MRT-LBM); meandering river;
standard Smagorinsky sub-grid scale (SGS) model; curvilinear coordinate

1. Introduction

Derived from the Lattice Gas Automata (LGA) [1,2], the single relaxation method (called the lattice
Bhatnagar Gross Krook (LBGK) method) [3,4] is a promising and powerful tool for computational fluid
dynamics. It has also been successfully applied to simulate various of flow problems, such as free surface
flow [5], advection and dispersion problems [6], multiphase fluids [7,8], and shallow water flows [9,10].
However, numerical instability is one of problems of the LBGK method, especially when the Reynolds
number is high or the viscosity is low [11,12]. The multiple relaxation time (MRT) lattice Boltzmann
method was proposed and developed [13–15] to overcome these shortcomings; by establishing a model
on moment space rather than on discrete space, different relaxation times can be chosen for different
moments, which leads to an improvement in the stability of the LBGK method [15].

Standard lattice Boltzmann method (LBM) is restricted to regular lattices, which is limits the
simulation of curved and complex natural rivers. One way to solve this problem is to use nonuniform
lattices. In recent years, different methods have been developed to extend the LBM on a nonuniform
mesh, including the interpolation-supplemented scheme (ISLBE) [16], grid refinement scheme [17–19],
dynamically adaptive grids for shallow water simulations [20], and the MRT-LBM for transformed
equations in a curvilinear coordinates system [21].

The interpolation-supplemented scheme (ISLBE) was first proposed to employ nonuniform
rectangular grids [16], and it was successfully applied to the flow around a circular cylinder in a polar
coordinate grid system under different Reynolds numbers [22]. Shyam Sunder et al. [23] investigated
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the parallel performance of the ISLBE scheme and demonstrated that the ISLBE scheme could obtain a
good parallel performance, although it increased the communication and computational time, Moreover,
the generalized form of the interpolation supplemented lattice Boltzmann method (GILBM) was proposed
to simulate the steady flow in generalized coordinate [24]. Qu et al. [25] applied the isoparametric
transformation to the ISLBE and therefore arbitrarily structural grids could be used. More recently,
Zhao applied the GILBM to shallow water equations, allowing the flow problem in curved and
meandering open channels to be accurately resolved based on a curvilinear coordinate grid system [26].

The phenomenon of bridge piers in a river is a common flow problem. On account of the problem
of piers holding up water and the phenomenon of flow around cylinders, a suitable turbulence model is
significant. In recent years, large eddy simulation (LES) has been widely used and studied for turbulent
flow. Hou et al. [27] first integrated a sub-grid scale (SGS) stress model with LBGK for turbulence
modeling. Zhou [28] extended the scheme to shallow water flows. Yu et al. [29] integrated MRT-LBM
with LES and demonstrated the method’s superiority to LBGK-LES. However, curved channels are
seldom considered in these studies. Therefore, in this study we attempt to introduce a standard
Smagorinsky sub-grid scale (SGS) model into Zhao’s scheme to simulate curved steady flows with
piers. In addition, a 180◦ open channel is used to validate the model.

The rest of this study is organized as follows. The governing equations of shallow water flow and
a sub-grid lattice Boltzmann method with curvilinear coordinates are described in Section 2. Section 3
presents simulating results and discussion. Conclusions are summarized in Section 4.

2. Numerical Methods

2.1. Governing Equations

Shallow water equations were used for our simulation, which can be written as:

∂h
∂t +

∂huj
∂xj

= 0, (1)

∂hui
∂t +

∂huiuj
∂xj

= − g
2

∂h2

∂xi
+ νt

∂2(hui)
∂xj∂xj

+ Fi. (2)

In Equations (1) and (2), h is water depth; xi is the distance in the i direction; uj is depth-averaged
velocity components in the j direction; t is the time, g = 9.81 m/s2 is the gravitational acceleration;
νt = νk + νe is the total viscosity.

