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Abstract: This paper addresses trajectory tracking of an omni-directional mobile robot (OMR) with
three mecanum wheels and a fully symmetrical configuration. The omni-directional wheeled robot
outperforms the non-holonomic wheeled robot due to its ability to rotate and translate independently
and simultaneously. A kinematics model of the OMR is established and a model predictive control
(MPC) algorithm with control and system constraints is designed to achieve point stabilization and
trajectory tracking. Simulation results validate the accuracy of the established kinematics model and
the effectiveness of the proposed MPC controller.

Keywords: omni-directional mobile robot (OMR); kinematics model; model predictive control; point
stabilization; trajectory tracking

1. Introduction

Industrial automation is a prerequisite for intelligent manufacturing, and mobile robots represent
a core component of industrial automation systems. In recent decades, due to the broad applications
for mobile robots, the core issues in motion control of mobile robots, including point stabilization,
path planning, trajectory tracking, and real-time avoidance, have attracted considerable attention from
both academic scholars and practitioners [1–5].

Although large numbers of mobile robots have begun to enter homes, hospitals, and many
other industrial areas, mobile robots with new structures (as opposed to the traditional dual-drive
wheeled mobile robots), are required to meet continuously increasing demands with respect to high
flexibility, efficiency, and safety of complex and diverse applications in reality. Omni-directional
mobile robots (OMRs) with mecanum wheels provide an alternative and have drawn much attention
from researchers. In [6,7], two different omni-directional mobile structures with mecanum wheels
were proposed. In [7,8], the kinematics of OMRs were analyzed and the motion control of robots
was achieved. In [9], a comprehensive omni-directional soccer player robot with no head direction
was proposed and it was capable of more sophisticated behaviors, such as ball passing and goal
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keeping. Compared with the traditional nonholonomic dual-drive wheeled robot, the omni-directional
mobile robot is able to synchronize steering and linear motion in any direction. This advantage not
only improves the flexibility of the robot greatly in order to achieve fast target tracking and obstacle
avoidance, but also provides more references for robot motion control methods.

Motion control is a core issue in the mobile robot system and guarantees the smooth movement
of the robot. Due to the diversity of motion and increasing performance requirements, motion control
algorithms are becoming more and more complex. In [10], a receding horizon (RH) controller was
developed for the tracking control of a nonholonomic mobile robot. In [11], a novel biologically
inspired tracking control approach for real-time navigation of a nonholonomic mobile robot was
proposed by integrating a backstepping technique and a neurodynamics model. In [12], an approach
was proposed for complete characterization of the shortest paths to a goal position and it was used
for path planning of the robot. A novel method referred to as the visibility binary tree algorithm for
robot navigation with global information was introduced in [13]. The set of all complete paths between
the robot and target in the global environment with some circle obstacles was obtained by using the
tangent visibility graph. Then, an algorithm based on the visibility binary tree created for the shortest
paths was run to obtain the optimal path for the robot. In [14], a real-time obstacle avoidance approach
for mobile robots was presented based on the artificial potential field concept. The motion control of
omni-directional mobile robot has also been investigated and many results have been reported [15–18].
Among them, the model predictive control (MPC) algorithm is the most common control method used
for trajectory tracking of the OMR.

The MPC algorithm is an efficient predictive control technique and is composed of model
prediction, rolling optimization, and feedback correction. The MPC algorithm has been widely used
in industrial control applications and is able to take various constraints into consideration. The core
of MPC control problem finding the optimal solution of a cost function constructed according to
the error between system output at the sampling time and the predicted output of the established
prediction system model. The optimal solution is taken as the optimal control input in the future
prediction time domain and the first control vector of the optimal solution is used as the real control
input. The advantages of the MPC algorithm are: (1) It is easy to model; (2) It has a rolling optimization
strategy with good dynamic control effect; (3) It can correct the output by feedback which improves
the robustness of the control system; (4) As a computer optimization control algorithm, it is easy
to realize on a computer. In recent years, the MPC algorithm has also been widely used to achieve
optimized motion control of mobile robots. In [19], a novel visual servo-based model predictive
control method was proposed to steer a wheeled mobile robot moving in a polar coordinate. In [20],
a model-predictive trajectory-tracking controller, which used linearized tracking-error dynamics to
predict future system behavior, was presented. In [21], a state feedback MPC method was proposed
and applied for trajectory tracking of a three-wheeled OMR. The cost function in the proposed MPC
method is constructed over finite horizon and is optimized in the linear matrix inequalities (LMI)
framework. In [22], a virtual-vehicle concept and an MPC strategy were combined to handle robot
motion constraints and the path-following problem.

