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Abstract: Validation of satellite-based soil moisture products is necessary to provide users 

with an assessment of their accuracy and reliability and to ensure quality of information. A 

key step in the validation process is to upscale point-scale, ground-based soil moisture 

observations to satellite-scale pixel averages. When soil moisture shows high spatial 

heterogeneity within pixels, a strategy which captures the spatial characteristics is essential 

for the upscaling process. In addition, temporal variation in soil moisture must be taken into 

account when measurement times of ground-based and satellite-based observations are not 

the same. We applied spatio-temporal regression block kriging (STRBK) to upscale  

in situ soil moisture observations collected as time series at multiple locations to pixel 

averages. STRBK incorporates auxiliary information such as maps of vegetation and land 

surface temperature to improve predictions and exploits the spatio-temporal correlation 

structure of the point-scale soil moisture observations. In addition, STRBK also quantifies 

the uncertainty associated with the upscaled soil moisture which allows bias detection and 

significance testing of satellite-based soil moisture products. The approach is illustrated with 

a real-world application for upscaling in situ soil moisture observations for validating the 
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Polarimetric L-band Multi-beam Radiometer (PLMR) retrieved soil moisture product in the 

Heihe Water Allied Telemetry Experimental Research experiment (HiWATER). The results 

show that STRBK yields upscaled soil moisture predictions that are sufficiently accurate  

for validation purposes. Comparison of the upscaled predictions with PLMR soil moisture 

observations shows that the root-mean-squared error of the PLMR soil moisture product  

is about 0.03 m3·m−3 and can be used as a high-resolution soil moisture product for 

watershed-scale soil moisture monitoring. 

Keywords: remote sensing product validation; spatio-temporal variogram; upscaling; 

regional; HiWATER 

 

1. Introduction 

Soil moisture is a key variable in controlling the exchange of water and energy fluxes between the 

hydrosphere, biosphere, and atmosphere [1]. Understanding soil moisture variation in space and time is, 

therefore, a critical part of many scientific studies and operational applications, such as flood forecasting, 

weather and climate prediction, and crop growth modeling and monitoring [2]. In practice, soil moisture 

is generally obtained through in situ measurements, remote sensing technology, or land surface models. 

In recent years, a series of global-scale and regional-scale remotely sensed surface soil moisture products 

have become available. However, soil moisture remote sensing retrieval may contain large uncertainties 

because it involves indirect measurement methods that are prone to all sorts of errors and because  

of the inherent complexity of the underlying physical processes [3]. Applications highlight the need to 

validate satellite-based soil-moisture products against ground-based observations, traditionally via  

in situ measurements. 

One significant challenge for the validation of satellite-based soil moisture products with  

ground-based observations is the disparity in observation scales of ground-based and satellite-based 

observing systems [4,5]. It is well known that in situ measurements of soil moisture are commonly made 

at point support (~52 cm2), whereas satellite sensors provide soil moisture estimates for a much larger 

spatial “block” support (typically > 102 km2). Considering the large within-block spatial variation of 

point-support soil moisture [6], a large number of ground-based measurements are needed to upscale 

soil moisture to a satellite-based footprint for validation purposes. In addition, soil moisture varies over 

time and ground-based measurements are not all taken simultaneously nor at the same time as the 

satellite-based measurement.  

A number of studies have been conducted to validate satellite-based soil moisture products by 

upscaling in situ measurements [5,7–9]. These studies are based on the assumption that in situ 

measurements have negligible error compared to the satellite-based estimates. Based on this assumption, 

various strategies have been proposed in the literature for upscaling ground-based soil moisture 

observations to a larger support, see Vereecken, et al. [10] or Crow, et al. [4] for a review. Specifically, 

the most direct way is based on statistical sampling theory. The average value of soil moisture in a 

satellite footprint is estimated by the arithmetic mean of multiple ground-based measurements at 

randomly selected locations within the footprint. A second strategy is to implement a geostatistical 
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interpolation algorithm, such as block-kriging, that predicts the spatial average while taking spatial 

autocorrelation into account [11]. A third strategy incorporates intensive field campaigns [12] while a 

fourth method is based on the results of a distributed land surface model [8,13]. 