The kinematic viscosity νk is usually defined as

νk =
δt
6
(2τ − 1)e2, (3)

in which e = δx/δt, δx is the lattice size; δt is the time step.
In the Smagorinsky model [30], the eddy viscosity νe is given by

νe = (Csls)
2
√

SijSij, (4)

where Cs is the Smagorinsky constant (Cs = 0.15 in the present study), ls is the length scale, and Sij is
the strain rate tensor given by [27,28]

Sij =
1

2h

[
∂hui
∂xj

+
∂huj

∂xi

]
. (5)

Fi is the force term; without the Coriolis term, it can be defined as:

Fi = −
τbi
ρ
− gh

∂zb
∂xi

, (6)



Water 2018, 10, 615 3 of 14

where ρ is the water density, zb is the bed elevation, and τbi is the bed shear stress:

τbi = ρCbui
√

ujuj. (7)

Here, Cb is the bed friction coefficient and Cb = g/C2
z , where Cz is the Chezy constant given by

the Manning equation, Cz = h1/6/nb, and nb is the Manning coefficient.

2.2. A Sub-Grid Lattice Boltzmann Model

It is simple to introduce SGS into MRT-LBM. By adding the calculation module of eddy relaxation
time to the whole calculation, a sub-grid lattice Boltzmann model can be established.

In this study, MRT-LBM is used to solve shallow water equations, and it has already been applied
successfully by numerous researchers [6,29,31,32]. Our simulation is based on the D2Q9 model and
space is discretized into a nine-speed square lattice (see Figure 1). The particle velocity eα is defined as:

eα =


0 α = 0,

ie cos[π(α− 1)/2] + je sin[π(α− 1)/2] α = 1− 4
√

2ie cos[π(α− 1)/2 + π/4] +
√

2je sin[π(α− 1)/2 + π/4] α = 5− 8.

, (8)
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The MRT-LBM contains two steps: a collision step and a streaming step:

Collision and Forcing f ′α(x, t)− fα(x, t) = −M−1Ŝ
(

f̂α − f̂ eq
α

)
+

3δtωα

e2 eαiFi, (9)

Streaming fα(x, t + δt) = f ′α(x− eαδt, t) α = 0− 8, (10)

where fα is the particle distribution function; the relationship between the distribution function and
the moment is f̂ = Mf, f = M−1 f̂ and the bold-face symbols denote nine-dimensional column vectors,
e.g., f = [ f0, f1, · · · f8]

T; f̂ eq
α is the equilibrium distribution functions of the moment f̂α; f ′α is the

post-collision state. Ginzburg [13] first proposed the general form of the transformation matrix M
which can be defined as [6,15,31]:

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


. (11)
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Fi is associated with the force term. In a D2Q9 model, the corresponding equilibrium distribution
functions in the moment space f̂ eq

α are expressed as [6,15,31]:

f̂ eq
α =



h, α = 0,
3gh2/e2 − 4h + 3h(u2

x + u2
y)/e2, α = 1,

huy/e, α = 2,

4h− 9gh2/2e2 − 3h
(

u2
x + u2

y

)
/e2, α = 3,

−huy/e, α = 4,

h
(

u2
x − u2

y

)
/e2, α = 5,

−hux/e, α = 6,
−hux/e, α = 7,
huxuy/e2, α = 8.

(12)

Ŝ is the relaxation matrix in the moment space:

Ŝ = MSM−1 = diag[s1, s2, s3, s4, s5, s6, s7, s8, s9], (13)

where s1 = s4 = s6 = 1, s5 = s7 = 1.2, s2 = s5 − 0.1, s3 = s2 − 0.1, s8 = s9 = 1/τ. With the eddy
viscosity νe of the SGS model in consideration, s8 and s9 are decided as

s8 = s9 =
1

τ + τe
=

1
τt

, (14)

where τ is the single relaxation time, τt is the total relaxation, and τe is the eddy relaxation time,
which is given by [27,28]:

τe =
−τ+

√
τ2+18C2

s /(he2)
√

∏ij ∏ij

2 , (15)

in which
∏ij = ∑

α
eαieαj

(
fα − f eq

α

)
. (16)

eαi is the velocity vector of a particle in the i spatial coordinate.
In LBM, the equilibrium distribution functions (EDFs) can be calculated by a Taylor series

expansion of a Maxell–Boltzmann equilibrium distribution. According to constraint conditions of
EDFs, the local equilibrium distribution f eq

α for shallow water equations can be computed by the
method of undefined coefficients [9,33], and f eq

