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Abstract: The method of angular correlations recovers quantities from diffraction patterns
of randomly oriented particles, as expected to be measured with an X-ray free electron laser (XFEL),
proportional to quadratic functions of the spherical harmonic expansion coefficients of the diffraction
volume of a single particle. We have previously shown that it is possible to reconstruct a randomly
oriented icosahedral or helical virus from the average over all measured diffraction patterns of such
correlations. We point out in this paper that a structure of even simpler particles of 50 Å or so in
diameter and consisting of heavier atomic elements (to enhance scattering) that has been used as
a test case for reconstructions from XFEL diffraction patterns can also be solved by this technique.
Even though there has been earlier work on similar objects (prolate spheroids), one advantage
of the present technique is its potential to also work with diffraction patterns not only due to single
particles as has been suggested on the basis on nonoverlapping delta functions of angular scattering.
Accordingly, we calculated from the diffraction patterns the angular momentum expansions of the
pair correlations and triple correlations for general particle images and reconstructed those images
in the standard way. Although the images looked pretty much the same, it is not totally clear to
us that the angular correlations are exactly the same as different numbers of particles due to the
possibility of constructive or destructive interference between the scattered waves from different
particles. It is of course known that, for a large number of particles contributing to a diffraction
parttern, the correlations converge to that of a single particle. It could be that the lack of perfect
agreement between the images reconstructed with one and two particles is due to uncancelling
constructive and destructive conditions that are not found in the case of solution scattering.

Keywords: XFEL; nanorice; angular correlations

1. Introduction

An X-ray free electron laser (XFEL) produces X-rays of unprecedented brilliance of about 10 billion
times what was previously possible. As such, it has given rise to the speculation that it may be possible
to determine the structures of uncrystallized individual biomolecules [1]. Although the ultimate aim
is to determine the structures of biomolecules, it would be helpful to demonstrate the feasibility
of the approach to simpler objects initially. In this vein, there has been some work already on
reconstructing prolate spheroids [2] of metallic particles. What such experiments demonstrate is
the feasibility of reconstructing the structure of particles of random unknown orientations. The aim
of the present paper is to show that reconstruction of the structure of such particles is possible even
with two particles in independent random orientations contributing to a single diffraction pattern. If it
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can be demonstrated for two randomly oriented nanoparticles, and we think that since the angular
correlations seem to be identical, the number of identical particles may be increased without limit.
In this respect, the method has some similarities with one proposed in the 1970s by Kam [3] to
generalize the methods then current for small angle X-ray scattering (SAXS). In SAXS, an ensemble
of many particles is suspended in solution in random orientations. A major problem with SAXS is that
one attempts to recover the structure of a particle from a set of experimental data consisting of a single
line plot I(q). From the spherical harmonic expansion of a crude model of the particle, its shape is
normally obtained by SAXS techniques. Kam’s innovation was to point out that if an experiment
could be performed that measures the diffraction patterns on a time scale shorter than the rotational
diffusion time of the molecules, extra 3D information on the molecular structure could be obtained
from the correlations in the angular variations of the measured intensities. There has also been work
on determining the structure of Au nanoparticles to atomic resolution [4] by this technique. A major
advantage of this method, if feasible, is the ability to determine the detailed structure of an ensemble
of randomly oriented molecules. One would thereby be able to use the intensity enhancement caused
by working with an ensemble of molecules rather than a single one, and yet not have to crystallize
the molecules so that they are all in exactly the same orientation. Kirian et al. [5] have shown that
even though there is nothing to be gained by having more particles per diffraction pattern since
the noise goes up in the same proportion as the signal, one of the other results of their own analysis
is that the noise can be reduced compared to the signal by averaging over many diffraction patterns,
It should be pointed out that the need to avoid crystallization was the original aim of XFEL studies
of biomolecules. If the experiment we propose is possible, it may be possible to avoid crystallization in
structural studies and still avoid the very low scattered intensities that are inevitable in single particle
studies even with an X-ray free electron laser (XFEL).

An experiment has recently been reported in which the structure of the mimivirus has been
determined experimentally by a variant of the single particle methods described earlier [6]. At least
for an icosahedral particle, as the mimivirus largely is, it has been previously shown by us [7] that it
is possible to determine the structure of the particle by an analogous method to that described here
from simulated diffraction patterns. In an experiment to recover time-resolved structural variations,
starting from a knowledge of a nearby structure, using many of the same quantities, namely, the pair
correlations, have also been shown to be capable of recovering time-resolved changes in a structure
from the knowledge of a closely related structure of a single molecule in realistic simulations, including
shot noise [8]. This possibility is unprecedented in structural work with XFEL diffraction patterns.

