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Abstract: In most supply chains (SCs), transaction relationships between suppliers and customers
are commonly considered to be an extrapolation from a linear perspective. However, this traditional
linear concept of an SC is egotistic and oversimplified and does not sufficiently reflect the complex and
cyclical structure of supplier-customer relationships in current economic and industrial situations.
The interactional relationships and topological characteristics between suppliers and customers
should be analyzed using supply networks (SNs) rather than traditional linear SCs. Therefore,
this paper reconceptualizes SCs as SNs in complex adaptive systems (CAS), and presents three
main contributions. First, we propose an integrated framework of CAS network by synthesizing
multi-level network analysis from the network-, community- and vertex-perspective. The CAS
perspective enables us to understand the advances of SN properties. Second, in order to emphasize
the CAS properties of SNs, we conducted a real-world SN based on the Japanese industry and describe
an advanced investigation of SN theory. The CAS properties help in enriching the SN theory, which
can benefit SN management, community economics and industrial resilience. Third, we propose
a quantitative metric of entropy to measure the complexity and robustness of SNs. The results not
only support a specific understanding of the structural outcomes relevant to SNs, but also deliver
efficient and effective support to the management and design of SNs.

Keywords: supply chain (SC); supply network (SN); complex adaptive systems (CAS); network
analysis; network clustering; participation coefficient; entropy; network complexity; network
robustness; scenario analysis

1. Introduction

Supply chain management (SCM) has been an important and extensively investigated topic since
its appearance in the early 1980s. Due to the importance of supplier-customer relationships in guiding
modern research and practice [1], the main impacts of this research in the field of business management
and operation research are apparent. An increasing interest in applying a network analysis approach to
understand supply networks (SNs) instead of linear supply chains (SCs) has been observed [2–14]. SNs
have become a new analytic paradigm in SCM, and have been identified as regional clusters [2–4,6] or
industrial sectors [4,7,8], and are also well known as complex adaptive systems (CAS) [5,9–16].

This new theory of SN is extremely valuable and more meaningful than traditional SCs, and both
structural and relational characteristics in the SNs enable firms to activate existing partners and select
appropriate cooperation partners [6,8,17]. To assess the concepts surrounding structural and relational
characteristics, the extension of network analysis to SN is natural, and represents the infrastructure
of the social science of business [18,19]. SNs have been increasingly recognized to find new business
partners, discover new opportunities, increase operational efficiency, inform strategic direction, and
identify and develop new products and services [20].
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Previous studies have focused on geographical agglomeration and modularized SNs in regional
clusters [2–4,6]. The regional clusters presented a dense inter-organizational network, which enhanced
knowledge diffusion, regional learning and effective resource transfer. Due to the boundary strengths
of regional clusters, the majority of the transactions were held within individual regional communities,
and the bridges between different communities were much thinner. The analyses and results of
the regional clusters were insufficient to reveal the cross-regional features to benefit community-based
economics, accounting for the lack of transaction information. However, Takayasu et al. [4,5]
investigated the community structure of a large-scale SN. Their studies only initiated possible
applications of the visualization of the SN, and their results also showed the firms local closeness.
Another similar study of SN focused on industrial sectors [7,8,21,22]. Kim et al. [7] selected Honda
and Daimler as the targets and constructed SNs that included raw materials suppliers to the final
assemblers. Bellamy et al. [8] also investigated several specific firms (e.g., Sandisk, Kodak and Intel)
in the electronics industry and established an SN of 390 electronic firms. These studies well examined
the structural properties of interfirm systems, and revealed that an interfirm system could be better
modeled as an SN rather than a linear SC. However, they conducted the SNs starting from a focal firm
with its directly connected suppliers and customers. Therefore, such SNs were egocentric networks
and the analysis was only be extended from the vertex-level viewpoint.