α can be expressed as:

f eq
α =

 h− ωαh
e2

(
15
8 gh + 3

2 u2
j

)
α = 0,

ωαh
e2

(
3
2 gh + 3(eαu)j +

9
2 (eαu)2

j − 3
2 u2

j

)
α = 1− 8,

(17)

where ωα is the weight coefficient, ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36.
The water depth h and velocity u can be calculated by the distribution function below:

h =
8

∑
α=0

fα, (18)

u =
1
h

8

∑
α=0

eα fα. (19)

2.3. Curvilinear Coordinates

The lattice Boltzmann model on curvilinear coordinates was presented by using the GILBM [24].



Water 2018, 10, 615 5 of 14

The governing Equations (8) and (9) with orthogonal coordinates x ≡ (x, y) are transformed into
curvilinear coordinates ε ≡ (ε, η), which can be written as

Collision and Forcing f ′α(ε, t)− fα(ε, t) = −M−1Ŝ
(

f̂α − f̂ eq
α

)
+

3δtωα

e2 eαiFi, (20)

Streaming fα(ε, t + δt) = f ′α(ε− ∆εα, t) α = 0− 8, (21)

in which

∆εα =
∫ δt

0
ẽαdt, (22)

where ẽα ≡ ẽα,i is the particle velocity of curvilinear coordinates (ε, η) and can be calculated as

ẽα,i = eα,j
∂εi
∂xj

. (23)

To calculate the contravariant velocities at each node, the estimation of the metrics is given by[
εx εy

ηx ηy

]
=

1
J

[
yη −xη

−yε xε

]
, (24)

in which J is described as
J = xεyη − xηyε. (25)

To integrate the particle velocity, the second-order two-step Runge–Kutta method is used:

First step : ∆εα
(1) =

1
2

δtẽα(ε); (26)

Second step : ∆εα = δtẽα

(
ε− ∆εα

(1)
)
+
(

δt3
)

. (27)

The interpolation function is necessary to calculate the right-hand side of Equations (20) and (27).
In both equations, the value between the grid points is required.

The second-order upwind quadratic interpolation is used, and can be expressed as

gα(ε− ∆εα) =
2

∑
m=0

2

∑
l=0

aα,m,2aα,l,1gα,l,m, (28)

where gα,l,m is the stencil depending on the position of ε− ∆εα. The coefficients are described as

aα,0,i =
1
2 (|∆εα,i| − 1)(|∆εα,i| − 2),

aα,1,i = |∆εα,i|(|∆εα,i| − 2),
aα,0,i =

1
2 |∆εα,i|(|∆εα,i| − 1).

(29)

2.4. Boundary Conditions

Boundary conditions are significant and can affect the accuracy of the lattice Boltzmann method.
The non-equilibrium extrapolation method [34] of second-order accuracy was chosen to determine the
distribution functions at the boundaries from the given macroscopic variables:

fα(εw, t) = f eq
α (hw, uw) + f ′α

(
ε f , t

)
− f eq

α

(
h f , u f

)
, (30)

where the subscript w denotes the wall nodes and f represents fluid nodes. The fluid water depth h f
and macroscopic velocities u f can be computed from discharge or water level according to real cases.
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For the wall nodes, since the water depth hw and the macroscopic velocities uw are not explicit,
they are estimated from the neighboring fluid nodes. For the macroscopic velocities uw, they can be
estimated from the neighboring fluid velocities at the slip wall and are equal to zero at the non-slip
wall. For the water depth, a three-point Lagrangian formula is applied [35]:

hw =
3
∑

p=1

[
h
(

ε f ,p

) 3
∏

q=1,q 6=p

εw−ε f ,q
ε f ,p−ε f ,q

]
. (31)

In our simulation, the criterion of steady states is defined as

Σij

∣∣∣un+1
ij −un

ij

∣∣∣
Σij

∣∣∣un+1
ij

∣∣∣ ≤ 1.0× 10−7. (32)

3. Model Simulation and Discussion

In this part, an open channel flow with a 180◦ bend is investigated to test the accuracy of the
proposed scheme. Moreover, a real meandering river with piers is simulated to test the application of
the coupled model. The results of the simulation and a discussion are presented as follows.