Understanding soil moisture spatial variation is of principal importance for estimating soil moisture 

at the remote sensing pixel scale. By quantifying its spatial variation through the covariance function (or 

variogram), kriging produces optimal predictions and associated prediction error variances from 

incomplete and possibly noisy measurements. Since soil moisture varies not only in space but also in 

time, upscaling ground-based point observations must also take temporal variation into account. Here, 

we propose a new upscaling method in the context of spatio-temporal data. To be specific, a geostatistical 

method that uses spatio-temporal regression block kriging (STRBK) is used to scale up in situ soil 

moisture spatio-temporal observations. The advantage of upscaling with STRBK is that it corrects time 

differences between ground-based measurements and satellite-based measurements. It can also make 

use of a larger set of ground-based measurements, because it is not restricted to a narrow time interval 

around the time at which the satellite-based measurement was taken. The objective of this study is to 

improve the reliability of satellite soil-moisture product validation using spatio-temporal geostatistics. 

The remainder of this paper is organized as follows. Section 2 describes the study area and presents 

the data sets used as a basis for upscaling. The methodology for upscaling with STRBK is given in 

Section 3. Finally, the results of upscaling and the validation of remotely sensed soil moisture products 

are presented and discussed in Sections 4 and 5. Conclusions are drawn in Section 6. 

2. Study Area and Data Description 

In 2012, a number of field campaigns in the context of the HiWATER project [14] were carried out 

to perform simultaneous airborne, satellite-borne, and ground-based remote-sensing experiments at 

various scales of the Heihe River Basin (HRB), China. The study area used here is the Yingke-Daman 

irrigation district (Figure 1), which is an artificial oasis-riparian ecosystem-wetland-desert compound in 

the middle reaches of the HRB. The district covers 38°50′–38°54′N and 100°19′–100°24′E, and is in a 

typical semi-arid and arid agricultural region. Cornfields cover most of the area (~75%), but land cover 

also includes orchards, buildings, roads, and other vegetation. Annual precipitation is approximately  

122 mm, while potential evaporation is about 1200–1800 mm per year. Agricultural irrigation is essential 

for crop growth. Hence, there is a dense network of canals that serve as the irrigation system. The soil 

moisture pattern is primarily controlled by the artificial irrigation management and the spatial 

distribution of crops. During the growing season, soil moisture varies from 8 vol % to saturation because 

of irrigation and precipitation. 

To acquire the spatial variation and temporal dynamics of soil moisture during the growing season, 

we used an airborne Polarimetric L-band (1.4 GHz) Multi-beam Radiometer (PLMR) to measure soil 

moisture at 700 m resolution [15]. The HiWATER project collected PLMR imagery of the study area 

on six occasions, always around noon on 30 June, 3 July, 7 July, 10 July, 26 July, and 2 August, 2012. 

PLMR measures both V and H polarizations using a single receiver with polarization switching at 

incidence angles of ±7°, ±21.5°, and ±38.5°. Surface soil moisture was retrieved through an L-band 

microwave emission of the biosphere (L-MEB) model and Levenberg-Marquardt optimization with 

airborne PLMR radiometer data and Moderate Resolution Imaging Spectroradiometer (MODIS) land 
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surface temperature and leaf area index products [16,17]. Previous studies showed that the L-MEB 

model can achieve 0.04 m3·m−3 accuracy levels for soil moisture retrievals [17]. In addition to remote 

sensing data, a ground-based Ecological and Hydrological Wireless Sensor Network (EHWSN) was also 

installed to monitor farmland soil moisture during the HiWATER campaign [18]. Specifically, fifty 

EHWSN nodes named WATERNET were deployed to measure soil moisture at 0–4 cm depth for 

validation of the remote sensing product. The spatial distribution of WATERNET is shown in  

Figure 1. It covers approximately 36 (6 × 6) PLMR pixels. Soil moisture was measured using the 

frequency-domain reflectometry method and a Hydro Probe II (HP-II) sensor. The laboratory calibration 

shows that the WATERNET soil moisture instrument error is 0.010 m3·m−3 [19]. WATERNET observes 

soil moisture at 1-minute temporal resolution. The high measurement accuracy and synchronization with 

satellite and airborne remote sensing overpasses makes WATERNET suitable for validation of the 

PLMR soil moisture products. In addition, a 1 km × 1 km pixel (the black square in Figure 1), which 

contains 50 EHWSN nodes jointly named SoilNET, was used as an intensive observation zone to capture 

small-scale soil moisture variation [20]. SoilNET is an ad hoc network designed by the Jülich Research 

Center [21]. It measures soil moisture at 0–4 cm depth every 5 min. Laboratory calibration showed that 

the instrument error of SoilNET is 0.015 m3·m−3, which is larger than that of WATERNET.  