It is with the aim of further developing this idea that the work here is undertaken. Initially,
following the basic theory presented here, the aim is only to reconstruct from an ensemble of randomly
oriented particles of simple form, its low resolution 3D structure. Indeed, there has already been
experimental work on “nanorice” particles of the type we describe here. While it may be true that
such a simple structure may be obtained by SAXS alone, the demonstration of such a method even
for a simple structure paves the way to its application to more complex structures that may not be
accessible to SAXS. Furthermore, “machine learning” algorithms based on manifold embedding [9]
have been used to perform an approximate sorting of the experimental diffraction patterns. Following
this paper, we have begun to work with the authors of that paper on going all the way from measured
diffraction patterns to structure. We describe here how the structure of “nanorice” particles on
which experimental data is already available at the public web site cxidb.org can be reconstructed
in principle. There has also been some work reported on the reconstruction of prolate and oblate
spheroids by the method of cryptotomography [2]. However, this does require diffraction patterns
from single particles to be identified beforehand from an experimental data set [10]. In the present
paper, we describe an algorithm that works on either prolate or oblate spheroids and yet allows
the possibility of working with diffraction patterns of multiple randomly oriented particles. To do this,
we employ a method [11] of reconstructing the structure of a particle from XFEL diffraction patterns
of random unknown orientations of the object.
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This method has close similarities to a method proposed much earlier [3] for recovering
the structure of particles randomly oriented, as in the method of small angle X-ray scattering (SAXS).
Although, of course, in the 1970s, it was not possible to focus an X-ray beam to hit just a single particle,
this has now become possible with the recent advent of the X-ray free electron laser (XFEL). It should
be stressed that the method we describe in this paper is flexible enough to reconstruct a structure from
“single-particle” experiments such as in the recent Single Particle Initiative (SPI) at the Linac Coherent
Light Source (LCLS) in Stanford, CA, USA. What is used is the average over measured diffraction
patterns of the angular correlations on each diffraction pattern. Since this uses diffraction data
of perhaps millions of diffraction patterns, its expected shot noise would be significantly reduced by
this averaging process [12]. Such methods are very different from those of traditional crystallography
on crystals, as the orientation of each particle in generally unknown a priori and there are not even
Bragg spots that enable their orientation to be determined via indexing [13].

We describe our method next. One of its advantages is that it has been shown to be equally
applicable to ensembles of molecules of random orientations [8]. This could be an advantage
experimentally, as it will allow a fuller use of available experimental data, and obviates the need
for methods [10] that eliminate diffraction patterns from multiple particle hits from the analysis.

2. Method of Angular Correlations

The first step in using this method is to calculate angular cross correlations on each diffraction
pattern in polar coordinates. Polar coordinates are natural for this problem since the particles differ
mainly in their orientations (they may also differ in position, and this does not affect the diffraction
pattern intensities that are insensitive to the phases of the scattered amplitudes). This is relevant
so long as it is a single particle in the beam at one time. Otherwise, the intensities are sensitive for
the relative displacements of the particles in the same diffraction pattens. Even in that case, one might
hope that, due to the random nature of these displacements, such relative phases are unimportant [8].

Angular pair correlations are related to measured quantities from

C2(q, q′, ∆φ) =<
∫

Ip(q, φ)Ip(q′, φ + ∆φ)d∆φ >p, (1)

where Ip(q, φ) is the measured intensity at resolution ring q and azimuthal angle φ on diffraction
pattern p, and Ip(q′, φ + ∆φ) the corresponding intensity at resolution ring q′ azimuthal angle φ + ∆φ.
Similar to the pair correlations, two-point angular triple correlations may be defined [14]:

C3(q, q′, ∆φ) =<
∫

I2
p(q, φ)Ip(q′, φ + ∆φ)d∆φ >p . (2)

The next step is to calculate these quantities to form other quantities related to them in
the following way:

Bl(q, q′) =
2l + 1

2

∫
C2(q, q′; ∆φ)Pl(x)dx (3)

and
Tl(q, q′) =

2l + 1
2

∫
C3(q, q′; ∆φ)Pl(x)dx, (4)

where x = cos ∆φ.
The sequence of operations is summarized next.
This method is well suited to the problem of a curved Ewald sphere, as pointed out in, e.g., [11].