3.1. Open Channel Flow with a 180◦ Bend

De Vriend [36] experimentally studied the 180◦ open channel, and it has also been used by many
researchers to validate their models [26,37,38]. Zhang [38] has established a 3D Re-Normalisation
Group (RNG) k− ε turbulence model with curvilinear coordinates to simulate meandering rivers and
channels. Therefore, it is appropriate to compare these results with ours. The studied channel is 1.7 m
wide and the centerline radius is R = 4.25 m. There are two 6-m long straight reaches connected to the
bend. The channel boundaries are hydraulically smooth and the bed slop is zero. The upstream flow
discharge is 0.19 m3/s and the downstream value is given with the terminal water depth H0 = 0.18 m.
A uniform mesh of 100× 26 (Figure 2) with δx = δy = 0.047 m is employed, the particle velocity e is
2 m/s, and the Froude number Fr = 0.47. Also, the chosen time step is δt = δx/e = 0.0235 s and the
relaxation time is τ = 0.819 s, as determined by Equation (3).
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Figure 2. Computational mesh of the open channel bend.

Comparison of the water depth at the central line as well as the inner and outer banks are depicted
in Figure 3. The error analysis of different models is presented in Table 1. For LBM, the maximum
root mean squared error(RMSE) and the relative RMS error (RRE), which occurred at the outer
bank, are 0.013% and 16.7%, respectively. In Zhang’s 3D model, these values are 0.012% and 16.5%,
which occurred at the center line. Simulations at the inner bank for the two models are better than that
at the central line and the outer bank, since the relative RMS error at the inner bank is the smallest.
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In general, compared to the experimental data, our 2D scheme achieved an acceptable result in the
water depth, but a closer agreement between the experimental data and results of the 3D model
was realized.Water 2018, 10, x FOR PEER REVIEW  7 of 14 
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Figure 3. Comparison of water depth along the channel: (a) outer bank; (b) central line; (c) inner bank.
Note: The vertical ordinate is the water depth which is normalized as ∆H/H0. The horizontal axis
represents the longitudinal length from the inlet, which is normalized against the distance at the center
of the bend.

Table 1. Error analysis of water depth simulation.

Model
Inner Bank Center Line Outer Bank

MAE RMSE RRE (%) MAE RMSE RRE (%) MAE RMSE RRE (%)

2D-LBM 0.0094 0.011 14.1 0.0085 0.011 15.7 0.011 0.013 16.7
3D 0.0077 0.0099 12.5 0.0096 0.012 16.5 0.0089 0.012 14.5

(1) MAE is mean absolute error; RMSE is root mean squared error, which is the average of the squared differences
between measured and predicted values; RRE is defined as the ratio of the RMS error to the observed change.
(2) The unit of MAE and RMSE is m. (3) The three-dimensional (3D) model is a 3D Re-Normalisation Group (RNG)
k-ε turbulence model established by Zhang [38].

Comparisons between predicted and measured depth-averaged velocities at six cross-sections
are depicted in Figure 4; the error analyses of different sections are shown in Table 2. At section 60◦

and 180◦, our scheme achieved better results and the RMS error values were 0.06 and 0.017, while in
the remaining sections the 3D model performed better. For both methods, the maximum RRS error
occurred at section 90◦ and the values were 0.063 and 0.058 (see Table 2). Generally, although there are
some discrepancies at section 90◦, the comparison of results between the measured data and predicted
data was acceptable.

The results of water depth and velocities indicate that Zhang’s model achieved better results.
The main reason for this is that Zhang’s model is established as a 3D RNG k-ε turbulence model,
which considers the vertical direction and the influence of the secondary flow in the meandering
channel. Nevertheless, as our scheme is a 2D model, it is simpler in programming and the results show
reasonable accuracy.
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Figure 4. Velocity distribution of different sections (a) 0◦; (b) 30◦; (c) 60◦; (d) 90◦; (e) 120◦; (f) 180◦.

Table 2. Error analysis of velocities at different sections.