  

Figure 1. Soil moisture monitoring network in the Yingke–Daman irrigation district. The 

triangles and circles show the measurement locations of the WATERNET and SoilNET 

wireless sensor network, respectively. The background is a 3 m resolution Thermal Airborne 

Spectrographic Imager (TASI) for land surface Temperature (LST) retrieval. 

One challenge in upscaling soil moisture arises from the heterogeneity of the soil surface. As 

indicated by the surface temperature shown in Figure 1, the sparsely located WATERNET nodes are 
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insufficient to capture the spatial variation of soil moisture, especially during irrigation times. Therefore, 

the spatial upscaling algorithm that relies on in situ observations only yields a crude estimate of  

pixel-level soil moisture. Because ground-based soil moisture is correlated with soil temperature and 

land cover type, remote sensing retrievals of these variables provide extra information about the spatial 

distribution of soil moisture. More specifically, we employed a number of auxiliary variables as reported 

in Ge, et al. [22], including land surface temperature (LST), normalized difference vegetation index 

(NDVI) and fractional vegetation cover (FVC), all derived from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER). These auxiliary variables have a spatial resolution of 90 

m, which is much finer than the target coarse remote sensing product. We only chose two time periods 

for validation, i.e., 10 July and 2 August, when the weather was clear and the satellite passes were 

available for the entire study area. 

3. Methods 

3.1. Upscaling with Spatio-Temporal Regression Block Kriging 

3.1.1. Spatio-Temporal Random Field Model 

The spatio-temporal variation of soil moisture at point support can be represented by considering a 

continuous variable 𝑍 = {𝑍(𝐬, 𝑡)|𝐬 ∈ S, 𝑡 ∈ 𝑇} that varies within a spatial domain S and time interval T. 

Let Z be observed at n spatio-temporal observation points (si, ti), i = 1, …, n. The objective of spatio-

temporal upscaling is to make a prediction of Z(B), i.e., the average of Z for an unobserved spatio-

temporal “block” B, which is defined as a subset of the space-time domain: B  S × T. For instance, B 

might be a 1 × 1 square kilometer area integrated over a 24 h period. In order to predict Z(B) we must 

first define a model for Z. 

We assume that the spatio-temporal random field Z is normally distributed and can be decomposed 

into a deterministic trend m and a stochastic residual R [23–25], given by: 

( , ) ( , ) ( , )Z t m t R t s s s  (1)  

where m(s, t) is a deterministic trend that represents variation that can be explained by external 

environmental “covariates”. R(s, t) is the spatio-temporal correlated stochastic residual, typically 

representing small-scale, “noisy” variation.  

3.1.2. The Trend Component 

The simplest way to model the trend component is to assume that it is an unknown constant. However, 

this is rarely satisfactory in practice, since we often know the driving factors behind the variation in 

space and time. Alternatively, the trend can be taken as a function of covariates. If we assume linear 

relationships, then m(s, t) may be written as [23,25]: 

0

( , ) ( , )
p

i i

i

m t f t


 s s  (2)  
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where the βi are unknown regression coefficients, the fi are covariates that must be exhaustively known 

over the spatio-temporal domain, and p is the number of covariates. Covariate f0 is taken as unity, 

resulting in β0 representing the intercept. 

We assume that the soil moisture trend is temporally constant during a satellite or airborne remote 

sensing overpass. Therefore, the trend m(s,t) has only spatial components. For this, a linear multiple 

regression model is established: 

0 1 2 3 , 1,2,...,k k k k k k k k k km LST NDVI FVC k K        X β  (3)  

where subscript k denotes a different satellite overpass time, and K is the total number of overpass times, 

Xk is a covariates matrix with dimensions 𝑛 × (𝑝 + 1), and the βk are parameters to be estimated. LST, 

NDVI, and FVC are auxiliary environmental variables extracted by taking the block average of the k-th 

ASTER fly-over.  