Nevertheless, real-world SNs are complex systems containing numerous firms from multiple
interrelated industries. In such systems, any tiny effect or change could cause a chain reaction, and
diffuse the influence throughout the whole network. The merits of complexity theory supports
a conceptual and methodological framework to identify the dynamic and complicated interfirm
relationships between suppliers, manufacturers, assemblers, distributors, and retailers. Pathak et al. [9]
firstly adopted a complex adaptive systems (CAS) perspective to gain insights into SN issues
and suggested dozens of potential CAS research questions. Their work has familiarized us with
the existence of SN theory, and brought the applicability of CAS properties to enrich the SN
discipline. Edward and Wilson [10] further advanced SN theory by embracing the CAS perspective
by synthesizing the advances of CAS and demonstrating the small-world (SW) property [23] and
scale-free (SF) nature [24] of SNs. The SW property suggested that an efficient SN should present a short
average path length and high clustering coefficient, which means that the SW network could efficiently
transfer the flows throughout the entire system. The SF nature suggested that an efficient SN should
present a power law connectivity distribution, accounting for SN resilience derived by hub firms.
Ohnishi et al. [15] also identified the SNs as complex networks with directed links. By comparing them
with random networks, they revealed that the firms with a large firm-size in the SN tended to have a
large PageRank [25], and small authority and hub scores [26]. Giannoccaro [11] characterized SN as
a CAS, and used the NK simulation model [27,28] to exhibit SN properties, which demonstrated
that the effects of capacity, efficiency and stability on the SN performance. In future studies,
Giannoccaro et al. [12–14] conceptualized the SN theory from a CAS perspective, and performed
several computational analyses such as Tobit regression [12], fitness landscape [13], and agent-based
simulation [14]. These studies argued that CAS provided a conceptual and methodological framework
to pursue the network-level issues of SNs, such as SN efficiency, SN resilience and SN interdependence.
Zachariou et al. [16] also investigated directed inter-firm networks such as SN, and generalized
sandpile dynamics of an SN from a network-level study of complex interactions. They pointed out
that characterization of CASs and their measurements was still a developing field that is relevant for a
variety of research issues from different viewpoints. Therefore, following a review of SNs literature
drawn from the regional clusters, industrial sectors and CAS, a combination of multiple approaches is
necessary to adequately explore these multi-level issues in SNs.

To enrich the SN theory relevant to such difficult issues, this paper presents an integrated
investigation of multi-level network analysis from a network-, community- and vertex-perspective.
For the network-perspective analysis, we re-emphasized the effects of SW properties (i.e., average
shortest path length L and average clustering coefficient C) presented in [23] as to how to evaluate
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SN efficiency. However, Capaldo and Giannoccaro [14] investigated 10 patterns of SN forms. Fewer
studies have been devoted to this organizational issue by comparing SW properties between distinctive
real-world communities with regard to geographic proximity and industrial affinity. Therefore,
in the community-perspective analysis, we employed a network clustering algorithm known as the
Newman method to optimize the modularity of the real-world SN [29–31]. The Newman method
employs a hierarchical search by the maximizing modularity Q, which measures the fraction of
connectedness among the communities of the original network from the edge betweenness. Based on
the results of the experiment, five main business communities were extracted from the cross-industry
and cross-region economies. After clustering, we employed a topological measure of z-P parameter
space [32] to re-define the hub firms instead of degree. The z-P parameter space uses a multi-criteria
where one is the within-module degree z in its own community and the other one is the participation
coefficient P between other communities. This measure separates nodes into seven different roles,
where we focused on the “connector hubs”. Due to the existence of such connector hub firms, different
communities can overlap boundaries for their flows of information [10], improve the SM properties
of SN efficiency, and SN interdependence [3]. Finally, we evaluated the SN resilience of distinctive
communities from a vertex-level perspective. This paper employed the entropy [33–40], which is
generated by node degree [41]. Several elimination scenarios of random failures and targeted attacks
(i.e., degree-prior and P-prior) were simulated to investigate the complexity and robustness of the SN
by sequentially removing the firms [10,18,42,43]. We found that the network entropy showed a strongly
correlation with the SN interdependence, and also moderated the correlation between SN efficiency and
SN resilience. The objective of this paper was to present not only our structural outcomes concerning
the SN, but also the finding that our structural analysis was significantly related to delivering efficient
and effective support to SN design and management. Therefore, we introduced a real-world SN in
the central area of Japan, which contained more than 180,000 firms, approximately 600,000 business
relationships across all industrial categories. In the experiments, we measured the applicability of the
proposed SN theory in a real-world case study and demonstrated several managerial implications
based on the scenario analysis. Furthermore, this paper familiarized the researchers and managers in
the SC discipline with an integrated SN theory, which can also be supported by public institutes or
policy development.

In Section 2, we briefly describe the data sources, which were related to geography, industry and
transaction information. In Section 3, we describe the network analysis techniques from network-,
community- and vertex-level perspectives. In Section 4, we introduce the network analysis methods
from the three perspectives and present the experiments, results and discussion based on them.
In Section 5, we conclude and summarize the paper.

2. Data

2.1. Geographical Information

Figure 1 shows the geography of the central region of Japan and an overview of eight prefectures.
Geographically, the central region is located between the Kanto region and the Kansai regions and
includes the major city of Nagoya, which is the prefectural capital of Aichi (see Figure 1a). The central
region-known as the Chubu region in Japanese-is one of the largest economic blocks in Japan and
is comprised of eight prefectures, namely, Niigata, Toyama, Ishikawa, Fukui, Gifu, Mie, Aichi, and
Shizuoka (see Figure 1b).

