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Abstract: Multifuntional fabrics with special wettability have attracted a lot of interest in both
fundamental research and industry applications over the last two decades. In this review, recent
progress of various kinds of approaches and strategies to construct super-antiwetting coating on
cellulose-based substrates (fabrics and paper) has been discussed in detail. We focus on the significant
applications related to artificial superhydrophobic fabrics with special wettability and controllable
adhesion, e.g., oil-water separation, self-cleaning, asymmetric/anisotropic wetting for microfluidic
manipulation, air/liquid directional gating, and micro-template for patterning. In addition to
the anti-wetting properties and promising applications, particular attention is paid to coating
durability and other incorporated functionalities, e.g., air permeability, UV-shielding, photocatalytic
self-cleaning, self-healing and patterned antiwetting properties. Finally, the existing difficulties and
future prospects of this traditional and developing field are briefly proposed and discussed.

Keywords: superhydrophobic cellulose-based materials; wettability; self-cleaning; oil-water separation;
wetting pattern

1. Introduction

In general, the wettability of a surface can be characterized by the contact angle (CA).
Multifuntional surfaces with special wettability have attracted a lot of interest in both fundamental
research and industry applications over the last two decades [1–15]. The surface with a water droplet
CA less than 90˝ and above 90˝ is commonly defined as hydrophilic and hydrophobic respectively, as
demonstrates in Figure 1a. Recently, specific superhydrophobic surfaces with a CA larger than 150˝

have attracted significant attention because of their unique super-antiwetting, self-cleaning properties
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and their potential for practical applications. It is well known that numerous creatures and plants exist
in nature with amazing superhydrophobic surfaces. For example, the lotus effect [16–18], as shown
in Figure 1b, describes the excellent super-antiwetting and self-cleaning ability of lotus leaf surfaces.
The rainwater can smoothly roll off the lotus leaves instead of sticking to the surface. These special
characteristics are attributed to the combination of a waxy layer with low surface energy and dual-scale
rough structured surface with protrusions on lotus leaves. If these two key features of lotus leaves can
be extended to other substrates, it can be useful and helpful to construct artificial super-antiwetting
surfaces for numerous practical applications. Despite the excellent properties of cotton fibers, one of
the most abundant and widely used natural materials in our world, some inherent features such
as being hydrophilic, poor resistance to UV light (color yellowing), impotent antimicrobial activity,
have confined their wider applications, especially in some high-tech fields for self-cleaning, medicine,
personal healthcare, and flexible multifunctional textile. Therefore, the value-added cotton fabrics
by post-functionalizationhave attracted considerable academic and industrial attention, not only due
to their potential utilization in thermal, physical, and biological protection, but also to meet the fast
evolving demand from consumers for advanced multifunctional cloths.

Generally, the wetting states of water droplets on solid surface can be classified into two categories,
namely Cassie-Baxter state and Wenzel state [19–21], in which the water either sits upon the surface
protrusions or penetrates into the surface porosity, respectively, as shown in Figure 1c,d. The
superhydrophobicity can be usually explained by the Cassie-Baxter model [20]. In this model, a large
amount of air is trapped in the microgrooves of a rough surface and water droplets rest on a composite
surface comprising air and the tops of micro-protrusions. The importance of the fractal dimensions of
the rough surfaces is well recognized and many approaches have been based on the fractal contribution.
Suitable roughness in combination with low surface energy has been required to construct artificial
superhydrophobic surfaces. Therefore, altering one of these two factors or both will change the surface
wettability state.
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Surface engineering of cellulose-based substrates with desired functionalities can be achieved by
a considerable number of physical and chemical techniques ranging from traditional treatments to
multifunctional approaches. Superhydrophobic cellulose-based materials, in fact, offer a challenging
platform for functional modifications in order to meet rigorous requirements for a variety of practical
applications. This article reviews recent advances involving surface engineering of physical structure
and chemical component on cellulose-based substrates, especially for fabric and paper, using wet
(dip-coating, wet chemical etching, chemical bath deposition, electro-assistant deposition, and
spray-coating) or dry (chemical vapour deposition, and plasma processing techniques) processe. The
corresponding properties (robustness, durability, breathability, and self-healing) are discussed too. The
authors will also present how the controlled wettability is integrated into traditional cellulose-based
materials to improve their super-antiwetting performances and to extend their practical applications
by developing new functionalities (oil-water separation, self-cleaning and asymmetric/anisotropic
wetting). Finally, the authors give a brief summary and outlook on the fabrication and applications of
superhydrophobic cellulose-based surfaces and the emerging development of innovative production
techniques used to modify the surface materials and to improve the product quality.

2. Construction of Superhydrophobic Coating on Cellulose-Based Substrates

The construction of surfaces with special wettability is inspired by a wide variety biological
creatures and plants, such as lotus leaf, water strider, geckos, butterfly wings, shark skin, fish
scale [22–28]. The combination of micro-nano dual-scale hierarchical structures (surface roughness)
and chemical components on biological surfaces is verified to be a vital factor for the realization of
superwettability properties. Bio-inspired by these findings, many techniques and rational strategies
have been applied to construct robust superhydrophobic and self-cleaning fabrics by mimicking the
surface topography of biological systems [29–33].

In general, there are two general rules for constructing superhydrophobic materials and
surfaces [34–42]: the coating should have an appropriate hierarchical surface structure with
micro-nano dual scales, and the coating must have at least moderately low surface energy
component, e.g., hydrocarbon or fluorocarbon compounds. There are various physical and chemical
approaches to satisfy these two requirements to realize superhydrophobic abilities for cellulose-based
substrates [43–47]. Textiles or membranes are generally believed to be rough substrates with reentrant
curvatures and controllable diameter or spacing of fibers that are suitable for the achievement of
super-antiwetting ability [48–50]. The most common techniques to construct rough coatings for the
formation of superhydrophobic cellulose-based materials include various dip-coating methods, wet
chemical etching, chemical bath deposition, electro-assistant deposition (electrophoretic deposition,
electrospinning), spray-coating, chemical vapour deposition, and plasma processing techniques.
Typically, these techniques can be divided into two categories, viz., wet chemical methods and dry
physical techniques. Although most reports demonstrated that super-antiwetting surfaces with special
wettability could been fabricated via a single method or process to successfully change sole surface
structure/component or both of them simultaneously, dual/multiple processes are required to realize
structural and chemical requirements in some specific cases [13,47].

The summary of most common synthesis techniques for superhydrophobic coatings on
cellulose-based substrates is listed in Table 1. Detailed discussion on various processes to construct
superhydrophobic coatings on cellulose-based substrates is presented in following sections under
“Wet-Chemical Methods” and “Dry Methods”.
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Table 1. Common techniques to construct superhydrophobic coatings on cellulose-based substrates
and general characteristics of the different techniques and coatings.

Methods Roughness Formation Time-Scale and
Requirement a Properties Ref.

Dip-coating Nanoparticle coating Slow Mechanical and
environmental stability [51–63]

Wet chemical
etching

Growth of nano-structures
by etching Rapid/slow Excellent resistance to

washing, abrasion [64–67]

Chemical bath
disposition

Nanoparticle film
deposition

Slow and temperature
requirement Moderate durability [68–75]

Electrophoretic
deposition Nanoparticle coating Rapid and conductive

substrate requirement
Chemical stability,
highly transparent [76–80]

Electrospinning Nanofibers by
electrospinning

Slow and solvent
requirement Porous membrane [81–87]

Spray-coating
methods

Micro/nanostructures
by spraying

Rapid and scalable
under ambient

conditions

Moderate stability,
easy reparability [88–95]

Chemical vapor
deposition

Growth of nano structures
by polymerization Slow and need heating

Separation of oils or
organic contaminates

from water
[96–101]

Plasma etching
process

Growth of nanostructures
by etching

Moderate and require
specific equipment Self-cleaning [102–110]

a Typical time-scales for slow, moderate, and rapid procedures are 1 h or more, 1–5 min, and <30 s, respectively.