3.1.3. The Residual Component 

The estimated spatio-temporal trend component is subtracted from the point observations to yield 

values of the spatio-temporal residual R(s,t) at the n observation points. Since the trend component in 

Equation (1) cannot explain all variation in soil moisture, the residuals of the regression model will have 

spatio-temporal variation that in addition might be correlated in space and time. This indicates that a 

spatio-temporal variogram may be estimated from the residuals at the observation locations and used to 

predict the residuals using kriging.  

We model the spatio-temporal semivariance between residuals R(si, ti) and R(sj, tj) with the variogram, 

assuming space-time second-order stationarity: 

2( , ) ( , ) 0.5 { ( , ) ( , )) }ij ij i j i j i i j jt t E R t R t        h s s s s(  (4)  

with hij = si − sj and τij = ti − tj the distance in space and time, respectively, and E denotes the 

mathematical expectation. In Equation (4), we assume that the semivariance of R at points (si, ti) and  

(sj, tj) only depends on the separation distance (hij, τij). This assumption might be difficult to satisfy for 

the variable Z but are more plausible for the residual variable R. Note that keeping both spatial and 

temporal distances separate implies that zonal and geometric space-time anisotropies can be accommodated. 

The experimental variogram γ̂(𝐡, 𝜏) is computed by: 

( , )
2

1

1
ˆ( , ) ( ( , ) ( , ))

2 ( , )

N

i

R t R t
N





      



h

h s s h
h

 (5)  

where 𝑁(𝐡, 𝜏) is the number of pairs in the spatio-temporal lag. The covariance �̂�(𝐡, 𝜏) can be obtained 

through �̂�(𝐡, 𝜏) =  γ̂(∞, ∞) − γ̂(𝐡, 𝜏) [26]. 

Once the experimental variogram γ̂(𝐡, 𝜏)  or covariance �̂�(𝐡, 𝜏)  has been obtained, a theoretical 

spatio-temporal variogram or covariance model may be fitted. The choice of spatio-temporal covariance 

model and estimation of the model parameters are essential prerequisites for prediction and  

upscaling [27,28]. Here, we adopt a sum-metric model [23–25,29] on the spatio-temporal residual. It 

assumes that the residual R(s, t) consists of three stationary and independent components: a purely spatial 

process (with constant realizations over time), a purely temporal process (realizations are constant in 

space), and a spatio-temporal process for which distance in space is made comparable to distance in time 
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by introducing a space-time anisotropy ratio. We also assume spatial isotropy, so that the spatial distance 

h becomes a scalar h. Thus, the sum-metric covariance structure can be represented by: 

 2 2( , ) ( ) ( ) ( )S T STC h C h C C h        (6)  

where 𝐶𝑆(ℎ) and 𝐶𝑇(𝜏) are the marginal spatial and temporal covariance functions and 𝐶𝑆𝑇 is the spatio-

temporal interaction component. 𝐶𝑆(ℎ) + 𝐶𝑇(𝜏)  accommodates the presence of space-time zonal 

anisotropy and 𝐶𝑆𝑇(√ℎ2 + (𝛼 ∙ 𝜏)2)  allows the presence of a space-time geometric anisotropy, 

represented with the ratio α, which converts units of temporal separation (𝜏) to spatial separation (h). 

Once each of the covariance functions is parameterized, the entire sum-metric model typically consists 

of ten parameters: three nugget, three sill, and three range parameters, and the anisotropy parameter α. 

3.1.4. Spatio-Temporal Regression Block Kriging 

Spatio-temporal regression kriging (STRK, also known as spatio-temporal kriging with external  

drift or spatio-temporal universal kriging) is a recently proposed method that has also been applied in 

regional and global land surface temperature mapping [23,24]. Here, our primary aim is not  

spatio(-temporal) mapping but spatio-temporal upscaling. Hence, we extend STRK to spatio-temporal 

regression block kriging (STRBK). 