The central region encompasses a large and geographically diverse area on the main island of
Honshu, which is generally divided into two sub-regions: Hokuriku (including Niigata, Toyama,
Ishikawa, and Fukui) and Tokai (including Gifu, Mie, Aichi, and Shizuoka). The Hokuriku sub-region
occupies the northern part of the central region, which lies along the Sea of Japan and above the Tokai
sub-region. The name Tokai means eastern sea and is derived from the sub-region’s geographic
position along the Pacific Ocean. Occasionally, Mie is included in the Kansai region due to the large



Entropy 2017, 19, 382 4 of 23

cultural influence from Kansai. As Mie also has a geographical proximity to Aichi and particularly
strong economic ties with Aichi and Gifu, it is naturally included in the Tokai subregion.

(a) (b)

Figure 1. Eight prefectures in the central region of Japan. (a) Central region; and (b) Eight prefectures.

In this paper, we focused on the supply chains in the central region, which contained a total
of 182,538 firms. These data were provided by Tokyo Shoko Research (TSR) and were collected
in 2012 [4,5,15,16,44]. Based on geographic distribution, the number of firms that belonging to each
prefecture is described in Table 1. The firm shares of Aichi and Shizuoka ranked first and second,
and included more than 50% of the firms in the central region. Both of these prefectures belong to
the Tokai sub-region, which is one of the largest industrial regions in Japan, and contains the majority of
Japanese car manufacturers/assemblers (e.g., Toyota Motor Corp., Denso Corp., Aisin Seiki Co., Ltd.,
and Yamaha Motor Co., Ltd.). Its coast is lined with densely populated cities (e.g., Nagoya, Hamamatsu
and Shizuoka) with economies that thrive on factories.

Table 1. Firm shares of individual prefectures in central region.

No. Prefecture Name (Abbreviation) Number of Firms

1 Aichi (A) 62,247
2 Shizuoka (S) 32,233
3 Niigata (N) 22,358
4 Gifu (G) 17,724
5 Mie (M) 14,982
6 Toyama (T) 11,776
7 Ishikawa (I) 11,258
8 Fukui (F) 9960

Total 182,538

2.2. Industrial Information

The TSR data not only provided more than 180,000 firms, but also included a full-scale sample
of all related industrial categories. According to the Japan Standard Industrial Classification (JSIC),
all economic activities are divided into 20 industrial categories and the firm shares of each industrial
category (Table 2). Construction (d), Wholesales and Retail Trade (i) and Manufacturing (e) are the
main industries and account for approximately 80% of the firms in the central region (see Figure 2).
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Table 2. Firm shares of the Japan Standard Industrial Classification (JSIC) industrial categories.

Code Industrial Category Number of Firms

a Agriculture 1365
b Fisheries 126
c Mining and Quarrying of Stone 354
d Construction 66,517
e Manufacturing 36,515
f Electricity, Gas, Heat Supply and Water 89
g Information and Communications 2118
g Transport and Postal Services 5747
i Wholesale and Retail Trade 41,349
j Finance and Insurance 507
k Real Estate and Goods Rental 5468
l Scientific and Technical Services 4942

m Accommodations, Eating and Drinking Services 2947
n Living-related and Amusement Services 2683
o Education, Learning Support 535
p Medical, Health Care and Welfare 2248
q Compound Services 1214
r Services, N. E. C. 7499
s Government 315
t Unclassified Industry 0

Total 182,538

Figure 2. Industry-specific distribution of firms in the central region.

2.3. Transaction Information

In addition to geographical information and industrial information, the TSR data also provided
information on supplier-customer relationships. Questionnaires were employed by TSR investigators
to obtain a list of a firm’s five most important suppliers and customers of a firm. However, individual
firms could only have ten transaction relationships, and the questionnaire lists primarily consisted
of large firms. Therefore, these large firms could have relationships with hundreds to thousands
of suppliers (customers). Table 3 lists the top ten transaction relationships and their locations and
industrial categories. The TSR data indicated a total of 598,721 transaction relationships with 6.56 as
the average number of transaction relationships for each firm.
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Table 3. Top ten firms with the most transaction relationships in the central region.

No. Firm Name Number of Links

1 Toyota Tsusho Corp. 1666
2 Isuzu Motors Sales Co., Ltd. 1372
3 Suzuken Co., Ltd. 1275
4 Aisin Seiki Co., Ltd. 992
5 Toenec Corp. 989
6 Fukui Prefectural Gov. 964
7 Aichi Prefectural Gov. 954
8 Denso Corp. 931
9 Yamaha Motor Co., Ltd. 914
10 Toyota Motor Corp. 877