In this paper, the kinematic analysis of the OMR is conducted and then an MPC algorithm for
point stabilization and trajectory tracking is proposed. In the proposed MPC controller, the rotation
speeds of the three wheels and the state outputs of the robot are taken as manipulated variables and
controlled variables, respectively. In stabilization control of the robot, a target point and an arbitrary
initial direction, which lie within a given constraint range of the coordinate, are set and then the robot
tracks the target point and stabilizes itself automatically. In the trajectory tracking of the robot, a pulsed
route is planned and different target angles at each node point are set. The robot can move from the
start point of the trajectory to the end point along the given route with target angles.

This paper is organized as follows: A brief description and kinematics analysis of the considered
OMR are given in Section 2. Section 3 presents the MPC strategy including MPC elements and the



Appl. Sci. 2018, 8, 231 3 of 15

optimization method. Simulation results of the proposed MPC algorithm are presented in Section 4.
Finally, Section 5 concludes the work in this paper.

2. Omni-Directional Wheeled Mobile Robot Model

2.1. Omni-Directional Mobile Structure

The concept of the mecanum wheel was proposed by a Swedish mecanum company. The mecanum
wheel is mainly composed of a motor-controlled wheel hub and some passive rollers, which are evenly
distributed at a certain angle along the outer edge of the wheel.

The mecanum wheels used in this paper are light-load 90◦ omni-directional CL-10 wheels
produced by Chengdu Hangfa Hydraulic Engineering Co., Ltd. (Chengdu, China). As shown in
Figure 1, the outer diameter of the mecanum wheel is 101.6 mm and it has 16 rollers distributed in
both of outer sides. The rollers can rotate in a perpendicular direction to the hub rotation and the
envelopes on the outside of these rollers form a cylindrical surface, which enables smooth movement
of the wheel. Each roller is equipped with two nylon sliding bearings, which gives the wheels good
wear resistance and flexibility. Each wheel can withstand loads of up to 50 kg. Therefore, this series of
mecanum wheels is a good choice for lightly-loaded omni-directional wheeled mobile platforms.

Figure 1. The structure of the mecanum wheel.

As shown in the bottom view of the OMR in Figure 2b, the platform is equipped with three motors
and each motor is used to control one mecanum wheel. The axes of these three motors join at the
center of the chassis and the angles between the neighboring two motors are the same. In Figure 2a,c,
the front view and the overall model of the platform diagram are shown, respectively. Based on
the characteristics of mecanum wheel and the analysis of system model, the platform can conduct
omnidirectional motion with the advantages of strong adaptability, high sensitivity, good stability,
and flexible rotation.

Figure 2. The omni-directional mobile robot (OMR) structure diagram.

2.2. Kinematics Model

For the OMR, each wheel has two position parameters: the position relative to the center of the
platform, and the respective attitude angle. The coordinates of the mecanum wheel are shown in
Figure 3. In this figure, xoy is the coordinate frame attached to the center of the platform, x′o′y′ is
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a coordinate frame attached to the axis center of one mecanum wheel, i represents the order of the
mecanum wheel, αi is the deflection angle of each roller, βi is the angle between lines oo′, and ox,(
lix, liy, θi

)
are the wheel’s location and pose, respectively, in the coordinate xoy. lix and liy can be

expressed as

lix = li cos βi, liy = li sin βi (1)

Figure 3. The wheel location and pose in the platform center.

The structure of mecanum wheel is shown in Figure 4. In this figure, r denotes radius of the
mecanum wheel, Vir denotes velocity vector of the roller center, and ωi denotes rotation velocity of the
motor. There are three speed vectors.