For STRBK, the target variable (i.e., soil moisture) at block B is defined as: 

( ) ( , )
B

Z B Z t d dt B  s s  (7)  

where |𝐵| is the volume of support B. Z(B) is predicted by: 

1

ˆ( ) ( , )
n

i i i

i

Z B Z t


   s  (8)  

The weights λ𝑖 are obtained by solving the following set of equations: 

B

B

    
          

cC X λ

xX 0 μ
  (9)  

where C is the variance-covariance matrix of the stochastic residuals at observation points as derived 

from Equation (6), 𝐜𝐵 = [𝑐1(𝐵), 𝑐2(𝐵), … , 𝑐𝑛(𝐵)]′  with 𝑐𝑖(𝐵) = ∫ 𝐶
𝐵

(𝐬 − 𝐬𝑖 , 𝑡 − 𝑡𝑖)𝑑𝐬𝑑𝑡 |𝐵|⁄  for  

i = 1, 2, ..., n, 𝐱𝐵 = [1, 𝑥1(𝐵), 𝑥2(𝐵), … , 𝑥𝑝(𝐵)]′, with 𝑥𝑗(𝐵) = ∫ 𝑥𝑗𝐵
(𝐬, 𝑡)𝑑𝐬𝑑𝑡 |𝐵|⁄  for j = 1, 2, ..., p, 

and 𝛍 are Lagrange multipliers introduced to satisfy the unbiasedness constraint [26]. The solution of 

Equation (9) for 𝛌 and 𝛍 yields the best linear unbiased prediction (BLUP) �̂�(𝐵), which is given by: 

1

1 1 1 1

ˆ ˆˆ( ) ( , ) ( ( , ) )

{ ( ) ( )} ( , ),

B B

B B B

Z B t t

t



   

     

   

λ Z s c C Z s Xβ x β

c X X C X x X C c C Z s
 (10)  

where �̂� is the generalized least-squares (GLS) estimate of the trend coefficients. The STRBK variance 

is given by 
2 2 2 1 1 1

,
ˆ ( ) [ ( , ) ( )] ( )B B B BB E t B            λZ s Z c C c D X C X D  (11)  
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where 𝐃 = 𝐱𝐵 − 𝐗′𝐂−1𝐜𝐵 and σ𝐵,𝐵
2  is the within-block covariance. In practice, the integrals above are 

commonly approximated by discretizing B with a grid and averaging covariance between locations  

on the grid. 

In the case that there is no external trend (i.e., m(s,t) is constant), STRBK reduces to  

spatio-temporal ordinary block kriging (STOBK). The predictor and the corresponding prediction error 

variance of STOBK can be easily obtained from Equations (10) and (11) as: 

1 1 1 1ˆ( ) { ( ) (1 )} ( , )B BZ B t       c 1 1 C 1 1 C c C Z s , 

   
1

2 2 1 1

,
ˆ

B B B BB


       c C c d 1 C 1 d   
(12)  

where 𝐝 = 1 − 𝟏′𝐂−1𝐜𝐵 and 1 is an n-dimensional row vector whose elements are set to unity.  

We applied a set of functions in the R package gstat [30] and spacetime [31] to implement 

STRBK for soil moisture upscaling. The parameters in Equation (6) are estimated simultaneously by 

using the optim function available in R language for statistical computing [32]. 

3.2. Accuracy Assessment 

The true soil moisture for a given spatio-temporal support (i.e., the average soil moisture for a pixel 

over several hours period) cannot be measured without error if the space-time support is large. Therefore, 

it is difficult to assess the accuracy of the upscaling algorithm directly. In this study, an alternative 

approach was taken and validation was done as follows. First, the independently deployed SoilNET 

measurements in the intensive zone (see Figure 1) were averaged for a given spatio-temporal  

support. Second, the 50-SoilNET-averaged values were regarded as the “ground truth”. Third, the 

WATERNET-based soil moisture was computed using the method presented in Section 3.1.4. Finally, 

the upscaling strategies were performed to check whether the “ground truth” can be retrieved according 

to these available soil moisture values. We examined the difference between the “ground truth” and 

predicted values using the upscaling error, i.e., �̂�(𝐵) − 𝑍(𝐵). Next, the best performing upscaling strategy 

will be used to validate the accuracy of PLMR soil moisture product. The difference between the PLMR 

retrievals and predicted values was evaluated by the metrics of mean error (ME), root-mean-squared 

error (RMSE), and R-square. 