2.1. Wet Chemical Methods

2.1.1. Dip-Coating Methods

Dip-coating to cover the fiber surface with a layer of hydrophobic inorganic micor/nano-particles,
such as TiO2, SiO2 and ZnO, is the most common and versatile technique to construct a super-
antiwetting coating on various textile substrates [51–63]. It typically requires at least three individual
processing steps, e.g., dipping in the coating slurry, drying, and curing. Usually, the coating slurry
contains organic solvent components that wet the textile and disperse particles, nano/micro dual scale
particles components that increase the coating roughness, and specific polymer component that increase
the binding strength. In some cases, the coating slurry may also contain hydrophobization agents, e.g.,
fluorocarbon silane, to decrease the surface energy of the coating layer. Some super-antiwetting fabrics
constructed via the dip-coating process display surprisingly good mechanical durability attributing to
the strong polymer binders and hierarchical roughness of stable particle coating.

Inspired by the amazing super-antiwetting ability of lotus leaf and the bioadhesion of mussel
adhesive protein, Wang et al. fabricated superhydrophobic cotton fabric through the robust
immobilization of SiO2 nanoparticles and subsequent hydrophobic modification [56]. The simple
preparation process of superhydrophobic cotton fabric and the surface appearances of pristine and
as-prepared fabric are shown in Figure 2. It is evident that the surface of pristine fabric is relatively
smooth with intrinsic woven fabric structure, while the fabric surface is completely covered by a
large number of nanoparticles after the treatment. Such rough microstructure can be full of air, thus
preventing the penetration of water droplets into the cavities or interspaces of the fabric surface to
improve the hydrophobicity. The obtained fabric shows high separation efficiency for a wide range of
oil-water mixtures.
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Figure 2. (a) Schematic representation of the preparation of superhydrophobic fabric; (b) Change of
water contact angle of superhydrophobic fabric versus the recycling numbers of toluene/water mixture
separation; (c) Change of water contact angles of superhydrophobic fabric after being ultrasonically
treated for different time; (d) Change of water contact angles of superhydrophobic fabric after being
exposed to acidic and alkaline solutions for different time; the morphology of (e,e1) pristine fabric and
(f,f1) superhydrophobic fabric. (Reprinted from Reference [56] with permission).

2.1.2. Wet Chemical Etching

Chemical etching increases the surface roughness of the fibers substrates. In case of hydrophobized
microscale cellulose membranes, a simple chemical etching can yield the surface super-antiwetting
behaviour due to the wetting state transition from the Wenzel to Cassie-Baxter regime. It is well known
that fluoropolymer is a kind of materials with low surface energy to form superhydrophobic surface,
therefore a simple soaking process in reactant-containing solution would be a facile technique to achieve
superhydrophobic property on substrates with appropriate surface roughness. For example, Wu et al.
reported an extremely simple solution soaking coating in fluoropolymers (FPs) process for preparing
extremely durable superhydrophobic textiles [64]. The textiles coated under the optimal conditions
show excellent superhydrophobicity, mechanical (e.g., abrasion and laundering), environmental
(e.g., UV irradiation, very low and high temperatures) and chemical (e.g., acid, base and organic
solvents) stabilities.

Xue et al. prepared colorful superhydrophobic poly(ethylene terephthalate) (PET) textile surfaces
with self-cleaning property by chemical etching and coating with polydimethylsiloxane (PDMS) [68],
as shown in Figure 3. Firstly, the original textiles were cleaned with deionized water to remove the
impurities and dried. The cleaned textiles were dipped into sodium hydroxide solution for 10 min.
Then the soaked textiles were doubled-side covered in a polyethylene film and heated at 120 ˝C. Finally,
the textiles were rinsed by abundant water until the pH of the textile surfaces reached 7 and dried in
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an oven. Thus, chemically etched PET textiles were obtained and denoted as E-PET. After etching
of the solid surfaces of PET fibers, pits were formed not only to decrease the contact area between
the water droplets and textile surface, but also trap air for improving the fiber hydrophobicity, thus
making water roll easily on the textiles. The as-obtained textiles possess remarkable durability against
different pH solutions without changing its super-repellent feature and exhibit excellent resistance to
washing, abrasion, even exposure to UV light. Importantly, colorful images could be imparted onto
the superhydrophobic surfaces by conventional dyeing or thermal transfer printing on the textiles.
The method is simple and requires no special equipment, which is suitable for large-scale production.
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Figure 3. (a) Schematic illustration of the synthesis process of superhydrophobic textiles. Schematic
models of a water droplet contact with hydrophobic textiles with smooth fibers (b) and superhydrophobic
textiles with etched fibers (c); SEM images of (d) pristine poly(ethylene terephthalate) (PET) textile,
(e) pristine PET fibers, (f) E-PET fibers, and (g) polydimethylsiloxane (PDMS)-E-PET with a PDMS
add-on of 3 wt %. The inset of (g) is the optical image of a water droplet on the PDMS-E-PET surface.
(Reprinted from Reference [68] with permission).

2.1.3. Chemical Bath Deposition

Zeng et al. reported a simple chemical bath deposition method to deposit CuO nanoparticles
on fabric [69]. The as-prepared fabric exhibited superhydrophobicity and highly oleophobicity
after a fluorination process as shown in Figure 4a–d. The as-obtained samples exhibited excellent
self-cleaning properties for water and oils such as ethylene glycol and rapeseed oil. Huang et al. formed
covalently bonded flower-like TiO2 nanoparticles on cotton fabrics by in-situ growth via a chemical
bath deposition process [70], in which the cotton was immersed in the reaction mixture for several
hours at 80 ˝C. Then a self-assembling process of fluoroalkylsilane was carried out to construct a robust
superhydrophobic TiO2@fabric (Figure 4e). The obtained composite TiO2@fabric is promising to be
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adapted for the design of multifunctional fabrics with good anti-UV, effective self-cleaning, efficient
oil-water separation, and microfluidic management applications. Zhang et al. have employed this
method to prepare a robust ZnO film on a cotton surface to create rough structures [71]. After grafting
with (heptadecfluoro-1,1,2,2-tetradecyl)trimethoxysilane with low surface energy, the wetting property
of the fabric sample transformed from superhydrophilic to superhydrophobic with a WCA of 158˝, and
its LOI (limiting oxygen index) value greatly increased from 18.3% to 21.6%, showing its outstanding
superhydrophobicity, flame retardancy and thermal stability. The above-mentioned superhydrophobic
cotton fabrics constructed via wet chemical deposition exhibited outstanding antiwetting, UV shielding,
durability and flame retardancy, offering an opportunity to accelerate the large-scale production of
superhydrophobic textiles materials for new industrial applications.
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Figure 4. (a) Schematic diagram of the fabrication process for strong amphiphobic fabric; (b) SEM
images of the original fabric; (c,d) Low- and high-magnified images of the CuO-coated fabrics
(Reprinted from Reference [69] with permission); (e) Schematic illustration of the procedure used
to construct superhydrophobic TiO2 particles-decorated cotton fabric and their corresponding
SEM images and wetting behaviour before and after TiO2 particles-decoration and 1H, 1H, 2H,
2H-perfluorodecyltriethoxysilane modification. (Reprinted from Reference [70] with permission).

2.1.4. Electric-Field Assisted Etching/Deposition

The electric-field assisted deposition technique, including electrophoretic deposition, electrospinning
and electrostatic layer-by-layer assembly is a well-established industrial process that has been applied
for fast and scalable deposition of large-scale films on conductive substrates in a stable suspension
electrolyte [76–79]. Electrophoretic deposition (EPD) has been used to form homogeneous and
stable TiO2-based nanobelt thin films [76]. Firstly, a stable titanate nanobelt particle suspension
was prepared by a hydrogen-bond-driven assembly of pre-hydrolysed fluoroalkylsilane on its surface.
Then a one-step electrophoretic deposition was applied to fabricate a transparent cross-aligned
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superhydrophobic TNB/FAS film on conducting substrates. Such a surface has displayed high
chemical stability, self-cleaning ability and anti-fogging applications.