3. Methods

As we identified SNs as CASs, it was natural to adopt network analysis techniques and
complex system theory to generate, validate and refine the SN theory. After constructing the SN, we
subjected an integrated framework to conceptualize the new SN properties (from a network-level,
community-level and vertex-level perspective) relevant to a real-world viewpoint from the macro-,
meso- and micro-scale (Figure 3). From a macro-scale viewpoint, we examined the SW properties of
the SN from a network-level perspective by using the average shortest path length L and the average
clustering coefficient C. Next, from a meso-scale viewpoint, we subsequently employed a network
clustering algorithm with modularity optimization to detect meso-structures from the SN, and
used a topological measure of z-P parameter space to extract the hub firms from each community.
Furthermore, analysis from community-level perspective can bury the structural holes in a macroscopic
structure from a microscopic structure. Finally, from a micro-scale viewpoint, we proposed the network
entropy based on node degree. We identified the firms’ effect on the SN entropy; namely the SN
resilience against both random failures and targeted attacks.

Figure 3. Overview of the multi-level network analysis in supply network (SN) perspective relevant to
real-world viewpoint.
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3.1. Network-Level Analysis

We quantified the structural SN property using the average shortest path length L and average
clustering coefficient (C) which are defined as:

L =
1

n(n− 1) ∑
i 6=j

l(vi, vj) (1)

where l denotes the number of edges in the shortest path between vi and vj, and

C =
3× N4

N3
(2)

where N4 and N3 denote the number of triangles in the network and number of connected triples of
nodes, respectively. In graph theory [3,23], for a given network with n nodes and d edges per node,
the regular network satisfies Lregular ∼ n/2d � 1 and Cregular ∼ 3/4, while the random network
satisfies Lrandom ∼ ln(n)/ln(d) and Crandom ∼ d/n � 1. If a network G satisfies L ≥ Lrandom and
C � Crandom, G can be recognized as a small-world network, which is interpolated between regular
and random networks.

For an analysis from a network perspective, we evaluated the SW properties of the SN, which
are interpolated between regular and random networks (Figures 4 and 5). For a given network with
n = 12 nodes and d = 4 edges per node, each node in the regular network is connected to its nearest
neighbors with a uniform distribution [23] (Figure 5a). When we applied a random rewiring procedure
to each edge with the probability p = 1, we obtained the random network shown in Figure 5d. This
procedure could reconnect the edges from regularity (p = 0) to disorder (p = 1), and we were able to
examine the intermediate networks of 0 < p < 1, which are the small-world networks (Figure 5b,c).
As SW networks can efficiently transfer the information flows throughout the whole network rather
than the regular and random networks, we suggested that efficient SNs should present a relatively
short average path length and a relatively high clustering coefficient (see Figure 4).

Figure 4. The mechanism of L and C according to network randomness.
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(a) (b) (c) (d)

Figure 5. Network structure between regularity and disorder. (a) p = 0; (b) p = 0.15; (c) p = 0.85;
(d) p = 1.

3.2. Community-Level Analysis

3.2.1. Modularity Optimization

To conduct the analysis within a community-level perspective, we performed topological
clustering to extract the modular structures of the SN. Real-world networks often have community
structures, where groups of nodes are closely connected within themselves and rarely with others
(Figure 6).

Figure 6. Community detection of networks.

Newman et al. [29–31] proposed a fast method for optimizing modularity in very large networks,
where an approximate function of modularity (Q) optimization was proposed to measure the modular
division as:

Q = ∑
i
(eii − (∑

j
eij)

2) (3)

where eii denotes the fraction of edges in community i, and eij denotes the fraction of edges that link
the nodes in community i to the nodes in community j. If we let ai = ∑j eij denote the fraction of edges
that link the nodes in community i to all other communities, Q can be rewritten as follows:

Q = ∑
i
(eii − a2

i ). (4)

As the high value of Q indicates that the network has an excellent community structure,
this method proposes an alternative approach to finding a suitable community by optimizing Q.
Furthermore, it assumes that all nodes are independent communities and employs a greedy search of
combining two communities by the maximum ∆Q as follows:

∆Q = eij + eji − 2aiaj. (5)

The value of Q only needs to be recalculated for the new combined community, and the running
time can be reduced to approximately O(n2). According to the iterative combining process, the best
community division is when Q obtains the maximum value, and a community with a high Q presents
an excellent modular property. Community structures represent the SN interdependence through
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self-organizing processes, where the information flows can be better diffused and transmitted from
segregated communities to the whole network.

3.2.2. z-P Parameter Space

Efficient SNs also depend on the interdependence of the network structures. It is easy to find
and manage the flows from the one supplier to the end customer; however, vertical connections
between communities are difficult to form and maintain given the channels for defining their flows of
information. We identified such channel leader firms using the z-P parameter space, which provides
a multi-criteria [3,32]. One criteria was the within-module degree zi defined as:

zi =
Ki − K̄si

σKsi

(6)

where Ki is the number of links of node i to other nodes in its own module si, and K̄si is the average of K
over all the nodes in si, σKsi

is the standard deviation of K in si. The other criteria was the participation
coefficient Pi defined as:

Pi = 1−
NM

∑
s=1

(
Kis
ki

)2 (7)

where Kis is the number of links of node i to module s, and ki is the total degree of node i.
The z-P parameter space was defined based on seven kinds of roles according to Figure 7.