4. Results 

4.1. Data Summary 

In this study, 28 days of WATERNET surface soil moisture observations were obtained from the 

HiWATER website [15]. Figure 2 shows a multiple time series plot of 50 WATERNET observations 

from 9 July to 5 August 2012, made with the mvtsplot package in R [33]. From Figure 2, we can 

conclude that soil moisture has a significant temporal variation, especially when precipitation (16, 21, 

30 July) or irrigation occurs. Moreover, unscheduled agriculture irrigation, particularly between 21 and 

30 July, also leads to a strong heterogeneity of soil moisture.  
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Figure 2. Multiple parallel time series plot of 50 WATERNET soil moisture observations. 

The top-left panel shows the parallel multiple time series of soil moisture. The yellow to red 

palette represents variation in surface soil moisture. White represents no data. The right panel 

presents summary statistics of soil moisture for each node. The black dots denote the median 

while the horizontal lines represent the lower and upper quartiles. The lower panel shows the 

average moisture time series of the 50 nodes.  

For each of the six flight days, the passing of the PLMR over the study area was around noon. For 

PLMR soil moisture validation purposes, we only consider observations during three hours before and 

three hours after satellite or aircraft passes, i.e., from 9:00 to 15:00. Specifically, only two periods, i.e., 

10 July and 2 August, were adopted for validation because auxiliary ASTER imagery was available. 

Figure 2 shows that there was no precipitation or irrigation at these two time periods. Figure 3 shows the 

LST, NDVI, and FVC products derived from ASTER data at the time of 12:12, 10 July 2012 and 12:18, 

2 August 2012, respectively. Since the passing of the aircraft and the ASTER satellite happened almost 

at the same time, we assumed that the ASTER-derived variables are the same as would have been 

observed at the time when PLMR passes. Table 1 provides summary statistics of all soil moisture data 

available at the time of 9:00 to 15:00 on 10 July and 2 August, respectively. As shown in Table 1, soil 

moisture on 2 August has a higher relative mean value and standard derivation (SD) than that at  

10 July. This is due to different irrigation practices within the study area on 2 August (Figure 2). 
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Table 1. Summary statistics of soil moisture data (m3·m−3). 

Date Time Duration  Min Max Mean SD 

10 July 2012 9:00–15:00 
WATERNET 0.198 0.339 0.256 0.033 

SoilNET 0.221 0.289 0.252 0.027 

2 August 2012 9:00–15:00 
WATERNET 0.160 0.369 0.274 0.042 

SoilNET 0.237 0.312 0.278 0.034 

 

 

Figure 3. ASTER-derived LST, NDVI, and FVC on 10 July 2012 (top) and 2 August 2012 

(bottom). The 6 × 6 grids represent the PLMR pixels coverage. 

4.2. Regression Modeling of Spatial Trends 

Results of a correlation analysis revealed that the ASTER LST images were the most significant 

predictors of soil moisture. The correlation coefficient is around 0.47 in both time periods. The NDVI 

and FVI have correlation coefficients of 0.36 and 0.14, respectively. The results of linear regression 

showed that the predictors explain 43% and 47% of the spatial variation of soil moisture for 10 July and 

2 August, respectively. The complete list of predictors achieved a precision of ±0.06 m3·m−3. 

4.3. Variogram Analysis of the Residuals 

The left-hand side of Figure 4 shows the residual point sample spatio-temporal variogram. The fitted 

model (10 variogram parameters described in Section 3.1.3) is shown at the right-hand side of Figure 4. 

Table 2 summarizes the estimated parameters of the sum-metric variogram model. Note that the marginal 

spatial component and the spatio-temporal joint component were modeled as Exponential functions. The 

temporal component on 10 July and 2 August was fitted by pure Nugget function and Exponential 

function, respectively.  

It can be concluded from Figure 4 that the regression residuals have significant correlations both in 

space and time, and therefore, spatio-temporal kriging of residuals is applicable. However, note that 



Remote Sens. 2015, 7 11382 

 

 

temporal variation is an order of magnitude smaller than spatial variation. The fitted spatio-temporal 

variogram parameters of the residuals have a significant purely spatial variogram component, while the 

purely temporal component is absent. This confirms that the temporal variation of soil moisture within 

six hours is small compared to the spatial variation. Temporal variation of the residual is only contained 

in the spatio-temporal interaction variogram components. The spatio-temporal anisotropy ratio shows 

that observation stations with a temporal lag of 1 minute exhibit a similar correlation as stations that are 

about 1~2 m apart.  