Buie et al. coated polyester fabrics using electrostatic layer-by-layer (LBL) assembly of
poly(diallyldimethyldiammonium chloride, poly(sodium 4-styrenesulfonate) and SiO2 nanoparticles
firstly [77]. Then the fabrics were further coated with SiO2 particles-polymer assemblies by an EPD
process. A superhydrophobic composite coating was realized after a heat treatment (Figure 5). This
method had advantages of scalability, durability, and control of wettability, which also showed great
potential for commercial use.
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Electro-spinning, another main electro-field assisted process, is a promising and straightforward
technique that produces nano- and micro-fibers cross-stacked nonwoven materials [81–87].
Superhydrophobic polyimide-siloxane mats can be fabricated using an electrospinning process [81].
Firstly, to obtain the poly(amic acid) solutions with various siloxane content and siloxane block
length, condensation reaction of diamine and dianhydride was performed. Afterward, PAA solutions
were electrospun using an electrospinning process. Finally, thermal imidization was performed.
Polyimide-siloxanes, which are abbreviated as PIS-1, PIS-2, PIS-3 and PIS-4 were successfully prepared
and electrospun, as shown in Figure 6.
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Figure 6. SEM images of various polyimide-siloxane mats through the electro-spinning of different
poly(amic acid) precursor solutions synthesized by the condensation reaction of 3,3’,4,4’-benzophenone
tetracarboxylic dianhydride (as a dianhydride) with a mixture of 4,4‘-oxydianiline and aminopropyl
terminated polydimethylsiloxane (as diamines). (a): PIS-1, (b): PIS-2, (c): PIS-3 and (d): PIS-4 at 5000ˆ

magnification. (Reprinted from R eference [81] with permission).

2.1.5. Spray-Coating

Spray-coating is a facile, rapid and versatile way to build rough multi-scale hierarchal structure.
It can be used to coat a layer of low surface energy polymer on all kinds of substrates [88–95]. For
example, Yang et al. fabricated superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite
coatings on the stainless steel meshes by a simple spray-coating process. The authors demonstrated the
coated mesh maintained highly superhydrophobic property after being treated in various harsh
conditions, including mechanical scratch, high temperature, humid atmospheres, and corrosive
substance [89].

2.1.6. Other Wet Methods

In most cases, long chain fluorine-based precursors were grafted for surface treatment to
develop superhydrophobicity on the substrate surface. The safety and cost concerns of the long
chain fluorine-based precursors greatly restrict such materials for scalable production. Recently,
Lai et al. grafted short fluoroalkyl chain on cotton fabrics via a rational strategy to construct
robust superhydrophobic fabrics with excellent air permeability behavior, good anti-wetting, and
mechanical stability under multiple dry abrasion and wet laundering processes [111]. In this work,
short fluoroalkyl chain of C3F7 with low energy compounds was robustly grafted on cotton fibers
through an atom transfer radical polymerization (ATRP) strategy. A double graft-on-graft route
has also been employed to enhance the capacity of maintaining its superhydrophobic, as shown
in Figure 7a,b. Compared to the highest water CA on conventionally PGMA-grafted surfaces with
saturated C3F7 chain termination (~155˝), the graft-on-graft architecture surfaces exhibit a higher WCA
of 163.7 ˘ 2.5˝ (Figure 7c,d). These results verify the designed graft-on-graft architecture is an effective
and promising approach to achieve excellent super-anti-wetting ability with environmentally-friendly
short fluoroalkyl chains. This chain grafting technique enables creation of superhydrophobic coatings in
a sophisticated manner through closely controlled chemical reactions. Drawback of grafting techniques
is their specific multi-step process and time-consuming nature. Zhang et al. also used wet chemical
grafting polymerization to construct superhydrophobic polymeric films on the surface of cotton
fabrics [112]. The superhydrophobic films were fabricated by immersing cotton fabrics in the siloxane
solution followed by the treatment of low temperature plasma with glow discharge at a pressure of
10 Pa. Such simple, cost-effective, and environmental-friendly technique has a positive effect on the
construction of fluorine-free superhydrophobic films on fabric surfaces [113].
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graft-on-graft cotton surface. Insets are the images of water contact angle, respectively. The images of 

the water contact angle (CA) on C3F7 modified graft fabric surface (d) and graft-on-graft fabric surface 

(e). (Reprinted from Reference [111] with permission). 
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very simple one-step sol-gel approach to fabricate transparent and self-cleaning superhydrophobic 

coatings via the processing of long-chain fluoroalkylsiane [117]. The coating exhibited a rough, 

wrinkled, hill-like surface morphology, and the water drops assumed a spherical shape on this 

surface with a contact angle of 169° and a sliding angle of less than 5°. The prepared 

superhydrophobic coating exhibited an excellent self-cleaning performance. The superhydrophobic 

wetting state was well preserved even after the impact of a high-speed water jet.  

Zhu et al. reported a simple and rapid solvent swelling method to scale up the construction of 

superhydrophobic surface [118]. At first, the fabrics were swelled in cyclohexane/heptane mixture at 

80 °C. Subsequently the recrystallization of the swollen macromolecules on the fiber surface 

contributes to the formation of submicron protuberances, which increase the surface roughness 

dramatically and result in superhydrophobic behavior. The as-obtained superhydrophobicity 

demonstrates excellent durability and robustness, such as good resistances to water penetration, 

abrasion, acidic/alkaline solution and boiling water. 

2.2. Dry Methods 

2.2.1. Chemical Vapour Deposition 

Chemical vapor deposition (CVD) is a typical dry technique enable tuning of chemical and 

physical fine structure to be deposited onto a substrate in the form of nonvolatile film via the reaction 

of gaseous reactants [96–101]. Bao et al. developed a novel method for fabrication of 

superhydrophobic surfaces by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 

and Fe3O4, on the fabrics followed by treatment with polydimethylsiloxane (PDMS) via chemical 

vapor deposition (CVD) method [98]. The combination of the improved surface roughness generated 

from of the nanoparticles via CVD aggregation with the low surface-energy of silicon-coating originated 

from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. This 

Figure 7. (a) Schematic diagram of synthetic approach for grafting fluoroalkyl chains on cotton surface;
(b) Schematic diagram of synthetic functional cotton surface via graft-on-graft approach; (c) change
of water contact angle on grafted functional cotton surface with different fluoroalkyl amount and
graft-on-graft cotton surface. Insets are the images of water contact angle, respectively. The images of
the water contact angle (CA) on C3F7 modified graft fabric surface (d) and graft-on-graft fabric surface
(e). (Reprinted from Reference [111] with permission).

Sol-gel processing is a well-recognized method of synthesizing gels and nanoparticles [114–117].
The surface roughness obtained with the sol-gel method can be easily tuned by changing the protocol of
the method and the composition of the reaction mixture. Sol-gel process to fabricate superhydrophobic
surface has been studied extensively over the past decades. Liu et al. performed a very simple
one-step sol-gel approach to fabricate transparent and self-cleaning superhydrophobic coatings via
the processing of long-chain fluoroalkylsiane [117]. The coating exhibited a rough, wrinkled, hill-like
surface morphology, and the water drops assumed a spherical shape on this surface with a contact
angle of 169˝ and a sliding angle of less than 5˝. The prepared superhydrophobic coating exhibited an
excellent self-cleaning performance. The superhydrophobic wetting state was well preserved even
after the impact of a high-speed water jet.

Zhu et al. reported a simple and rapid solvent swelling method to scale up the construction of
superhydrophobic surface [118]. At first, the fabrics were swelled in cyclohexane/heptane mixture at
80 ˝C. Subsequently the recrystallization of the swollen macromolecules on the fiber surface contributes
to the formation of submicron protuberances, which increase the surface roughness dramatically and
result in superhydrophobic behavior. The as-obtained superhydrophobicity demonstrates excellent
durability and robustness, such as good resistances to water penetration, abrasion, acidic/alkaline
solution and boiling water.

2.2. Dry Methods

2.2.1. Chemical Vapour Deposition

Chemical vapor deposition (CVD) is a typical dry technique enable tuning of chemical and
physical fine structure to be deposited onto a substrate in the form of nonvolatile film via the reaction
of gaseous reactants [96–101]. Bao et al. developed a novel method for fabrication of superhydrophobic
surfaces by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on the
fabrics followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD)
method [98]. The combination of the improved surface roughness generated from of the nanoparticles
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via CVD aggregation with the low surface-energy of silicon-coating originated from the thermal
pyrolysis of PDMS would be responsible for the surface superhydrophobicity. This strategy may
provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological
significance for various practical applications especially for separation of oils or organic contaminates
from water. Zhou et al. introduced the incorporation of polyaniline and fluorinated alkyl silane to the
cotton fabric via a facile vapor phase deposition process [99]. The as-prepared fabric surface possessed
both superhydrophobicity with the water contact angle of 156˝ and superoleophilicity with the oil
contact angle of 0˝. This fabric can be applied for oil/water separation. Moreover, compared with
other materials for oil-water separation, the reported process was simple, time-saving, and repeatable
for at least 30 times. Therefore, the as-prepared fabric exhibits a great durable property under extreme
environmental conditions such as high temperature, high humidity, strong acidic or alkaline solutions,
and mechanical forces (Figure 8).
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energy oxygen ions emitted by the microwave plasma to produce active groups on the surface [103]. 