R1. Ultra-peripheral roles: nodes with all their links within their module (z < 2.5, p < 0.05).
R2. Peripheral roles: nodes with most links within their module (z < 2.5, 0.05 ≤ p < 0.62).
R3. Non-hub connector roles: nodes with many links to other modules (z < 2.5, 0.62 ≤ p < 0.8).
R4. Non-hub kinless roles: nodes with links homogeneously distributed among all modules

(z < 2.5, p ≥ 0.8).
R5. Provincial hub roles: nodes with the vast majority of links within their module (z ≥ 2.5, p < 0.3).
R6. Connector hub roles: nodes with many links to most of the other modules (z ≥ 2.5, 0.3 ≤ p < 0.75).
R7. Kinless hub roles: nodes with links homogeneously distributed among all modules (z ≥ 2.5,

p ≥ 0.75).

Figure 7. Roles in z-P parameter space.

Among the three hub nodes, we assumed that the R6 connector hub nodes were channel leader
firms, due to the nodes being densely connected within the module and simultaneously well connected
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outside to other modules. In this context, connector hub firms made a particularly significant
contribution to community economies.

3.3. Vertex-Level Analysis

3.3.1. Node Degree

After network clustering, we measured the dispersion of the links from each firm between
the different communities from a vertex-level analysis. We employed topological measures as
the degree defined as:

D(vi) =
n

∑
j=1,i 6=j

∧(vi, vj) (8)

where, for a given node vi, ∧(·) = 1 when a link exists between vi and vj; otherwise, ∧(·) = 0.
Although the degree centrality can be calculated simply with Equation (8), the measurement of
the importance (e.g., activity and cohesiveness) of a node is intuitive and interpretable. In the supply
network, an enterprise with a high degree can be considered to have more direct contacts with
other enterprises, which also indicates a greater impact on other enterprises through operational
decisions and strategic behavior [7]. Degree centrality is also acceptable for recognizing enterprise
scale: enterprises with a high degree are considered to be large enterprises (LEs), and enterprises with
a low degree are small and medium enterprises (SMEs).

3.3.2. Network Entropy

In accordance with the Shannon entropy [33], the information entropy H(E) containing n events
is defined as:

H(E) = −
n

∑
i=1

p(ei) log p(ei) (9)

where p(ei) denotes the probability of occurrence of event ei. Next, we assumed that the event ei was
substituted as the node vi. For given a node vi with the degree D(vi) as per Equation (8), the probability
P of vi can be formulated by a weight function as:

p(vi) =
D(vi)

∑n
j=1 D(vj)

, (10)

where p(vi) ≥ 0 and ∑n
i=1 p(vi) = 1. Subsequently, the entropy of network G can be defined as:

H(G) = −
n

∑
i=1

D(vi)

∑n
j=1 D(vj)

log
D(vi)

∑n
j=1 D(vj)

. (11)

Equation (11) is based on the Shannon entropy, which is well suitable for measuring the structural
and topological complexity of networks [41]. It easily distinguished that regular networks represented
a low complexity (entropy), whereas random networks represented a high complexity (entropy) [36].
Network entropy can also be considered as a quantitative measure of network robustness, which has
been widely applied in economic, scientific, social and biological networks [35,39,40] and accounts for
a relatively positive correlation with the network robustness.

4. Experiments

4.1. Baseline Analysis

4.1.1. Supply Network of Regional Clusters

In this section, we focused on the supply network in the central region that is related to regional
clusters. The central region comprises eight prefectures with a total of 182,538 firms (see Table 1).
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As shown in Table 4, the transaction shares of Aichi ranked first and was substantially larger than
the transaction share of other prefectures. Figure 8 shows the supply network in relation to geographic
information, where the node size denotes the number of transactions of individual prefectures, and
the link thickness indicates the number of transactions between each pair of prefectures. The nodes
are colored according to each prefecture, and the links colored according to the sources of the related
nodes. Aichi not only ranked first in terms of its share of transactions with firms, but also had the
greatest number of transactions with other prefectures. In the Tokai sub-region, the transactions among
the four prefectures were well connected. However, Toyama, Ishikawa and Fukui in the Hokuiku
sub-region also presented relatively dense connectedness.

Table 4. Transaction shares of individual prefectures in central region.