Model
0◦ 30◦ 60◦ 90◦ 120◦ 180◦

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

2D-LBM 0.0185 0.023 0.052 0.061 0.037 0.044 0.062 0.063 0.076 0.08 0.013 0.017
3D 0.0180 0.021 0.027 0.028 0.056 0.063 0.049 0.058 0.035 0.04 0.056 0.06

Note: (1) The unit of MAE and RMSE is m/s. (2) The 3D model is a 3D RNG k-ε turbulence model established by
Zhang [38].

3.2. Meandering River with Piers

In order to test the capability of simulating the practical problem in real rivers, the present scheme
was used to simulate the meandering flow of the Longhua River in Shenzhen, China. This study area
is 606 m long and 31.5 m wide with two bend sections (section 1# and section 2#). Figure 5 shows
a schematic description of the simulation domain. White circles depicted in the figure represent the
piers in this river, across which there is a small bridge.
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The accuracy and stability of the traditional finite volume method (FVM) has been demonstrated
in the simulation of practical rivers [39,40]. Therefore, our results were compared with FVM results
and monitoring data. The monitoring data were obtained by monitoring the river on 8 August 2017,
for which water depth and depth-average velocities were monitored at the bends. There were four
monitoring points set every 10 m from the inner bank at each bend.

The main parameters are described in Table 3. The upstream discharge was 494 m3/s and the
downstream water depth was 5.22 m. The Manning’s coefficient of the bed nb was 0.025 and constant
particle velocity was e = 10 m/s. The time step was δt = 0.05 s and the single relaxation time was
τ = 0.56 s.

Table 3. Parameters for the simulation.

Method Grid Q (m/s) H0 (m) Bed Slope nb E (m/s) δt τ Re

MRT-LBM 316 × 20 494 5.22 0.00373 0.025 10 0.05 0.5001 156.83
FVM 5934 494 5.22 0.00373 0.025 / 0.05 / 156.83

Notes: Triangle meshes are used in FVM, therefore it shows different meshes. This river is an artificial river, so that
the bed slope is constant. Re = 156.83 is the Reynolds number, which can be defined as: Re = hU0/2υ, where h is
the height of the entry section, υ is the kinematic viscosity, and U0 is the maximum inlet velocity.

In LBM simulations, body-fitted coordinate grids were used and a uniform mesh of 316 × 20
(see Figure 6) was applied. The minimum lattice length was 1.00035 m, while the diameter of piers
was 1.2 m. Like the wall boundaries, these piers were simulated as obstacles, and a slip boundary
transformed on curvilinear coordinates was used.

In the FVM model, the Reynolds-averaged Navier–Stokes equations (RANS) were solved to
simulate piers, and triangle meshes were used. The minimum element area was 0.66 m2.
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Figure 6. Mesh of the lattice Boltzmann method (316 × 20).

A comparison was made at the bends of the river. The water depth at the bends are plotted in
Figure 7, and the total velocity is shown in Figure 8. The water depth of section 1# decreases from the
outer bank to the inner bank, while at section 2# the water depth decreases from the inner bank to
the outer bank. The total velocity shows a decreasing trend from the inner bank to the outer bank in
section 1#, while in the bend section 2# displays an increasing trend from the inner bank to the outer
bank. This outcome is consistent with the actual situation; where the water depth is higher, the water
flows more slowly.

Table 4 shows the error analysis of the FVM and the MRT-LBM. Both methods agree well.
For example, the water depth in the FVM achieves a better result, as the RMSE is 0.025 m and the
relative RMS error is 12.5% at section 2#, while for MRT-LBM the RRE is 13.0% and the RMSE is 0.026 m.
Generally, there are minute differences between monitored data and simulation data—this is probably
due to the influence of centrifugal force which generates the secondary flow at the bend, while the 2D
computation model does not consider the vertical direction. However, the accuracy is acceptable.

According to the comparison, our scheme performs well for velocity at section 1#, while at
section 2# there are some discrepancies near from the inner bank and the RRE is 29.1%. In general,
the FVM was superior to the proposed model. The main reason for this are: (1) the uniform mesh of the
MRT-LBM is non-orthogonal, which may lead to small deviation especially at bends; (2) the governing
equations should be transformed into curvilinear coordinates in the proposed model, and the finite
difference approximation of the transformation matrix may lead to some discrepancies. However,
our proposed model requires much fewer CPUs as well as less time for simulation. The outcome
demonstrates the advantages of LBM and is consistent with relevant reports in the literature [12,15,41].
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Figure 7. Comparison of water depth: (a) comparison results of section 1#; (b) comparison results of
section 2#. The horizontal axis represents the distance from the outer bank, and the unit is m.