[
vx vy ω

]T describes the center speed of the platform relative to

the ground,
[
vix viy ωi

]T presents the center speed of the mecanums wheels relative to the coordinate

xoy, and
[
v′ ix v′ iy ω′ i

]T denotes the center speed of the mecanums relative to the coordinate x′o′y′.
The kinematic models of the OMR are described as[

v′ ix
v′ iy

]
= Ki1

[
ωi
vir

]
, Ki1 =

[
0 sin αi
r cos αi

]
(2)

[
vix
viy

]
= Ki2

[
v′ ix
v′ iy

]
= Ki2Ki1

[
ωi
vir

]
Ki2 =

[
cos θi − sin θi
sin θi cos θi

]
(3)

[
vix
viy

]
= Ki3

vx

vx

ω

 , Ki3 =

[
1 0 −liy
0 1 lix

]
(4)

Based on Equations (3) and (4) , the inverse kinematics equation of the system can be obtained as

Ki2Ki1

[
ωi
vir

]
= Ki3

vx

vx

ω

 , i = 1, 2, 3, (5)

and det (Ki2Ki1) 6= 0.
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Figure 4. The wheel location and pose in the platform center.

Assuming that
Ki = [Ki1]

−1[Ki2]
−1 ∗ Ki3, i = 1, 2, 3, γi = θi − αi

then, the inverse kinematics equation of each mecanum wheel is derived as

[
ωi
vir

]
= [Ki1]

−1[Ki2]
−1Ki3

vx

vy

ω

 = Ki

vx

vy

ω

 (6)

where

Ki =
1

−r sin αi

[
cos (γi) sin (γi) lixsin (γi)− liy cos (γi)

r cos θi −r sin θi liyr cos θi − lixr sin θi

]
Assuming that

E =


cos(γ1)
sin α1

cos(γ2)
sin α2

cos(γ3)
sin α3

sin(γ1)
sin α1

sin(γ2)
sin α2

sin(γ3)
sin α3

l1 sin(γ1−β1)
sin α1

l2 sin(γ2−β2)
sin α2

l3 sin(γ3−β3)
sin α3


the rotating speed of mecanum wheels is expressed asω1

ω2

ω3

 =
1
−r

E

vx

vy

ω

 (7)

Based on the relationship v = rω, Equation (7) can be transformed into

v =

v1

v2

v3

 = −E

 ẋ
ẏ
ω

 (8)

Actually, the Cartesian motion control problems are the main issues in the research on mobile
robots. The state of the OMR in Cartesian coordinate xcocyc is denoted as (xc, yc, θc) and is shown in
Figure 5.
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Figure 5. The state of the OMR in Cartesian coordinates.

According to Figure 5, it is derived thatẋc

ẏc

ωc

 =

cos θc − sin θc 0
sin θc cos θc 0

0 0 1


 ẋ

ẏ
ω

 (9)

Assuming that

H =

cos θc − sin θc 0
sin θc cos θc 0

0 0 1

 ,

the inverse kinematics equation of the OMR in Cartesian coordinate can be transformed intov1

v2

v3

 = −EH−1

 ẋc

ẏc

ωc

 . (10)

The Jacobian matrix of the inverse kinematics equation of the OMR is

R = −EH−1 (11)

Actually, the Jacobi matrix of the inverse kinematics equation determines the OMR’s omni-
directionality. If the Jacobi matrix is in the state of dissatisfied rank, there are some nonholonomic
constraints in the structure and the degree of freedom movement is reduced, which means that the
system cannot achieve all-round movement [23]. It can be derived that the necessary condition to
achieve the all-round movement of OMR is rank (R) = 3.

Through tests, the parameters of the OMR are obtained. They are shown in Figure 6 and Table 1.
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Figure 6. Three-wheeled structure layout of the platform.

Table 1. The parameters of system structure.

Para β1 β2 β3 θ1 θ2 θ3 α1 α2 α3

Value 60◦ 180◦ 300◦ 60◦ 180◦ 300◦ 90◦ 90◦ 90◦

Substituting these parameters into Equation (10) yieldsv1

v2

v3

 =

−0.866 cos θc − 0.5 sin θc 0.5 cos θc − 0.866 sin θc 0.16352
sin θc −con θc 0.16352

0.866 cos θc − 0.5 sin θc 0.5 cos θc + 0.866 sin θc 0.16352


ẋc

ẏc

ωc

 (12)

It can be derived from the result that rank (R) = 3, which means the OMR can achieve all-
round movement.