No. Prefecture Name (Abbreviation) Number of Transactions

1 Aichi (A) 192,005
2 Shizuoka (S) 88,025
3 Niigata (N) 68,201
4 Gifu (G) 40,228
5 Mie (M) 33,124
6 Toyama (T) 35,665
7 Ishikawa (I) 30,617
8 Fukui (F) 29,001

Total 516,866

Figure 8. Supply network of regional clusters in the central region.

Due to the boundary strengths of regional clusters, the majority of the transactions were held
within individual regions, and the bridges were much thinner. Therefore, the analyses and results of
the regional clusters were insufficient for revealing the cross-regional features, which accounted for
the lack of transaction information.

4.1.2. Supply Network of Industrial Sectors

In this section, we focused on the supply networks in the central region related to industry sectors.
As shown in Table 5, the transaction shares of Construction ranked first and was significantly larger
than the transaction shares of other industries. Figure 9 represents the supply network that is related
to industry sectors, in which the node size denotes the number of transactions in individual industries
and the link thickness denotes the number of transactions between each pair of industries. The nodes
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related to the top six industries are depicted in different colors in Figure 2, and the other nodes are
depicted in gray. The color of the link corresponds to the source of the related nodes.

Table 5. Transaction shares of Japan Standard Industrial Classification (JSIC) industrial sectors.

Code Industrial Category Number of Transactions

a Agriculture 168
b Fisheries 10
c Mining and Quarrying of Stone 93
d Construction 125,276
e Manufacturing 67,991
f Electricity, Gas, Heat Supply and Water 34
g Information and Communications 1289
g Transport and Postal Services 4873
i Wholesale and Retail Trade 56,520
j Finance and Insurance 71
k Real Estate and Goods Rental 809
l Scientific and Technical Services 1193

m Accommodations, Eating and Drinking 141
n Living-related and Amusement Services 389
o Education, Learning Support 15
p Medical, Health Care and Welfare 182
q Compound Services 167
r Services, N. E. C. 1512
s Government 0
t Unclassified Industry 0

Total 260,733

Construction not only ranked first in terms of its share of the firms, but also included the greatest
number of within-industry transactions. Figure 9 also shows that Construction had one main supplier
from the Transport and Postal Services, and two main customers from Manufacturing and Wholesale
and Retail Trade. However, Manufacturing had the greatest number of suppliers from the Wholesale
and Retail Trade and exhibited highly reciprocal relationships with Wholesale and Retail Trade.
In contrast to the regional clusters where most transactions occurred within individual prefectures
rather than between prefectures, fewer transactions occurred with each industry, and most transactions
occurred between two different industries. Due to the direction of dependent relationships and the lack
of reciprocal transaction information, the results and analysis of the industry sectors were insufficient
to reveal cross-industry features.

Figure 9. Supply network of industrial sectors in the central region.



Entropy 2017, 19, 382 13 of 23

4.2. Results of Community-Level Analysis

4.2.1. Community Detection

In this section, we investigate network clustering as a technical approach to analyzing
the customer-supplier relationships in the supply chain by constructing a supply community structure.
The fast modularity maximization algorithm—the Newman method is applied to detect and analyze
communities from the supply network. As shown in Table 6 and Figure 10a, five main communities
are detected from the original network and include more than 90% of the firms. Unlike the analyses
based on regional clusters and industry sectors, the analysis of communities provides a cross-location
and cross-industry perspective. The Features column of Table 6 denotes the location in uppercase (refer
to Table 1) and the industry in lowercase (refer to Table 2). For example, in the Central region row,
Aichi (A) and Shizuoka (S) ranked first and second in terms of their share of the firms and included
more than 50% of the firms; Construction (d), Wholesale and Retail Trade (i) and Manufacturing (e)
ranked as the top three and included approximately 80% of the firms. Therefore, the features of the
central region were classified as ASdie.

(a) (b)

(c)

Figure 10. Community detection by optimizing modularity. (a) Community-specific share by firms;
(b) Community network and (c) Supply network.
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Table 6. Clustering results for each community in the central region. n, e and Q denote the number of
nodes, number of edges, and modularity, respectively.

Community No. n e Q Features

Central region 182,538 598,721 0.71 ASdie
C1 41,594 123,955 0.74 Nied
C2 40,291 113,546 0.64 AGMdie
C3 36,832 137,301 0.58 ASe
C4 22,818 56,443 0.69 Sdie
C5 20,466 61,799 0.68 TIFdie

Figure 10b represents the supply network related to industry communities, where the node size
denotes the number of transactions inside individual communities and the link thickness denotes
the number of transactions between each pair of communities. The nodes related to the top five
communities were depicted by different colors based on Figure 10a, and the links were depicted by
color according to the sources of the related nodes. The results are summarized as follows:

C1. This community exhibited high independence; Niigata included approximately 50% of the
firms and held a uniform firms share for the Wholesale and Retail Trade, Manufacturing, and
Construction industries.