A curved Ewald sphere is inevitable at high resolution.The point is that the quantities actually used
to construct the 3D diffraction volume, namely, the Bl(q, q′) and the Tl(q, q′), are extracted from
the quantities measurable in an experiment, namely, the C2(q, q′; ∆φ) and C3(, q, q′; ∆φ), by removing
the effect of the details of the experiment, such as the X-ray energy, which are contained in
the arguments of the Legendre polynomials Pl . This allows for a nice separation of the quantities that
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depend on the experimental details, and the quantities that appear to contain only information about
the 3D diffraction volume, which, in turn, gives information about the 3D structure of the particle.
These arguments are equally applicable to pair correlation as to the two-point triple correlations defined
by Kam [3]. Although Pedrini [15] and Kurta et al. [16] have proposed methods involving a three-point
triple correlation function, the two-point triple correlation functions introduced by Kam [14] are easier
to measure when photon counts are weak, as pixels with just two non-zero pixels make contributions.
If the probability of a high resolution pixel is non-zero is 10−2 [12], the probability that two of them
are non-zero is 10−4. However, reasonable statistics are expected if one has the number of diffraction
patterns expected to be measured in a typical experimental shift at even a present-day XFEL. In other
words, in Kam’s method [3], one calculated correlations from samples of many randomly oriented
molecules. Nevertheless, and this is our crucial point, the correlations are similar to those from
a single particle [17] We admit that this demonstration is only for rotations about a single axis, and for
delta function like intensities. We investigate here whether it is still likely to hold for a random
particle orientation in 3D, and for realistic amplitudes scattered from each particle. The angular pair
correlations can be related to their angular momentum depompostions Bl by

C2(q, q′, ∆φ) = ∑
l

Fl(q, q′, ∆φ)Bl(q, q′), (5)

where
Fl(q, q′, ∆φ) =

1
4π

Pl [cos θ(q) cos θ(q′) + sin θ(q) sin θ(q′) cos(∆φ)], (6)

where
θ(q) = π/2− sin−1 [q/(2κ)] (7)

and Pl is a Legendre polynomial.
Likewise, it can be shown that the triple correlations defined by (2) can be written as [14]

C3(q, q′∆φ) = ∑
l

Fl(q, q′, ∆φ)Tl(q, q′), (8)

where

Tl(q, q) =
lmax

∑
l1,l2,m1,m2,m

(−1)m
[
(2l + 1)(2l2 + 1)(2l1 + 1)

4π

]1/2

×

(
l1 l2 l
0 0 0

)(
l1 l2 l
m1 m2 m

)
Il2m2(q)Il1m1(q)I∗lm(q) =

lmax

∑
l1,l2,m1,m2,m

(−1)mG(l1m1; l2m2; lm)Il2m2(q)Il1m1(q)I∗lm(q), (9)

where G is a Gaunt coeffcient [18,19] and

Ilm(q) =
∫

I(q, θ, φ)Y∗lm(θ, φ)dΩ. (10)

Although, in general, the Ilm(q)’s are complex quantities, the quantities we are concerned with
this paper, namely, the Il0(q)’s, are real, and all m values are zeros for the azimuthal symmetry.

For a flat Ewald sphere, the quantities Bl(q, q′) and Tl(q, q′), which contain the structural
information, may be found assuming that cos (θ(q)) and cos (θ(q′)) tend towards zero and sin (θ(q))
and sin (θ(q′)) tend toward unity. In this case, the quantities Bl(q, q′) and Tl(q, q′) that contain true



Appl. Sci. 2017, 7, 646 5 of 13

structural information about the molecule can be found, for instance, (to within an arbitrary scaling
factor) from the integrals

Bl(q, q) =
2l + 1

2

∫
C2(q, q, ∆φ)Pl(cos ∆φ)sin∆φd∆φ (11)

and
Tl(q, q) =

2l + 1
2

∫
C3(q, q, ∆φ)Pl(cos ∆φ)sin∆φd∆φ (12)

over the measured quantities C2, and C3. It should be stressed that, even in the case of a curved Ewald
sphere the quantities containing the structural information about the particle, the Bl(q, q) and Tl(q, q)
may be found by matrix inversion of Equations (5) and (8). Due to its expected azimuthal symmetry,
nanorice particles have diffraction volumes characterized by spherical harmonic expansion coefficients
of only azimuthal quantum numbers m = 0. In this case, the only relevant spherical harmonic expansion
coefficients, Il0, are real. Thus, the computations in this case (q′ = q) may be performed entirely with
real coefficients and only the diagonal parts of Bl(q, q′) and Tl(q, q′) are adopted.