After treating with oxygen plasma etching, PVDF membranes were placed in methyltrichlorosilane 
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leaf-like PVDF membrane were 155° and 4°, exhibiting superhydrophobic property and self-cleaning 

property. The method of plasma etching processing was a cheap and easily implementable method 

to prepare the superhydrophobic surface [104–110]. 

Kwon et al. employed oxygen plasma-based nanostructuring method with a subsequent coating 

with a low-surface-energy material to produce a single-faced superhydrophobic lyocell fabric 
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asymmetric wetting properties on a fabric layer would be significant and relevant for applications 
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Figure 8. (a) Schematic illustration of the methodology of the abrasion test. The variation of water
contact angles of the coated fabric (b) scratched by the sandpaper, and (c) stretched by axial tensile
forces. Insets are the corresponding separation efficiencies for the oil-water mixture; (d) Images of the
stretched textile (left) and water droplets on the broken yarns (right). (Reprinted from Reference [99]
with permission).

2.2.2. Plasma Etching Processing

The dry plasma etching processing is important for the rough structure construction on some
specific cellulose fiber (e.g., silk) because the mechanical properties of silk fibers submerged in water
or solvent could decrease the binding strength of van der Waals force and hydrogen bonds among the
chain segments [102]. Zheng et al. investigated the PVDF membranes bombarded with high-energy
oxygen ions emitted by the microwave plasma to produce active groups on the surface [103]. After
treating with oxygen plasma etching, PVDF membranes were placed in methyltrichlorosilane gas for
40–120 min grafting at 25 ˝C. The water contact angle and sliding angle on the created lotus-leaf-like
PVDF membrane were 155˝ and 4˝, exhibiting superhydrophobic property and self-cleaning property.
The method of plasma etching processing was a cheap and easily implementable method to prepare
the superhydrophobic surface [104–110].

Kwon et al. employed oxygen plasma-based nanostructuring method with a subsequent
coating with a low-surface-energy material to produce a single-faced superhydrophobic lyocell
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fabric maintaining its inherent high moisture absorbing bulk property (Figure 9) [107]. The achieved
asymmetric wetting properties on a fabric layer would be significant and relevant for applications
that require water repellency and self-cleaning properties, and simultaneously not compromising the
clothing comfort.Materials 2016, 9, 124 
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that ALD coating method could prepare superhydrophobic proteins to be used in applications the 

require water-proof and self-cleaning. Cortese et al. successfully prepared surfaces by one-step 
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rubber (PTFE/RTVSR) composites by a simple abrading method [122]. Cotton covered with these 

composites gained great mechanical durability because the elastic nature of the composite has 

enabled composites to avoid mechanical damage during the friction cycles (Figure 10). 

Figure 9. Nanostructured fabric surface: (a) schematic of plasma-processed fabric surface; (b) FE-SEM
images of lyocell fabric that was oxygen etched for 20 min; (c) Photographic image demonstrating the
asymmetric wetting behavior of the plasma-processed lyocell fabric. (Reprinted from Reference [107]
with permission).

2.2.3. Other Dry Methods

In addition to the above mentioned common techniques for the construction of superhydrophobic
cellulose-based substrates, there are still some other specific methods that are suitable for the realization
of super-antiwetting ability in certain fields, e.g., atomic layer deposition [119,120], plasma-assisted
chemical vapour deposition [121], light irradiation grafting [122] or even structural change via abrading
or physical transformation. For example, Xiao et al. successfully fabricated durable superhydrophobic
wool fabrics with a coating of nanoscale Al2O3 layer by atomic layer deposition (ALD) [120]. The
Al2O3 coating on wool fabrics changed the surface roughness and surface energy of fibers, resulting
in increased static water contact angle from 130˝ to 160˝. It was confirmed that ALD coating method
could prepare superhydrophobic proteins to be used in applications the require water-proof and
self-cleaning. Cortese et al. successfully prepared surfaces by one-step growth of a diamond-like
carbon film onto textiles via plasma-enhanced chemical vapour deposition. Such film exhibited
highly controllable, energy-efficient oil-water separation with high separation efficiency [121]. Wang et
al. prepared polytetrafluoroethylene/room temperature vulcanized silicone rubber (PTFE/RTVSR)
composites by a simple abrading method [122]. Cotton covered with these composites gained great
mechanical durability because the elastic nature of the composite has enabled composites to avoid
mechanical damage during the friction cycles (Figure 10).
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To improve the separation efficiency, a silicone modified hierarchically porous monolith was synthesized 
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Figure 10. FE-SEM images of the surfaces of polytetrafluoroethylene/room temperature vulcanized
silicone rubber (PTFE/RTVSR) composites after 100 abrasion cycles at different magnifications and
WCA and WSA of the PTFE/RTVSR composite surface as a function of abrasion cycle. (a,b) 320#
sand-paper was used as an abrasion surface; (c,d) cotton fabric was used as an abrasion surface;
(e) 320# sand-paper was used as an abrasion surface; (f) cotton fabric was used as an abrasion surface.
(Reprinted from Reference [122] with permission).

3. Promising Applications of Superhydrophobic Fabrics

Recently, superhydrophobic fabrics have attracted great attention in various applications due
to their non-stick and self-cleaning abilities. On the other hand, the smartly self-healing surface
properties, and rational strategies for mechanical abrasion make these robust superhydrophobic fabrics
more reliable for practical applications and commercialization in clothing industries. In this section,
we mainly focus on the development of durable cellulose-based materials with superhydrophobic
properties in oil-water separation, self-cleaning and asymmetric fabrics [123–144].

3.1. Oil-Water Separation

Nowadays, the increase of oily wastewater in industrial production and the frequent oil spill
accidents has drawn worldwide attention. Besides the environmental problems, the contamination of
oil, especially suspended oil to aquatic devices, has caused uncountable economic losses. Therefore,
the removal and collection of the organic contaminants from water has attracted great attention. Here,
we mainly focus on the introduction and discussion of the potential applications of porous membranes
with superhydrophobicity for oil-water separation from simple oil-water layered mixtures to oil-water
emulsions, and from non-intelligent membrane materials to intelligent membrane materials. Moreover,
we will focus upon some of the latest rational strategies to prepare superhydrophobic cellulose-based
membranes, which make them more effective, efficient and sustainable for oil-water separation.

Hydrophobic porous materials have gained tremendous interests because of their capability of
selective absorption of oils/organic solvents while completely repelling water [129–144]. Inspired
from mussel, Huang’ group fabricated the superhydrophobic sponge by decorating polydopamine
nanoaggregates with n-dodecylthiol motifs on the skeletons of PU sponge [129]. These PU sponges
are highly porous, super-antiwetting and mechanical durable. Shang et al. adopted electrospinning
technology to prepare a nanofibrous membrane [130]. The membrane showed superhydrophobicity
and superoleophilicity after modifying with fluorinated polybenzoxazine and silica nanoparticles,
which endowed the membrane with good performance in water-oil separation (Figure 11). To improve
the separation efficiency, a silicone modified hierarchically porous monolith was synthesized via a
sol-gel and phase separation process, and was applied in cleaning oil away from water.
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Figure 11. Schematic illustration of the fabrication of a superhydrophobic fabric with  

micro-nanostructures via a novel mussel-inspired approach and a superhydrophobic cloth boat made 

from the fabric for self-driven oil spill cleanup. (Reprinted from Reference [130] with permission). 
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Figure 11. Schematic illustration of the fabrication of a superhydrophobic fabric with micro-
nanostructures via a novel mussel-inspired approach and a superhydrophobic cloth boat made from
the fabric for self-driven oil spill cleanup. (Reprinted from Reference [130] with permission).