C2. This community showed similar organizational properties of the original network, which
represented a similar industrial structure (die) and was comprised the three main prefectures of
Aichi, Gifu, and Mie.

C3. In this community, Aichi and Shizuoka had the greatest numbers of interacting firms, and
Manufacturing ranked first among the industries. Manufacturing contained many more firms
than other industries. Although, C3 did not include the largest number of firms, it had the largest
number of reciprocal relationships with all other communities, particularly C2. As shown
in Figure 10c, C3 held the most important place in the central region (the supply network of C3

is represented in a firework-like network chart drawn using the open-source network analysis
and visualization software Gephi).

C4. This community showed similar organizational properties of the original network; Shizuoka
included interactions with approximately 90% of the firms.

C5. This community showed similar organizational properties of the original network; Toyama,
Ishikawa and Fukui included interactions with over 98% of the firms.

According to the summarized results, C1 exhibited the largest modularity due to its high
independence of regional clusters and excellent integrity of industry categories. C2, C4 and C5 had
a relatively similar modularity to the original network and could recognize similar organizational
properties of the industry categories of the original network. Another feature was that these three
communities were well separated based on regional clusters. C3 had poor modularity as the majority
of the interacting firms were in Manufacturing; consequently, it was strongly connected to other
communities. Furthermore, we discovered that these five main communities also engaged in excellent
reciprocal and cyclical business communications, namely community economics.

4.2.2. Connector Hub Firms Extraction

To reveal the community economics, the presence of hub firms in the SN is significant, as such
firms contribute to raise the performance of the entire SN and benefit the SN interdependence between
different communities. According to the z-P parameter space, a firm with high z could be identified as
an information transformer to its business partners in the community, and a firm with a high P could
be identified as a channel gatekeeper to bridge other communities.

Table 7 showed the hub firms extracted from each community. First, we found that there were
fewer R5 provincial hub firms and R7 kinless hub firms in either community. Second, we found that all
communities contained a mass of R6 connector hub firms, especially in community C3, which contained
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nearly twice the connector hub firms than C1 and C2, and almost ten times that of C4 and C5. In this
context, community economics can be so-called connector hub businesses that make a particularly
significant contribution from the outside communities to the inside community. The effect of such
firms can be observed in Figure 10b,c. The connector hub firms not only made C3 inter-connect
densely, but also made good bridges with C1, C2, C4, and C5. Therefore, to quickly and accurately
identify community economics and their SN structures, connector hub firms are helpful for local
governments and administrations to promulgate more effective policies for stimulating SN efficiency
and interdependence and move towards implementing those policies.

Table 7. Hub firms of each community.

Community No. R5 R6 R7

C1 52 1295 3
C2 49 1137 2
C3 128 2153 7
C4 11 234 0
C5 17 259 0

4.3. Results of Network-Level Analysis

As shown in Table 8, the SN of the whole central region shows the average shortest path
length is Lcentral

actual =15.78 (≥ Lcentral
random = 10.19), and average clustering coefficient is Ccentral

actual = 0.027
(� Ccentral

random = 0.000036), which represents the small-world properties. According to these two
quantitative measures, all five main communities (C1, C2, C3, C4, and C5) also represent
small-world properties.

According to Hearnshaw and Wilson [10], an efficient SN with a short L and a high C was
demonstrated in this real-world case. Additionally, we also discovered that better community
structures presented more efficient SNs. According to Table 8, all communities (C1, C2, C3, C4, and C5)
presented a much shorter L than that of the entire central SN. As attempts to shorten L can dramatically
enhance the efficiency of SNs with facilitating informational, material and financial flows, based on SN
theory, community structures can be identified as a managerial implication.

Table 8. Assessment of small-world network for each community in the central region. n, d, L, and C
denote the number of nodes, number of edges per node, average shortest path length, and average
clustering coefficient, respectively.

Community No. n d Lrandom Lactual Crandom Cactual

Central region 182,538 6.56 10.19 15.78 0.000036 0.027
C1 41,594 5.96 5.96 9.74 0.000143 0.032
C2 40,291 5.64 6.13 8.84 0.000140 0.022
C3 36,832 7.46 5.23 5.69 0.000203 0.040
C4 22,818 4.94 6.28 9.43 0.000217 0.023
C5 20,466 6.04 5.52 7.91 0.000295 0.035

Subsequently, we focused on the structures of each community. Gapaldo and Giannoccaro [12,13]
investigated 10 different patterns of SNs and defined the degree of SN interdependence by the average
number of interactions (i.e., d), and the structure of SN interdependence by mapping firm interactions.
These studies revealed that higher SN interdependence presented a positive relationship between SN
resilience and SN efficiency. Therefore, C3 with the highest d, represented a relatively similar structure
that approaches the random network more so than other communities and the central SN. This also
proved that C3 was a well-connected network and hard-separated structure (i.e., containing mass of
connector hub firms), which was indicated by the community-level analysis in Section 4.2.
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4.4. Results of Vertex-Level Analysis