It has been shown that these equations may be solved easily for particular common symmetries.
It was pointed out by Caspar and Klug [20] that viruses tend to possess mainly icosahedral and helical
symmetry. We have shown how to solve these equations for both icosahedral [7] and helical [21] cases,
and are working on extending the method to particles that deviate a little from exact symmetry, using
a form of perturbation theory [22]. In the case of a helical virus, we exploited the fact that if the virus is
oriented with a helix axis parallel to the z-axis, the diffraction volume has exact cylindrical symmetry
up to a certain resolution and may therefore be characterized by azimuthal quantum number m = 0.

Another case includes where the diffraction volume could be characterized by an m = 0 quantum
number that is a diffraction volume of a nanorice particle. Experiments have been done on such
particles at an XFEL and diffraction data from nanorice has been deposited in the cxidb.org web
site. We investigate here whether this data may also be used to reconstruct the structure of nanorice
by making use of the m = 0 condition. Because of the azimuthal symmetry of a nanorice particle
about the major axis, it would be expected that such particles would also be characterized by m = 0.
A question is if both a helical virus and a nanorice particle may be characterized by m = 0, how is it
possible to distinguish them? The reason is that the intensities in the case of a helical virus must reflect
the periodicity along the azimuthal axis and consequently split up into layer lines, but it does not do
so in the case of a nanorice particle.

3. Simulation of Diffraction Patterns of Nanorice in Random Orientations

We tried to make the simulation as realistic as possible by assuming an X-ray beam of width
1000 Å, the design specification of the minimum focus of the Linac Coherence Light Source, the worlds’
first X-ray free electron laser (XFEL). As for the size of a nanorice particle, we assumed each particle
to be of a width about 50 Å to simulate a small protein. This is a realistic circumstance in which
one expects a number of proteins to be illuminated. For the purposes of our test, we assumed only
two nanorice particles illuminated in random relative orientations. We note this is a circumstance
that is beyond the capabilities of all other algorithms that have been proposed for the XFEL problem,
but is a realistic circumstance which is well suited to our method. There is an advantage to illuminating
multiple particles as the total scattered signal goes up—with single particles, one is always struggling
with few scattered photons.

For an initial model of nanorice, we assumed a ellipsoidal mask on a 3D Cartesian grid in real
space, that is, we took the electron density of the nanorice particle to be uniform inside the particle
and zero outside. As for the size of the particle in our solutions, the particle was entirely enclosed
in a volume of 19 × 19 × 19 central voxels. This model is shown on Figure 1. We then simulated
diffraction patterns due to random orientations of nanorice particles as follows.
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Figure 1. Model of a nanorice particle.

Since the angular correlations are quantities that are independent from all orientations
of the particles, they are essentially independent from the number of particles contributing to each
diffraction pattern, provided each takes all orientations. This has great importance for XFEL work,
as often great pains are taken to restrict the number of particles in each of the measured diffraction
patterns to just one, as required by all other methods of reconstructing particles from their diffraction
patterns by the use of “hit-finder” software [10], for example. However, it might be argued that
if not too much accuracy is required, this is unnecessary as angular correlations are independent
from the number of particles illuminated and are the same for the same type of particle. This gives
rise to the possibility that one might gain the same advantage. There seems to be no reason to not
use multiple particles incident from a beam and actually get rid of the “hit-finder” [10] software.
This paper demonstrates at least in theory that one may avoid “hit-finder” software altogether by this
means. The only caveat is if the particles inevitably cluster, then the particles will differ in structure as
well as orientation and it may be better to ensure that the same particle is hit always from different
orientations by admitting only one particle at a time. This is a question that can only be answered
by an experiment, but it is useful to know that there is an another, and possibly preferable option
if the particles do not cluster. We reconstructed the object with about 2× oversampling in a region
consisting of 41 × 41 × 41 voxels.