Taking into account the economic and environmental problems, Wang et al. realized a facile
and versatile route for fabricating robust and rough polydopamine (PDA) coatings with hierarchical
structures on the fabrics [131]. Their method does not need the incorporation of any additional
nanoparticles. The hierarchical structure can be controlled by adjusting the concentrations of FA. After
octadecylamine chemical manipulation, the as-prepared fabric exhibits excellent superhydrophobicity
and superoleophilicity, as well as good stability. Self-driven and highly efficient crude oil spill cleanup
can be achieved by the superhydrophobic fabric in the form of a boat, showing great potential for
collection of oil spills and other organic chemicals from water surfaces.

Recently, Zhu et al. used three functional materials (copper mesh, fabric and sponge) for
oil-water separation [132]. Samples were dipped into the solution of polyfluorowax-hydrophobic
SiO2 to alter their surface texture and chemistry. This treatment endowed the samples with excellent
superhydrophobic property, which could be used as a membrane to efficiently separate oil-water
mixture. The as-obtained superhydrophobic spongesacted as an oil sorbent scaffold to selectively
absorb oil from the oil-water mixture. More importantly, these superhydrophobic materials can retain
high oil-water separation efficiency even after 10 cycles.

To achieve high oil-water separation effectiveness, Lai’s group prepared a TiO2@fabric composite
for the marigold flower-like hierarchical TiO2 particles via a one-pot hydrothermal reaction on a cotton
fabric surface [70]. After that, a robust superhydrophobic TiO2@fabric was realized by fluoroalkylsilane
modification as an application for oil-water separation. Compared with hydrophobic cotton fabric,
the TiO2@fabric exhibited an extremely high superhydrophobicity, which ensures highly efficient
oil-water separation.

Based on absorption of SiO2 nanoparticles with subsequent heptadecafluoro-1,1,2,2-tetradecyl
trimethoxysilane modification and heat treatment, Liang et al. transformed hydrophilic cellulose
surfaces into extremely superhydrophobic ones in a facile way. In the process, SiO2 nanoparticles
were covalently attached to the cellulose surface and fluorine containing siloxane coupling agent [134].
The creation of superhydrophobic, cellulose fabric-based materials and the potential applications in
oil-water separation have also been investigated in the study.

Considering the oil cleanup, Song’s group suggested a benchtop prototype oil collection device
by using selective wetting stainless steel mesh that simultaneously separates and collects the floating
oil from water without the requirement of pre-separation pumping or pouring [135]. The collection
efficiencies for oils with wide ranging kinematic viscosities are above 94%, including motor oil and
heavy mineral oil showed high stability and functionality over repeated use.

Lei et al. developed a facile and inexpensive method for the fabrication of SiO2 nanoparticles
functionalized with octadecyltrimethoxysilane which can be in-situ incorporated into cotton
fabrics [137]. The prepared fabrics can be used to separate and capture a series of oils from water,
like kerosene, toluene and chloroform, etc. The as-prepared fabrics showed robust and stable
superhydrophobic properties towards hot water, many corrosive solutions (acidic, basic, salt liquids)
and mechanical abrasion. Therefore, this reported fabric has the advantages of scalable fabrication,
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high separation efficiency, stable recyclability, and excellent durability, exhibiting great potential for
industrial application.

As it is well-known that oil-water mixture will form a milky suspension after vigorous stirring,
and will be separated into two layers after stewing. When solid particles are added, particles assemble
on the oil-water interface, which prevents the oil phase from gathering together. This will lead to a
relatively stable system of oil-water mixture. Recently, Dudchenko et al. demonstrated a method of
membrane-based and fouling-free oil-water separation that couples carbon nanotube-poly underwater
superoleophobic ultrafiltration membranes with magnetic pickering emulsions [138]. Its advantages
are that it shows very high stability with the temperature change, and it is resistant to electrolyte, and
stable in a wide range of pH solutions and polar solvents.

Above introduction of oil-water mixture belongs to simple oil-water layers, but when it comes
to oil-water emulsion, the stable emulsion cannot be separated effectively by conventional methods
such as floating, chemical coagulation, and thermal treatment. Addressing this challenge, membrane
technology and phase inversion technique were proposed for the removal of stable oil/water emulsion
(O/W). Arumugham and his co-workers designed a nano MgO/SPPSU/PPSU membrane that
possesses good hydrophilicity by utilizing the sulfonated polyphenyl sulfone (SPPSU) as an anchoring
agent as well as an interlayer modifying agent for oil removal from water (Figure 11) [140]. In castor
O/W emulsion separation, the SPPSU and nano MgO were strongly immobilized by the electrostatic
attraction. The anchored nano MgO hydrophilic particles showed great improvement in the membrane
properties against O/W emulsion.

Via in-situ polymerization, Huang et al. found a facile approach to fabricate superhydrophobic
nonporous membranes prepared by polymerized 3-(3-triuoromethyl phenyl)-2H-benzoxazine-6-
carbaldehyde. Effective separation of surfactant stabilized water-in-oil microemulsions was achieved [141].
Only driven by the gravity, this membrane showed high separation efficiency (with an extremely high
flux of 892 L¨ m´2¨ h´1), as well as good antifouling properties, thermal stability and durability greater
than those of commercial filtration membranes (Figure 12). More importantly, it matches well with the
requirements for treating real emulsied wastewater on a mass scale.
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Figure 12. (a) The solely gravity-driven separation for oil-water emulsions using fluorinated silica
nanofibrous (F-SNF)/Al2O3 membranes; (b) Photographs and optical micrographs of the oil-in-water
emulsion before and after separation; (c) Change in the flux with increasing cycle number using
F-SNF/Al2O3 membranes; (d) WCAs of the F-SNF/Al2O3 membrane after calcination at different
temperatures for 5 min. (Reprinted from Reference [141] with permission).
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By combining electrospun nanofibers and the freeze-shaping technique, Ding’s group create
fibrous, isotropically bonded and elastic reconstructed aerogels with a hierarchical cellular structure
and superelasticity [142]. This approach intrinsically allows the lamellar deposited electrospun
nanofibers to assemble into elastic bulk aerogels with tunable porous structure and wettability on a
large scale. Using the gravity only, the fiber aerogels can effectively separate O/W emulsions with
high flux and high separation efficiency. They also prepared flexible, hierarchical porous magnetic
NiFe2O4@SiO2 nanofibrous (SNF) membranes by combining the gelatin method with electrospun
nanofibers [143]. The NiFe2O4@SNF membranes exhibited prominent mechanical strength and
mesoporosity, as well as multifunctionality of magnetic responsiveness, dye adsorption, and emulsion
separation (Figure 13).
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Figure 13. (a) A piece of NiFe2O4@Silica nanofibrous (SNF) membranes is held using tweezers upon a
magnet, then the membrane bended towards the magnet when the tweezers move left or right, and it
immediately flied to the magnet after being released; (b) The C/C0 versus time plots for the adsorption
of dye solution, the inset shows the magnetic responsiveness of NiFe2O4@SNF after adsorption of the
methylene blue (MB) for 25 min; (c) A photograph of an underwater oil droplet (dyed red) and the
measurement of underwater oil contact angle on NiFe2O4@SNF; (d) The separation apparatus with the
facile gravity-driven separation of oil-water emulsions using the NiFe2O4@SNF and the microscopic
images of emulsions before and after separation. (Reprinted from Reference [143] with permission).

3.2. Self-Cleaning

Superhydrophobic and self-cleaning surfaces with a high static contact angle above 150˝ and low
contact angle hysteresis play an important role in technical applications ranging from self-cleaning
window glasses to paints and textiles, as well as low-friction surfaces for fluid flow and energy
conservation. Self-cleaning materials are attracting more and more attention for its convenience and
environment friendliness [145–167].

Mura et al. fabricated multifunctional textiles through the combination of the three different
nanoparticles, the wool fabrics with the anchoring of TiO2, SiO2 and Ag nanoparticles exhibited
good self-cleaning behavior for the removal of methylyene blue stain [147]. Pillai et al. tested the
self-cleaning activities TiO2 film doped with metals or non-metals, the intrinsic photocatalytic activity
of TiO2 film is beneficial for the self-cleaning activity. The topographical surface contaminated with
organic matter or pollutants would be effectively cleaned by the TiO2 containing surface, attributing
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to the photocatalytic activity of TiO2 under UV light illumination [148]. Self-cleaning process on a
superhydrophobic TiO2 surface was shown in Figure 14a.