3. MPC Strategy

The MPC algorithm has been widely used in motion control of mobile robots and it has three
basic characteristics: model prediction, rolling optimization, and feedback correction. It has unique
advantages for solving motion control problems, such as point stabilization and trajectory tracking
of mobile robots. Traditional methods often neglect or simplify the robot kinematics and dynamics
constraints which have a significant impact on the robot’s control performance. Meanwhile, the MPC
algorithm takes the constraints into consideration to improve the system robustness. The existing
controllers have high requirements with respect to the accuracy of the system model and tend to
obtain effective control parameters based on the model and multiple experimental tests;. However,
the MPC algorithm has low requirements with respect to the accuracy of the system model and can
acquire the control parameters through simple experiments. Through applying the characteristics of
rolling optimization and feedback correction, the influence of time-delay in the closed-loop system can
be effectively reduced or even eliminated, and the motion control is optimized to achieve improved
control performance. Particularly, the MPC algorithm can handle multivariate and constrained
problems effectively.

The MPC problem can be described as solving the optimal solution of the cost function. At each
sampling time, the outputs of the future N sampling instants are predicted according to the system
model, and the cost function is constructed based on the errors between the predicted outputs and
the true state outputs of the system. The optimal control inputs of the next N sampling instants are
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obtained by minimizing the cost function, however, only the first control vector is used as the system
input. At the next sampling time, this process is repeated and rolling optimization is performed.

In this section, an MPC-based kinematic controller is designed to ensure that the mobile robot can
be driven to the desired position accurately, smoothly, and stably.

Define q = [xc yc θc]T as the state of mobile robot in coordinate xcocyc and S = [S1 S2 S3]
T = R−1.

Then, it can be derived that
q̇ (t) = S (t) v (t) (13)

where

S1 (t) =

−0.5774 cos θc (t)− 0.3333 sin θc (t)
0.6667 sin θc (t)

0.5774 cos θc (t)− 0.3333 sin θc (t)


T

S2 (t) =

0.3333 cos θc (t)− 0.5774 sin θc (t)
−0.6667 cos θc (t)

0.3333 cos θc (t) + 0.5774 sin θc (t)


T

S3 (t) =
[
0.002038 0.002038 0.002038

]

Based on zero-order hold (ZOH), a continuous-time system can be transformed into a discrete-time
form with a sampling period T.

q (k + 1) = q (k) + q̇ (k) T (14)

The discrete-time system (14) can be transformed into a discrete state space system as

q(k + 1) = Aq(k) + Bu(k) (15)

where
A = I ∈ Rn×n, B = S(k)T ∈ Rn×m

The parameter n is the number of state variables and m is the number of input variables.
The matrix A is a constant identity matrix, and matrix B is determined by orientation of the
system dynamically.

Based on the state space model (15), the MPC algorithm is designed to control the system.
Here, a cost function is required and optimized through solving a quadratic program (QP) problem to
obtain the optimal control sequence in predictive horizon N. The cost function for the MPC can be
defined as

J(k) =
N

∑
j=1

[
‖q(k + j|k)‖2

Q + ‖u(k + j− 1|k)‖2
R

]
(16)

where Q ∈ Rn×n and R ∈ Rm×m are appropriate weighting matrices. q(k + j|k) and u(k + j− 1|k)
denote the predicted state and control vector in predictive horizon at time k.

Through solving the following finite-horizon optimal control problem online, the optimal control
sequence can be obtained.

u∗ = arg min
u
{J(k)} (17)
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Since the torques generated by motors are limited by the performance of the motors, the u(k) has
an upper and lower bound, and the range of state variable q(k) is also constrained. Thus, the following
constraints should be imposed on the system:

umin ≤ u (k) ≤ umax (18)

qmin ≤ q (k) ≤ qmax (19)

In order to solve the optimal control problem, Equation (17) is transformed into a standard
quadratic form which a QP solver can solve. The following prediction vector is defined:

q̄(k) = [q (k + 1|k) , · · · , q(k + N|k)]T ∈ Rn×N (20)

ū (k) = [u (k|k) , · · · , u(k + N − 1|k)]T ∈ Rm×N (21)

Based on Equation (15), the relationship between vectors q̄(k) and ū(k) can be described as

q̄(k) = Gq(k|k) + L(k)ū(k) (22)

where

G = [A, A2, · · · , AN ]T ∈ Rn×nN

L(k) =


α11(k) 0 . . . 0
α21(k) α22(k) · · · 0

...
...