 

 

Figure 4. Point sample variogram (left) of residuals from multiple linear regression and  

the fitted sum-metric model (right) for 10 July (upper), and 2 August 2012 (bottom). Units 

are (m3·m−3)2. 

Table 2. Parameters of the fitted sum-metric variogram model for soil moisture  

regression residuals. 

Date Component Model Nugget Sill  Range Anisotropy 

10 July 

Spatial Exponential 0 0.00098 201.1 m  

Temporal Nugget 0 0 0 min  

Spatio-temporal Exponential 0 0.00029 35.0 m 1.56 m/min 

2 August 

Spatial Exponential 0 0.00079 265.3 m  

Temporal Nugget 0 0.000012 10.0 min  

Spatio-temporal Exponential 0 0.00068 24.0 m 1.79 m/min 
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4.4. Accuracy Assessment 

To assess the STRBK and STOBK upscaling strategies, we first upscaled WATERNET observations 

to the SoilNET intensive observation zone within three hours before and after satellite or aircraft passes. 

For comparison, a commonly used upscaling strategy known as ordinary block kriging (BK) algorithm [11] 

was also adopted. BK is a purely spatial aggregation method that makes no use of covariate information. 

We only upscaled the soil moisture at the times of satellite or aircraft passes. Table 3 shows the accuracy 

assessment result of the three upscaling approaches described in Section 3.2. We expect the predictions 

to be unbiased; if prediction values are unbiased, the upscaling error should be approximately zero. As 

shown in Table 3, the STRBK upscaling errors smaller than the BK and STOBK. 

Table 3. Accuracy assessment of three upscaling strategies with 50-SoilNET-averaged values. 

 Upscaling Error (m3·m−3) 

 BK STOBK STRBK 

10 July 0.0016 0.0014 0.0013 

2 August 0.0017 0.0017 0.0016 

Since STRBK upscaling strategy achieves the best performance among these three methods, it was 

further adopted to upscale in situ soil moisture observations to pixel averages in order to validate the 

PLMR soil moisture products. The results are shown in Figure 5. It is clearly seen that, with an  

R-square value of 0.75 and 0.60, the PLMR retrievals have a good consistency with the upscaled soil 

moisture. The RMSE of 10 July is 0.037 m3·m−3 and the ME is 0.016 m3·m−3; 2 August yields  

RMSE = 0.027 m3·m−3 with an ME of 0.005 m3·m−3. The PLMR product at 10 July is, thus, more 

accurate than the product of 2 August. The main reason is that the soil moisture is relatively 

homogeneous during 10 July.  

 

Figure 5. Comparison of the STRBK upscaled predictions with the values of PLMR 

retrievals on 10 July (left), and 2 August 2012 (right). The blue line is the fitted linear 

regression, the dashed line is the 1:1 line. The error bars show the 95% prediction intervals, 

as derived from the block kriging variances. 
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5. Discussion 

Validation of remote sensing soil moisture products is traditionally carried out by averaging in situ 

measurements. Given the substantial within-field spatial variation and relatively modest number of 

ground-based soil moisture observations, this method often fails to achieve acceptable accuracy  

levels [34]. More accurate results can be obtained by using a geostatistical upscaling method, i.e., BK, 

which considers the spatial structure in the data. The BK method can be extended to include information 

derived from environmental covariates and past and future soil moisture. We presented the STRBK 

approach to scale up point-support observations of soil moisture to block-support averages to be used 

for validation of remote-sensing based PLMR observations. The main advantages of STRBK are: (1) it 

is a spatio-temporal upscaling method which can scale up observations to any desired spatio-temporal 

support; (2) it takes a spatio-temporal trend into account which is treated as a function of environmental 

covariates; and (3) it uses more observations than a purely spatial upscaling method, and is therefore less 

sensitive to random measurement errors.  