Shahidi et al. used vacuum plasma apparatus treating the polyester fabrics with TiO2 anchored on
the surface. The treatment has increased activation of the fabric surface and increased TiO2 absorption
for more efficient and durable self-cleaning [149]. In addition to self-cleaning ability, Rana et al.
reported that the Ag@ZnO nanostructures functionalized flexible cotton fabrics exhibited efficient
visible-light photocatalysis and antibacterial activity [150] (Figure 14b).
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Figure 14. (a) Self-cleaning process on a superhydrophobic TiO2 surface (Reprinted from Reference [148]
with permission); (b) Ag@ZnO nanostructured self-cleaning flexible materials with photocatalysis and
anti-bacterial activities (Reprinted from Reference [150] with permission).

Maintaining the long-term stability of superhydrophobic surfaces is challenging, especially for the
UV-shielding fabrics loaded with semiconductor nanoparticles, e.g., TiO2 and ZnO, because the organic
molecules and proteins contamination render the surface hydrophilic. Reactive oxygen species with
high oxidation ability generated on a photocatalyst could mitigate to decompose these contaminants.
However, incorporation of such catalyst particles into a superhydrophobic surface is challenging
because the particles become hydrophilic under UV exposure, causing the surface to change to the
Wenzel state.

Cai et al. combined photoactive TiO2 and superhydrophobic SiO2 by depositing TiO2 onto
a nanostructured organically modified silica (ormosil) particle at low temperature, the resulting
fluorine-free superhydrophobic cotton fabrics with TiO2-SiO2 composite particles decoration exhibit
simultaneous superhydrophobicity and photocatalytic self-cleaning property (Figure 15) [152].
Organically modified silica (ormosil) aerogel with a high surface area and high porosity was first
prepared. TiO2 nanocrystals were then synthesized and simultaneously deposited onto preformed
porous ormosil aerogel at low temperature (below 100 ˝C) to obtain TiO2-SiO2 composite particles.
The cotton fabrics coated with TiO2-SiO2 composite particles exhibit superhydrophobicity with a water
contact angle of 160.5˝. More importantly, the TiO2-SiO2 composite particle coated cotton fabric, which
was contaminated with oleic acid, can recover its superhydrophobicity after UV irradiation for 4 h.
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Tian et al. found flux scaly nanostructures provided the possibility of achieving a self-cleaning
underwater superoleophobic surface due to the underwater superoleophobicity with ultralow
adhesion [153]. Daoud et al. formed self-assembled monolayers of tetra(4-carboxyphenyl)porphyrin
on TiO2-coated cotton by a simple post-adsorption method, followed by hydrophobization
with trimethoxy(octadecyl)silane. The prepared cotton fabrics exhibited both superhydrophobic
and visible-light photocatalytic activities, showing good potential for practical self-cleaning
applications [155]. Khajavi and Berendjchi studied the effect of dicarboxylic acid chain length on the
self-cleaning property of nano-TiO2-coated cotton samples. Samples treated with oxalic acid absorbed
greater amounts of TiO2 nanoparticles and showed better self-cleaning properties [156].
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Figure 15. Typical SEM image (a); EDXS spectrum (b) and corresponding element mapping of the
TiO2-SiO2 composite particles (c–f); (g) RhB solution photodegradation in the presence of ormosil
aerogel or TiO2-SiO2 composite particles before and after UV irradiation (inserts: color changes of
the solution before and after UV irradiation). Optical images of water droplets on (h) TiO2-SiO2

composite particle coated cotton fabrics and (i) ormosil aerogel particle coated cotton fabrics before
and after adhesion of oleic acid and after UV irradiation for 3 h. (Reprinted from Reference [152]
with permission).

Montazer et al. studied the photocatlytic removing rate of the methylene blue (MB) dye stained
on fabrics, and found more titanium isopropoxide (TTIP) led to better self-cleaning activity possibly
due to more TiO2 nanoparticles involved in photocatlytic reaction to clean the MB contaminated
fabrics [157]. Karimi et al. loaded fabrics with graphene oxide by using a simple dip coating method,
the graphene/titanium dioxide nanocomposites were obtained with chemical reduction using titanium
trichloride, making the composited graphene/titanium dioxide modified fabrics an ideal self-cleaning
candidate [158]. Nai et al. blended fluorinated polyhedral oligomeric silsesquioxanes (POSS) with
poly(vinylidene fluoride (PVDF)/TiO2 by stirring overnight and the resultant solution was electrospun
to obtain F-POSS/PVDF/TiO2 micron- and nanofibers with self-cleaning capacity [161]. Nazari et al.
investigated cotton fabric treated with different amount of nano TiO2 and SrTiO3 at different pH values
for self-cleaning purpose. The results demonstrated that cross-linking in acidic pH improves the
grafting of nano materials and ratio of 0.2% (SrTiO3)/0.3% (TiO2) has the best effect on discoloration
performance [163]. Xue et al. demonstrated that washable and wear-resistant superhydrophobic
colorful surfaces with self-cleaning property can be successfully constructed on PET textiles by chemical
etching of the fiber surfaces followed by coating with PDMS [164].
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Barletta et al. designed plastic fabrics based on a silicone-modified 1-pack polyurethane resin
cross-linked with diisocyanates and promoted with nano-sized TiO2 powders and Ag ions supported
on nano-sized ultra-porous glass-spheres. The fabrics have the most promising prospect for self-
cleaning performance [165]. Lyons et al. described a self-cleaning superhydrophobic PDMS post arrays
partially embedded with TiO2 nanoparticles. The composited surface maintained superhydrophobicity
with a typical Cassie wetting state even when the hydrophilic TiO2 nanoparticles were embedded,
and exhibited good super-antiwetting property after a long-term UV light irradiation (Figure 16) [166].
However, the conjugated dye, rhodamine B, and a bovine serum albumin protein were efficiently color
removed or photo-oxidized by the inherent UV photocatalytic degradation ability of anatase TiO2

nanostructure materials [167].Materials 2016, 9, 124 
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Figure 16. (a) A droplet on superhydrophobic TiO2-PDMS post and its enlarged wetting situation of
a single PDMS post at liquid/solid interface before or after UV light photo-oxidation water process
for 3 h. Close-up images of a single post and post arrays which partially supports a 15 µL droplet of
10 mg/L RhB solution before (b,c) and after (d,e) UV irradiation for 2 h; (f) UV-vis spectrum of the RhB
solution supported on a TiO2-PDMS surface in the photoreactor after irradiation times. Inset pictures
are the rhodamine B solution before (left) and after (right) UV photodegradation. (Reprinted from
Reference [166] with permission).

3.3. Asymmetric Superhydrophobic Fabrics

Fabrics with asymmetric wetting behavior exhibit unidirectional water wetting behaviour, i.e.,
liquid droplets are repelled from one surface with super-antiwetting property, while liquid droplets
are absorbed on the other side. Achieving the asymmetric wetting properties is significant for function
engineering to construct breathable, comfortable, self-cleaning, and less skin-irritating fabrics [168–179].
Wang et al. adopted a graft-polymerization process with atomized lauryl methacrylate as monomer
to fabricate fluorine-less and asymmetrically superhydrophobic cotton fabrics [168]. The modified
cotton fabrics exhibit laundering-durability and mechanically stability. The damages on the cotton
fibers caused by solvent can be reduced at a very low level in the present process. Xi et al. employed
a mist copolymerization of three monomers to fabricate asymmetrically superhydrophobic cotton
fabric [169]. The modified cotton fabrics exhibit superhydrophobicity on one side but retain the
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inherent hydrophilic nature of cotton on the opposite side. Meanwhile, the modified cotton products
show good water-absorbing ability and vapor transmissibility.

Liu et al. reported a new type of functional cotton fabric with single-faced superhydrophobicity
achieved through a simple foam finishing process [170]. Fabric materials with such asymmetric and
tailored wettability will be of great significance in textile, medical, and industrial applications, including
microfluidic systems, desalination of seawater, flow management in fuel cells, and water-oil separation.