1. First, we calculated the 3D amplitude distribution in reciprocal space from their correlations,
by the following steps:

A(q) =
∫

ρ(r) exp(2πiq.r)dr, (13)

I(q) = |A(q)|2 = I(q, θ, φ). (14)

2. We then calculated the spherical harmonics expansion of the 3D diffraction volume via

Ilm(q) =
∫

I(q, θ, φ)Y∗lm(θ, φ)dΩ. (15)

3. We then found the values of the expansion coefficients Ilm for random orientations of the
diffraction volume using a Wigner D-matrix for random Euler angles α, β and γ

Ilm(q) = ∑m′ Dl
m,m′(α, β, γ)Ilm′(θ, φ). (16)
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4. We then calculated the diffraction pattern expected by slicing through the diffraction volume in
each case through the plane qz = 0

I(q, θ =
π

2
, φ) = ∑

lm
Ilm(q)Ylm(θ =

π

2
, φ). (17)

This represents the intensity distribution expected of diffraction patterns from random orientations
of a nanorice particle. For the two-particle case, we repeated these steps and either added
ampitudes of scattering from each of the particles to simulate coherent illumination (assuming
random interparticle displacements) or added scattered intensities to simulate incoherent illumination
of multiple particles. Such typical diffraction patterns are shown in Figure 2.

Figure 2. Simulated X-ray free electron laser (XFEL) diffraction patterns of one and two nanorice
particles in random orientations.

4. Reconstruction of Diffraction Pattern of Nanorice

Having thus simulated diffraction patterns expected of random orientations of nanorice, our next
step was to demonstrate that it is possible to reconstruct our model of nanorice from those patterns
using the method outlined above. To this end, we calculated Bl(q, q) and Tl(q, q) as outlined above
from the data in the simulated diffraction patterns.

The coefficients Ilm of a spherical harmonic expansion of the diffraction volume clearly depend
on the orientation of the diffraction volume relative to the chosen z-axis. Two such 3D intensity
distributions are displayed on Figures 3 and 4. By choosing a z-axis at the center of azimuthal
symmetry, we eliminate the other components of Ilm except m = 0. Note that this is no loss
of generality since the correlations do not determine the particle’s orientation. As a matter of fact,
the correlations are the same independent of the particles’ orientation. On reconstruction of a real-space
image of the particle made from the orentation-independent correlations, one is free to choose
the particle’s orientation for one’s convenience .

It has been claimed that the recently proposed multi-tiered itrerative phasing (MTIP)
algorithm [23] would not need to assume azimuthal symmetry. Since it is supposed to determine the
the magnitudes of the quantities characterized by different magnetic quantum numbers, in principle,
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it is capable of deducing that m = 0. However, in their recent paper, Donatelli et al. [23] definitely found
much better results on the assumption of the degree of angular symmetry. Following Starodub et al. [24],
we obtain much the same information by performing an singular value decomposition (SVD) matrix
decomposition of the pair correlations.

The quantities Bl and Tl depend on the angular momentum quantum number l but not on
the azimuthal quantum number m. However, in general, the spherical harmonic expansion coefficients
Ilm(q) depend on both sets of quantum numbers. However, there is one orientation when m is fixed
and the the Ilm coefficients depend additionally only on l, and that is when a major axis of the ellipsoid
representing the nanorice is coincident with the z-axis. Under these conditions, the particle, and also
the diffraction volume, has azimuthal symmetry about the z-axis, and then can be characterized exactly
by m = 0 for all l.

Figure 3. Expansion in spherical harmonics with respect to an arbitrary axis.

Figure 4. Expansion in spherical harmonics with respect to the z-axis.

We are not trying to reconstruct the particle in any particular orientation. Due to the random
orientation of the particles contributing to the data, any orientation of reconstruction is as good as
any other. We choose the orientation with the major axis of the ellipsoid along the z-axis. We can
choose this orientation by assuming that only the m = 0 components of the Ilm(q)s exist. At this
point, these coefficients depend only on l. The magnitudes of these spherical harmonic coefficients
determined from

|Il0(q)| =
√

Bl(q, q). (18)

Since Il0 is real, its only uncertainty is one of sign. These signs are found by an exhaustive
search through

Tl(q, q) =
lmax

∑
l1,l2

G(l10, l20, l0)Il10(q)Il20(q)Il0(q), (19)

where G is a Gaunt coefficient [18,19], and basically we search through all possible signs of the Il0(q) on
the RHS (right hand side) (the magnitudes of the Il0 are known from the pair correlations as mentioned
above) to get best agreement with the experimentally-determined LHS (left hand side). Again, ms are
zeros for azimuthal symmetry.