The STRBK upscaling approach starts with trend modeling, which needs appropriate  

high-resolution covariates to capture the spatio-temporal trend of soil moisture. Previous studies 

demonstrated that the daily average soil moisture is highly correlated to daily temperature change and 

vegetation cover. Therefore, land surface parameters derived from 1 km MODIS data have been widely 

used to model the spatial trend of soil moisture. For example, Qin, et al. [8] proposed a Bayesian linear 

regression method to upscale in situ soil moisture measurements to a 100 km × 100 km grid box, based on 

MODIS-derived apparent thermal inertia. In our study, however, the objective was to upscale in situ soil 

moisture observations to 700 m spatial resolution PLMR pixel averages. MODIS covariates with a 

spatial resolution of 1 km are too coarse for this purpose. Hence, ASTER-derived land surface 

parameters with a spatial resolution of 90 m were adopted to model the spatial trend of surface soil 

moisture. The results of STRBK with high-resolution auxiliary data exhibit more detailed spatial patterns 

and higher prediction accuracy compared to the STOBK method. 

Previous studies have shown the importance of selecting a suitable upscaling approach to evaluate 

satellite-based soil moisture estimates. For example, Qin, et al. [35] compare four upscaling methods 

(simple average (SA), BK, model-based (MB), and apparent-thermal-inertia-based (ATI) [8]) by using 

the unscaled soil moisture to evaluate soil moisture estimated by assimilating microwave signals into a 

land surface model on the Tibetan Plateau and Mongolia Plateau. They found that the performance of 

the MB upscaling approach is the most unstable. The BK and SA upscaling methods performed equally 

well, while ATI upscaling was the most accurate, presumably because it could benefit from  

high-resolution satellite thermal data. In our study, likewise, by taking advantage of auxiliary 

information, STRBK upscaling achieves the best performance among the three methods tested (BK, 

STOBK, and STRBK). However, due to the unavailability of a land surface assimilation model, a 

comparison of STRBK, MB, and ATI was not carried out in this study. Hence, more investigations are 

needed to compare the performance of these three upscaling methods. 

Despite advantages of STRBK for spatio-temporal upscaling, it is also necessary to consider 

implementation costs and required accuracy before choosing an appropriate upscaling strategy in routine 

remote sensing-based soil moisture product validation procedures. The proposed STRBK method 

depends on the availability of high-resolution optical auxiliary variables, which are available only during 
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clear sky conditions and on specific days. When the auxiliary data are not available, the BK and STOBK 

approaches can be used. They are easily applied in practice, although their performance will be less.  

6. Conclusions 

Upscaling ground-based soil moisture observations to satellite or airborne footprint-scale estimates 

is an essential problem in remote sensing soil moisture product validation. The reliability of the 

validation is sensitive to the quality of the input observation data and the upscaling strategy. When soil 

moisture shows high spatio(-temporal) heterogeneity within the footprint, the upscaling strategy can 

benefit from the spatio-temporal characteristics of point-support soil moisture. In this paper, a new 

upscaling approach named spatio-temporal regression block kriging was proposed to scale up in situ soil 

moisture observations to pixel averages. The method incorporates related auxiliary information and 

makes optimal use of the space-time correlation structure of point-support soil moisture observations. 

The method was illustrated with a real-world application to scale up soil moisture in the HiWATER 

experiment for validating PLMR retrieved soil moisture products. Comparison with results obtained 

using the more common BK upscaling method showed that the proposed approach yields more accurate 

results. The approach is recommended for upscaling land surface parameters with high spatio-temporal 

heterogeneity. An important advantage is that it can simultaneously do spatial and temporal aggregation. 

This was not requested for validation of the PLMR product, because PLMR measures the soil moisture 

at a time instant, but it would be important for other applications, such as in agricultural, hydrological 

or climate studies where the average soil moisture over time periods is more relevant than soil moisture 

at single time points. 

It is noted that all analyses and conclusions are based on only two days with coincident overpass time 

between in situ and PLMR soil moisture observations. The robustness of the proposed method is 

therefore not yet definitively answered. More investigations and comparisons are needed to evaluate the 

performance of the proposed method for other seasons and regions with distinct climates and land cover 

are needed. In addition, due to the absence of an adequate soil map, variations in soil texture were not 

considered in the analysis of spatial variation of soil moisture. Nevertheless, this study demonstrates that 

it is critical to select a suitable upscaling approach in routine soil moisture products validation procedures 

and emphasizes the importance of incorporating covariate information and spatio-temporal variation of 

soil moisture for the effective validation of coarse-resolution satellite or airborne soil moisture products. 
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