Wang et al. reported the fabrication of asymmetric wetting polyester fabrics by a versatile method
based on the combination of dip-coating process to create sueperhydrophobicity and UV exposure to
obtain irradiated side hydrophilic, leading to the construction of unidirectional wetting fabrics [172].
Such asymmetric wetting fabrics had the ability to spontaneously transfer water unidirectionally
through the fibrous architecture. The directional water-transfer fabrics should be able to remove sweat
effectively from the body side, which is very useful for sportswear, soldier’s clothing, and daily life
applications. Liu et al. used a two-layer self-assembly method [173]. A smart stimuli-responsive
superhydrophobic surface based on the hierarchical structure of graphene and TiO2 nanofilm with
bioinspired dual roughness, was constructed and applied onto the cotton fabrics. The surface exhibits
tunable wetting, adhesion, and directional water transport properties, which provides a general
protocol for applications such as moisture management, microfluidic control, self-cleaning, and
water-oil separation. Wang et al. reported a novel method to prepare one-way oil-transport fabrics
and their application in detecting liquid surface tension (Figure 17) [174]. This functional fabric was
prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral
oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate.
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Figure 17. (a) Chemical structures of the coating materials; (b) coating procedure; (c) photographs
of yellow-colored water, red-colored cooking oil, and blue-colored ethanol (volume 35 µL) on cotton
fabrics; Still frames taken from a video to show the dropping of red-dyed cooking oil onto the
UV-irradiated “front” and “back” surfaces (d) and corresponding schematic illustations (e); (f) after
ZnO treatment and (g) after both ZnO and fluorinated-decyl polyhedral oligomeric silsesquioxanes
(FD-POSS)/fluorinated alkylsilane (FAS) treatment (scale bar in the SEM images, 2 µm). (Reprinted
from Reference [174] with permission).

Tian et al. prepared hydrophilic/hydrophobic Janus-type membranes involving chemically
asymmetric skin-layer structures by facile vapor diffusion or plasma treatments. They have also
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discussed the corresponding droplet gating mechanism under various conditions [179]. As shown in
Figure 18, the resultant Janus membrane shows directional water droplet gating behavior in air-water
systems. Additionally, in oil-water systems, the Janus membranes show directional gating of droplets
with integrated selectivity for either oil or water. The above remarkable gating properties of the
Janus membranes could bring about novel applications in fluid rectifying, microchemical reaction
manipulation, advanced separation, biomedical materials and smart textiles.Materials 2016, 9, 124 
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Figure 18. (a) Unidirectional droplet penetration demonstrated by dropwise addition of water droplets
(droplet dyed red with rhodamine 101) onto hydrophobic side (top) and hydrophilic side (bottom)
of Janus-C in air-water systems; (b) Janus-C allows penetration of water droplet (dyed red) when
the hydrophobic side is towards oil (hexadecane dyed yellow by Nile red), and prevents droplet
penetration when reversely aligned in oil-water systems; (c) For positively aligned Janus-C, a water
droplet touching the hydrophobic side exerts a larger Laplace pressure (∆P), creating a larger driving
force for penetration. Consequently, the water droplet can penetrate through the thin oil-infused
skin layer and further across the whole membrane; (d) For reversely aligned Janus-C, a water droplet
touching the hydrophilic side tends to spread, exerting limited Laplace pressure. The oil-infused skin
layer is thus able to block its penetration. (Reprinted from Reference [179] with permission).
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3.4. UV-Shielding/Durable and Self-Healing Superhydrophobic Fabrics

Recently, highly robust, durable, breathable, self-healing and switchable surface properties have
attracted considerable attention to the production of superhydrophobic surfaces [180–190]. The above
properties are very important for the commercialisation of materials for practical applications. On the
other hand, the development of these properties is quite difficult. Therefore, rational strategies are
needed when designing and fabricating these multifunctional surfaces with excellent properties.
Superhydrophobic surfaces are responsive and switchable under circumstances, such as pH, light
(UV, plasma, and laser), temperature, humidity and electrochemical treatments. All of these depend
on the type of materials utilized for coating applications [191–197]. Moreover, the durability and
breathability of anti-wetting surface is an important question we must address in order to broaden
its practical applications. There are several areas to improve its durability including enhancement of
mechanical stability, improvement of corrosion-resistance, and incorporation of responsive self-healing.
Especially the self-healing ability responding to external stimuli is highly desirable for sustainable
application [198].

UV-shielding durability is a fundamental challenge with superhydrophobic surfaces. However,
recently there has been major progress in fabrication of robust superhydrophobic surfaces. For example,
Xue et al. reported UV-durable superhydrophobic and UV-shielding PET fibers with ZnO/SiO2

core/shell structures by successive coating of multilayer polyelectrolytes [180,181]. The coating
of silica not only improved the UV-shielding property but also extended the UV-durability of the
superhydrophobic textiles.

Wang et al. coated cotton textile with ZnO@SiO2 nanorods in mild conditions (Figure 19) [185].
Uniform ZnO nanorods were firstly grown on textile through a hydrothermal process, and then a SiO2

shell was coated on the surface of a ZnO nanorod by a bioinspired layer-by-layer deposition method.
Finally, the ZnO@SiO2 nanorods coated cotton textile were modified with octadecyltrimethoxysilane to
achieve superhydrophobic property. The as-prepared cotton textile exhibited an excellent UV-durable
super-antiwetting property due to the protection of a UV shielding SiO2 layer.
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Figure 19. SEM images of native (a,b) and ZnO nanorod array coated (c,d) cotton textiles; (e) EDX
spectrum of the sample corresponding to image (e); (f) Evolution of water CA on an OTS-modified
ZnO@SiO2 nanorodarray coated cotton textile under UV irradiation (25 mW¨ cm´1). The x-axis after
the break is scaled logarithmically. The inset is a macroscopic view of water droplets on the surface of a
UV-irradiated sample. (Reprinted from Reference [185] with permission).

Recently, self-healing functions have also been successfully incorporated into smart
superhydrophobic surfaces [199–203]. One of self-healing route is the recovery of the topographic
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structures. This method is bioinspired by the living organisms and other living things [199]. Li et al.
used poly(allylamine hydrochloride), sulfonated poly(ether ether ketone) and poly(acrylicacid) as
precursors to fabricate micro/nano-scaled hierarchical structures through dipping layer-by-layer
assembly [200]. After chemical vapor deposition (CVD) of a fluoroalkylsilane, these coatings become
superhydrophobic. The self-healing can occur at slightly humid environment when the coating is
decomposed or scratched. Recently, Li et al. further improved their synthesis method by using
spraying LBL assembly to take the place of dipping LBL assembly during the preparation process [201].
In this process, they can also avoid CVD process by using perfluorooctanesulfonic acid lithium
salt and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) as healing agents. All of these make
it more applicable. Moreover, the original super-antiwetting ability can be reversibly realized by
simply re-spraying POTS solution. Recently, Manna et al. reported an approach to the self-healing
in crushed polymer-based superhydrophobic coatings [203]. They applied crushing loads on porous
superhydrophobic films to compact the coatings and flatten the micro/nanoscale features. The surface
exhibited self-healing performance when treated by liquid water (Figure 20).
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Figure 20. (A–F) Topographic features and wetting situation on self-healing cellulose-based surface.
Top-down views of films before (A,D) and after (B,E) crushing, and (C,F) after immersion in deionized
water for 1 h (C) or low-pH buffer for 60 s (D); films were dried under vacuum before imaging. SEM
images (G–H) and contact angles (I–J) of the water-treated films shown in (C,F) in regions of film that
were crushed/recovered, respectively. (K) Plot of contact angle vs. number of crushing/healing cycles
applied. (Reprinted from Reference [203] with permission).

The second self-healing strategy is to repair surface chemical components [204–210]. Store some
components as agent and they will migrate to the surface with special treatment. For example,
Shillingford et al. presented a new method by using lubricant to replace air in the traditional
superhydrophobic surfaces [204]. The cotton and polyester fabric treated by this slippery lubricant-
infused porous surfaces function show splendid omni-repellent properties against various fluids
including polar and nonpolar liquids, pressure tolerance and mechanical robustness properties.
Chen et al. fabricated a cotton fabric with flame-retardant and self-healing superhydrophobic coatings
by a convenient solution-dipping method [205]. After being exposed to flame, this tri-layer generated
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a porous char layer, and exhibited an outstanding self-healing property because the hydrophilic
ammonium polyphosphate and branched poly(ethylenimine) coating expel the embedded hydrophobic
perfluorodecanyl chains of the fluorinated-decyl polyhedral oligomeric silsesquioxane (FD-POSS) to
speed up its migration to the coating surface.