Since an ellipsoid has azimuthal symmetry about a particular axis, we can choose that particular
axis as the z-axis, thus eliminating any other components of the magnetic quantum number except
m = 0. |Il0(q)| can be obtained directly from Bl(q, q) via (18).
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The only unknown here is sign of Il0(q). The sign can be determined by fitting all possible
signs of Il0(q) to the values Tl(q) of the triple correlations calculated directly from the diffraction
patterns of random particle orientations. It should be stressed that the number of equations is equal
to the number of distinct Tl(q, q) values, namely, the numbers of q and l values, as is the number
of unknowns Il0(q), so there is no information deficit.

After obtaining the signs of the Il0(q), the diffraction volume can be calculated from

I(q) = ∑
l

Il0(q)Yl0(q̂). (20)

An iterative phasing algorithm [25,26] applied to these diffraction volumes can then recover
the electron density of the particle, the real space object giving rise to the diffraction volume.
The calculated intensities are displayed on Figures 5 and 6 and reconstructed electron density after
phasing is displayed on Figures 7 and 8.

Figure 5. Reconstructed diffraction volume from one particle per shot (randomly oriented).

Figure 6. Reconstructed diffraction volume from two particles per shot (randomly oriented).
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Figure 7. Image reconstructed from one particle per diffraction patten.

Figure 8. Image reconstructed from two particles per diffraction patten.

5. Angular Dependence of Scattering

We also investigated the effects of the angular dependence of the scattering. Our nanorice particles
are about are about 50 Å in diameter. They are constituted of the chemical molecules Fe2O3 and thus
on average are much stronger scatterers than a typical bioparticle. In fact, we estimate log|F(q)|2 to be
about 108 at low resolutions, much higher than for a bioparticle. Of course, we see the precipitous fall
off with angle, and Fung et al. estimated the number of high-resolution photons per Shannon pixel to
be about 10−2 for a 100 kD protein. Since the nanoparticle contains many more electrons, we expect
the scattering power of our nanoparticles to not need Poisson statistics. Consequently, we have plotted
only log|F(q)|2, which will give the angular dependence of the measured signal (Figure 9).

6. Conclusions

It should be noted that the images computed from the diffraction patterns of single particles do
not agree perfectly with those from two particles. This to be expected, as there will be extra interparticle
interfences in the two-particle case. It is only if the number of particles contributing to each diffraction
pattern becomes large that the arguments made by [27], for suggesting that the correlations from
multiple particles, approach those of a single particle, due to the fact that the phases are random,
allowing interparticle inteferences to be ignored.
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The method of angular correlations [3,11] is shown to be very capable of recovering accurate 3D
images of any particle of azimuthal symmetry as injected into an X-ray free electron laser (XFEL),
even if there are multiple particles in random orientations. We tested this by means of a simulations
in the case of nanorice, one of the early particles used as a test case with an XFEL. To this end,
we simulated diffraction patterns expected of random orientations of the nanorice. From this data,
one is able to find quantities that enable the reconstruction of an accurate image of nanorice particles.
Note that this method is also applicable for reconstruction of artificial dumbbells, as demonstrated
recently in a paper by Starodub et al. [24].

It should be noted that m = 0 is also assumed for a helical virus. The difference with that case
is that the diffraction volume tends to be concentrated on “layer planes” implying a periodicity
of the particle structure along the azimuthal axis. It is remarkable that the combination of “layer
plane” intensities and azimuthal symmetry yield a helical structure in real space on phasing [21].
In the present case, the intensities are not concentrated on “layer planes” and yield a structure that
is genuinely azimuthally symmetric, with no hint of helicity. Both are indications of the power of
modern iterative phasing algorithms to find the correct structure from diffraction volumes.

Our next step will be to apply this method to nanorice experimental data from an XFEL,
as deposited on [28], for example.

A problem with experimental data is that a huge number of diffraction patterns are measured,
only a subset of which (“good” patterns) correspond to actual particle hits. In addition to all other
methods that have been proposed for structure determination from XFEL diffraction patterns, one
needs to filter out diffraction patterns corresponding to multiple particle hits. This is not necessary
with our method. Only an elimination of patterns corresponding to no particle hits at all. Due to the
huge number of diffraction patterns measured in an experiments, this needs to be done by computer.
Fortunately, there has already been at least one machine learning algorithm [9] applied to discriminate
between measured [9] “good” and “bad” patterns. We are collaborating with the first author of that
paper [9] with an aim to apply our method to experimental data.

Figure 9. Logarithm of the intensities reconstructed from the angular correlations of two randomly
spaced and oriented nanorice particles with widths of about 50 Å.
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