. . .
...

αN1(k) αN2(k) . . . αNN(k)

 ∈ RnN×mN

with αij(k) defined as

αij(k) = Ai−jB(k + j− 1), i ≥ j

Two block diagonal matrices are defined:

Q̄ =


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 ∈ RnN×nN , R̄ =


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

 ∈ RmN×mN

Thus, the optimal control problem (17) can be rewritten as

arg min
u

J(k) = min ‖q̄ (k)‖2
Q̄ + ‖ū (k)‖2

R̄

= min ‖Gq(k|k) + L(k)ū(k)‖2
Q̄ + ‖ū (k)‖2

R̄ (23)

subjected to

ūmin ≤ ū (k) ≤ ūmax (24)

q̄min ≤ Gq(k|k) + L(k)ū(k) ≤ q̄max (25)

where ūmin and ūmax are the lower and upper bounds of the control vector in predictive horizon,
respectively. q̄min and q̄max are the lower and upper bounds of the predictive state vector, respectively.
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After some algebraic manipulations, the optimization problem (23) is transformed into a standard
quadratic form:

min
1
2

ūT(k)W(k)ū(k) + CT(k)ū(k) (26)

with

W(k) = 2(LT(k)Q̄L(k) + R̄) ∈ RmN×mN

C(k) = 2LT(k)Q̄Gq(k|k) ∈ Rm×N

where matrix W(k) denotes the quadratic part of the objective function and the vector C(k) describes
the linear part.

The QP problem (26) can be solved online to obtain an optimal prediction control sequence.
The first control vector of the sequence is applied to the system at time k. In the next sampling instant,
this process is repeated to achieve rolling optimization.

4. Simulation Verification

In this section, the simulation is carried out to verify the accuracy of the derived kinematic model
of the OMR and the performance of the MPC algorithm. In this simulation, the range of motion for the
OMR is set to (−10 m, 10 m) and it serves as the state constraint; The rotation velocity of each mecanum
wheel is set to (−2 m/s, 2 m/s), which is treated as the input constraint. Two tests, point stabilization
and trajectory tracking, are performed. In the point stabilization test, the OMR moves to a target point
and changes the orientation in the moving process. In the trajectory tracking test, the OMR moves
along a known pulse trajectory with different target orientations at different nodes.

4.1. Point Stabilization

In this test, the goal and initial states are predefined. Here, the goal and initial position are set to
(3 m, 2 m, π/3 rad) and (0 m, 0 m, 0 rad), respectively. In order to simulate the real movement of the
OMR, the noise is added to the output state.

In each prediction period, a control matrix ū is obtained through solving the QP problem (26).
The ū is the velocity input sequence to control the movement of the OMR. Actually, only the first control
vector in u (j) is used as the effective velocity input. The velocity input throughout the whole motion
process is shown in Figure 7. In this figure, there are two red dotted horizontal lines, which present the
velocity constraints. It can be seen from this figure, with the application of MPC algorithm, that the
control velocities of three wheels converge to zero gradually and smoothly. Meanwhile, velocity u3 is
affected by the maximum control input constraint at the beginning.
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time (s)
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1
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u
3

Figure 7. The velocity inputs of three mecanum wheels.

The state trajectories of the OMR in Cartesian coordinates are shown in Figure 8. Two position
parameters, xc and yc, are given in the upper subfigure of Figure 8. The initial position of (xc, yc) is set
to (0 m, 0 m) and the target position is set to (3 m, 2 m). The orientation angle θc of the OMR in the
moving process is presented in the lower subfigure of Figure 8. The initial orientation angle is 0 rad
and the target orientation angle is set to π/3 rad. As shown in Figure 8, the MPC controller can steer
the OMR to the target quickly and steadily.

time (s)
0 1 2 3 4 5 6 7 8 9 10

 x
c a

nd
 y

c (
m

)

0

1

2

3

x
c

y
c

time (s)
0 1 2 3 4 5 6 7 8 9 10

an
gl

e 
(r

ad
)

0

target
θ

c

Figure 8. The state trajectories of the OMR in Cartesian coordinates.