Xue et al. sprayed polystyrene/SiO2 core/shell nanoparticles as a coating skeleton and
polydimethylsiloxane as hydrophobic interconnection to create superhydrophobic surfaces [206].
After bring damaged from an air plasma treatment, the superhydrophobicity of the surface can recover
in 12 h at room temperature or by heat curing and tetrahydrofuran treatment. Si et al. designed a green
supehydrophobic gel nano-coating [207], which is easy to apply to all kinds of substrates through a
spray method. They used cotton as substrate to test its self-healing property, and found that it can
self-heal rapidly by using usual organic solvents such as acetone. Esteves et al. prepared a self-repairing
coating from an all-in-one dispersion by a simple drop-cast method [209]. The self-healing can occur at
room temperature and the sueperhydrophobicity would remain after 500 abrasion cycles.

Wu et al. reported a new method to prepare superhydrophobic cotton fabric with self-healing
property using radiation-induced graft polymerization of lauryl methacrylate and n-hexyl methacrylate [210].
The self-healing property can be achieved by ironing, and the self-cleaning fabrics made from lauryl
methacrylate grafted cotton fabric can ultimately withstand at least 24,000 cycles of abrasion with
periodic steam ironing. This is because of the migration of the polymethacrylates graft chains from
the interior to the surface after the ironing. Wang et al. reported that fabrics coated with a hydrolysis
product from FD-POSS and a fluorinated alkylsilane (FAS) have a self-healing superhydrophobic
surface [211]. It also showed excellent durability when exposed to acid, UV light, machine wash, and
abrasion. The self-healing mechanism of the FD-POSS/FAS coating was explained to be molecular
rotation and movement which could change the surface free energy when heated.

3.5. Other Potential Applications with Special Properties

A superhydrophobic coating on cellulose-based paper brings new properties and functionalities
for the materials and widens their utilization potential in new application areas. Applications
for multifunctioanl superhydrophobic fabrics and paper include liquid/dirt-repellent, breathable,
self-cleaning, UV-shielding, super-buoyancy, corrosion-resistant, and anti-biofouling/bacterial clothes
and textiles. In addition, superhydrophobic paper and fabrics have good utilization potential in some
other important applications such as disposable/flexible microfluidic devices and packaging materials
for, for example, point-of-care diagnostics or colorimetric detection of specific gas and bovine serum
albumin [212–215].

Surface wettability/adhesion micro-patterning on superhydrophobic surfaces created by, for
example, UV light or laser [216–218] high energy ink/yarn [219–223] or low energy wax [212] offers
possibilities in guiding the manipulation and transportation of liquid droplets and micro-flows, or
in introducing the site-selective deposition of functional materials on the hydrophilic regions of
the surface [224–226]. Breedveld et al. [220] fabricated two-dimensional paper-based lab-on-a-chip
microfluidic devices by printing high surface energy black ink patterns on superhydrophobic paper
substrate. The ink patterns provide the tunability of the wetting adhesion on the superhydrophobic
paper, and thus enable the implementation of four basic operations for the manipulation of liquid
drops on the paper substrates ranging from storage, transfer, mixing to sampling (Figure 21A–D).
In their lab-on-paper prototype, liquid droplets or micro-fluids adhere to the porous substrate,
rather than absorbing into the pater; as a result, they remain accessible for further quantitative
detecting and analysis after performing simple qualitative on-chip testing. Xing et al. introduced
a novel interfacial microfluidic transport principle to design a multi-inlet-single-outlet device on
a micropatterned superhydrophobic textile (MST) for driving three-dimensional liquid flows in a
more autonomous and controllable style (Figure 21E,F) [222]. In-proof-of-concept, the designed
platform on MST has been applied on an artificial skin surface to collect and remove sweat in a highly
efficient and facilitated means. The results have demonstrated that the novel interfacial transport
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strategy based on the textile platform are promising for biofluidic manipulations. Wang et al. yielded
hydrophilically patterned superhydrophobic cotton fabrics via a site-selective photolysis reaction
to anchor poly[2-(cinnamoyloxy)ethyl acrylate] block of the copolymer in the exposed region to
crosslink around the cotton fibers [224]. While water-based solutions such as ink readily permeated the
hydrophilic regions, they were blocked in the superhydrophobic regions. Thus, ink or dye reservoirs
held by these wetting patterned cotton swatches were used as stamps for printing on various substrates,
e.g., fabrics, cardboard, paper, wood, and aluminum foil (Figure 21G).Materials 2016, 9, 124 
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Figure 21. (A) Photographs of an array of drops (food coloring was added to enhance contrast) and
a high magnification image of a single drop stored on a vertical substrate; (B) a series of snapshots
of a drop being transferred between two substrates; (C) photographs of merging and mixing: (i) via
“pickup mixing” (two drops), (ii) “line mixing” (three drops) and plot that shows the working zone
of drop volumes suitable for line mixing; (D) photographs of drop splitting between two substrates.
(Reprinted from Reference [220] with permission); A multi-inlet–single-outlet schematic illustration (E)
and corresponding optical image (F) on the micropatterned superhydrophobic textile platform using
the autonomous interfacial transport concept (note: aqueous solution at each inlet is colour-dyed for
clear observation; scale bar: 5 mm). (Reprinted from Reference [222] with permission); (G) Patterns
of “QU” that had been printed using the diluted ink onto various substrate (a) cotton fabric and (b)
semi-synthetic cotton fabric (65% polyester/35% cotton). The rest of the photographs were taken of
the pattern printed using the poly(ethylene oxide)-containing ink onto (c) cotton, (d) semi-synthetic
cotton, (e) wood, (f) cardboard, (g) printing paper and (h) aluminum foil. The scale bars represent
1.0 cm. (Reprinted from Reference [224] with permission).

4. Summary and Future Perspectives

The present review deals with recent advances in research and promising applications for robust
superhydrophobic cellulose-based materials. The various surface treatment techniques and design
strategies are inspired by many biological systems. The main principle is to construct suitable rough
structures with low surface energy to render super-antiwetting properties. The techniques used include
dip-coating, chemical bath deposition, electric-field assisted coating, spray-coating, sol-gel etc. Some
emerging promising applications for these flexible and robust super-antiwetting fabrics including
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oil-water separation, self-cleaning and anisotropic wetting are reviewed in this article. The wide ranges
of applications by the multifunctional superhydrophobic fabrics are practically important because of
the low cost and bio-degradable. The fibers with porous structure also possess excellent recyclability,
ease in control of liquid penetration and motion, and can be self-cleaning or resist contamination by
the various kinds of liquids or solvents. These smart ways of producing superhydrophobic fabrics
result in highly stable surface properties under a wide range of conditions, such as the resistance of
droplet sticking, high temperature, UV light, and high-concentration acidic/base solutions.

Superhydrophobic fabrics with multifunctional applications have attracted great attention, and
great progress has been made in recent years. However, up to now, most super-antiwetting fabrics are
constructed by multiple steps/processes, which require precious equipment and/or harsh conditions
to control the surface properties. Many problems still exist, such as mechanical stability and cost
of materials with multi-functionalities, and need to be addressed before scalable production can be
realized. Therefore, flexible, renewable and smart responsive fabrics with robust super-antiwetting
property is a key issue for future investigation. Moreover, the air-permeation and fast adhesive force
measurement on the superhydrophobic still needs to be improved.

As we all know, creatures and plants in Nature possess interesting and mysterious properties that
we do not yet know. Therefore, further exploration and explanation of surfaces with special wetting
behavior in nature is necessary. Learning from Nature will give us inspiration to develop simple
and low-cost methods to construct artificial functional surfaces with superwettability for promising
advanced applications [227–231]. We expect that more scientists interest and involve in these fields
and further discover the relationship between chemical components and superwettability. Meanwhile,
it has been recognized that some fluorochemicals and organic solvents have potential risks to human
health and the environment and their use should be minimized. Environmental issues should be taken
into account when preparing superhydrophobic surfaces for everyday use.
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