Water 2018, 10, 615 11 of 14
Water 2018, 10, x FOR PEER REVIEW  11 of 14 

 

  
Figure 8. Comparison of depth average velocity: (a) comparison results of section 1#; (b) comparison 
results of section 2#. The horizontal axis represents the distance from the outer bank, and the unit is m. 

Table 4. Error analysis of the simulation model. 

Variables Model 
Section 1# Section 2# 

MAE RMSE RRE (%) MAE RMSE RRE (%) 
Water 
depth 

MRT-LBM 0.018 0.020 15.1 0.022 0.026 13.0 
FVM 0.014 0.018 13.7 0.021 0.025 12.5 

Velocity 
MRT-LBM 0.033 0.039 16.4 0.106 0.14 29.1 

FVM 0.039 0.042 17.5 0.061 0.07 15.1 

Two uniform meshes of 316 × 20 and 632 × 40 (see Figure 6) were applied to investigate the 
flow field distribution around the piers. The results in Figure 9 show that the finer grids produce a 
more clear flow field around the cylinders. Figure 10 depicts a 3D visualization of the streamline 
and water depth, which shows small vortexes around the piers. Because of the low Reynolds 
number, the water flows past the piers and persists without separation. 

 
(a) 

 
(b) 

Figure 9. Flow field around the piers: (a) uniform mesh of 316 × 20; (b) uniform mesh of 632 × 40.  
The black dots represent the piers. 

0

0.5

1

1.5

2

0 10 20 30

section 1#

ve
lo

ci
ty

(m
/s

)

(a)

distance from outer bank(m)
0

0.5

1

1.5

2

0 10 20 30

section 2#

distance from outer bank(m)

(b)

ve
lo

ci
ty

(m
/s

)

Figure 8. Comparison of depth average velocity: (a) comparison results of section 1#; (b) comparison
results of section 2#. The horizontal axis represents the distance from the outer bank, and the unit is m.

Table 4. Error analysis of the simulation model.

Variables Model
Section 1# Section 2#

MAE RMSE RRE (%) MAE RMSE RRE (%)

Water depth MRT-LBM 0.018 0.020 15.1 0.022 0.026 13.0
FVM 0.014 0.018 13.7 0.021 0.025 12.5

Velocity MRT-LBM 0.033 0.039 16.4 0.106 0.14 29.1
FVM 0.039 0.042 17.5 0.061 0.07 15.1

Two uniform meshes of 316 × 20 and 632 × 40 (see Figure 6) were applied to investigate the flow
field distribution around the piers. The results in Figure 9 show that the finer grids produce a more
clear flow field around the cylinders. Figure 10 depicts a 3D visualization of the streamline and water
depth, which shows small vortexes around the piers. Because of the low Reynolds number, the water
flows past the piers and persists without separation.
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Figure 9. Flow field around the piers: (a) uniform mesh of 316 × 20; (b) uniform mesh of 632 × 40. The
black dots represent the piers.
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4. Conclusions

In this study, a sub-grid multiple relaxation time (MRT) lattice Boltzmann model with curvilinear
coordinates was developed. An open channel flow with a 180◦ bend was simulated to validate the
model. Furthermore, the calculated results were compared with the experimental data and Zhang’s
results. Error analysis revealed that the 3D model was superior to the proposed 2D model; however,
the 2D model only requires simple programming and its results are acceptable.

A real meandering river with piers was simulated to test the application of the scheme. The results
were reliable and agreed well with those of the finite volume method (FVM). Flow field and 3D
streamline with height are plotted in Figures 9 and 10, in which the flow around the piers can be clearly
seen. It was shown that with a low Reynolds number, the proposed method has great potential to
solve realistic problems in curved rivers.

In the future, turbulent models with a high Reynolds number can be modified based on the
proposed method to solve more complex flow problems. Moreover, the advection and anisotropic
dispersion equations can be combined to solve the water quality problems. These extensions will be
studied in our future research.
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