The coordinates, (xc, yc), of the OMR in moving process are shown in Figure 9. It can be seen from
this figure that the movement trajectory is very close to the target trajectory. The tracking error between
the movement trajectory and the target trajectory is shown in Figure 10. The maximal tracking error is
about 4 cm. From Figures 8 and 10, it can be seen that the OMR moves along the predefined target
trajectory to the target point, which demonstrates the effectiveness of the developed MPC algorithm.
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x
c
 (m)

0 0.5 1 1.5 2 2.5 3
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0.6

0.8

1

1.2

1.4

1.6

1.8

2

target
(x

c
,y

c
)

Figure 9. The trajectory coordinates of the OMR.
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0 1 2 3 4 5 6 7 8 9 10
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Y
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0

0.01

0.02

0.03

0.04

0.05

Figure 10. The tracking error.

4.2. Trajectory Tracking

In this test, the trajectory tracking of the OMR along a pulse trajectory is conducted to evaluate
the performance of the proposed MPC strategy. The node parameters of the trajectory are shown in
Table 2.

Table 2. The node parameters of the tracking trajectory.

Index i xc (m) yc (m) θc (rad)

1 0 1 0
2 2 1 0
3 2 3 1.57
4 4 3 0
5 4 1 1.57
6 6 1 0

There are six nodes, including the starting point and end point, in the pulse trajectory.
The trajectory tracking is achieved by tracking each node according to the position and target direction
given in Table 2. In order to simulate the real state of the OMR, the noise is added to the output state.
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The linear velocity and angular velocity curves of the OMR in the trajectory-tracking process are
shown in Figure 11. It can be seen from this figure that at each node, the axis component of linear
velocity fluctuates due to steering action, but converges to zero soon.

time (s)
0 5 10 15 20 25 30 35 40 45

ve
lo

ci
ty

 (
m

/s
)

-2

-1

0

1

2

Vx
Vy

time (s)
0 5 10 15 20 25 30 35 40 45

ro
ta

tio
n 

(m
/s

)

-2

-1

0

1

2

Figure 11. The line velocity and angular velocity of the OMR.

The comparisons of true and tracked trajectory and direction are shown in Figures 12 and 13,
respectively. As shown in these figures, the position and angle of the OMR change at the same time
and the angle reaches the target faster than the position. The trajectory tracking error is presented in
Figure 14. The maximal tracking error of the OMR is about 0.08 m.

x
c
 (m)

0 1 2 3 4 5 6

y c (
m

)

-0.5

0

0.5

1

1.5

2

2.5
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3.5

target
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c
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Figure 12. The real trajectory of the OMR.
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gl

e 
(r

ad
)

0

target
θ

c

Figure 13. The orientation of the OMR.
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The omni-directivity and flexibility of the kinematic structure of the OMR are verified through
these two tests. The OMR can achieve movement of any direction without turning, which solves the
problem that nonholonomic wheeled mobile robots are not flexible in real-time avoidance. In addition,
the results of the first test show that the MPC algorithm can be applied in stabilization control of the
robot and the target position and angle can be reached quickly and steadily.

time (s)
0 5 10 15 20 25 30 35 40 45

er
ro

r 
X

Y
 (

m
)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 14. The trajectory offset of the OMR.

5. Conclusions

This paper considers the trajectory tracking of an omni-directional mobile robot with three fully
symmetric distribution mecanum wheels. The kinematic analysis of the OMR is conducted and the
kinematic model is established. An MPC-based target-tracking motion controller with input and output
state constraints is designed and guarantees the optimal solution is effective for the OMR. In addition,
the advantages of the omni-directional structure compared with the traditional dual-wheeled structure
with nonholonomic constraints are also discussed. The effectiveness of point stabilization and trajectory
tracking of the OMR by using the designed MPC controller is demonstrated through two tests.
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