4.4.1. Scenario Design

To further reveal the relationships between SN interdependence and resilience, we designed
several scenarios and simulated the analysis results against both random failures and targeted attacks
from a vertex-level perspective. The roles of each firm were determined and positioned relative
to the connectivity structure of the SN. First, we did not identify the firm roles and remove them
randomly from the SN. Second, we identified the pivotal firms within each community using node
degree-prior choice, and investigated the robustness of each community’s SN using a strategy involving
the sequential elimination of these pivotal firms. Third, we identified the firm roles using a participation
coefficient P of the z-P parameter space, and investigated the robustness of the SN of each community
after removing these firms. Fourth, when a node was removed from the network, not only did its links
disappear, but links between other nodes may also have disappeared in the real case. Therefore, we
also identified a random disappearance of links based on S3 when firms were removed from the SN of
each community.

S1 : Random elimination strategy.
S2 : Degree-prior elimination strategy.
S3 : P-prior elimination strategy.
S4 : P-prior elimination strategy with random indirect links disappear.

In simulations of these four scenarios, we used the network entropy H as a measure of network
complexity and network robustness when the firms were successively removed from the SN.

4.4.2. Discussion of Network Complexity

It is well known that a higher complex network makes it more difficult to understand relational
interactions and topological characteristics, so only a small change can cause a massive reaction [41].
On the other hand, as network is a nonlinear system, even given the same number of nodes and edges,
networks can represent completely different structures such as regular, random, scale-free network
and star networks [36]. In this context, evaluating the complexity of such networks is a major challenge
and a formidable task in the SNs, as it pushes the limits of the ability of the SC managers to manage
material and information flows from their suppliers to their customers [12,13,35].

According to Equation (11), network entropy provides a graph-oriented metric based on
the concepts of information dynamics, which can can measure SN interdependence by means of
two complexity variables: (1) SN size, i.e., the number of nodes n and links e in SN; and (2) SN
topologies, i.e., how firms interact in the SN [12,13]. As shown in Table 9, the network entropy of each
community was calculated. First, it was obvious that the larger size (i.e., more nodes and links) SN had
higher H, and C1, C2, and C3 had much higher complexity than C4 and C5. However, we also found
that even nC3 < nC1 , nC3 < nC2 and nC5 < nC4 , HC3 > HC1 , HC3 > HC2 , and HC5 > HC4 were observed
in Table 9, accounting for the different firm interactions. The different interactions of networks has been
investigated by Demetrius and Manke [36], who demonstrated four classic structures: regular, random,
scale-free, and star networks with the same number of nodes n and links e. The average shortest
path length L of different networks were shown as Lregular > Lrandom > Lscale− f ree > Lstar, while
the network entropy were reversely shown as Hstar > Hscale− f ree > Hrandom > Hregular. Therefore
shortening L in SN is considered as a way to increase SN efficiency [10,12,13,36,41]. Furthermore, we
found that an SN with high network entropy represented the high complexity of SN interdependence,
which led to SN efficiency. Additionally, it could deliver efficient and effective support to the flows of
material and information as the management of such inter-firm relationships present difficult issues.
In such SNs, the interdependence degree and pattern are appropriate ways to pursue SN integration
problems as they can bury the structural and operational holes [3,12].
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Table 9. The network entropy of each community.

Community C1 C2 C3 C4 C5

H 3.75 3.58 4.30 1.78 1.88

4.4.3. Discussion of Network Robustness

Network entropy has proven to be positively correlated with network robustness [10,12,13,36];
however, the entropy variation when a failure or attack happens in an SN has yet to be demonstrated.
In this section, we used the concept of network entropy to measure the robustness of the supply
network. Figure 11 shows the simulation results of the network entropy when firms are removed from
the individual communities based on different scenarios. Figure 11a,b (represented by the � and ◦
marks) denote the results of accidental node failure (S1) and of intended node attack (S2), respectively.
Figure 11c (represented by the solid lines and dashed lines) denotes the results of the disappearance of
intended node attack of P-prior firms without random indirect links (S3) and their disappearance with
random indirect links (S4).
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Figure 11. These figures illustrate comparison of network entropy variation. (a) Comparison of ∆H1

in 100 steps; (b) Comparison of ∆H2 in all steps; and (c) Comparison of H in all steps.
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First, we focused on the accumulative variation of loss entropy and define the loss function
as follows:

∆H1 = H0 − Ht (12)

where H0 denotes the initial entropy, and Ht denotes the entropy after t nodes are removed from
the network. If we focused on the � marks in Figure 11a, we found that all communities displayed
strong robustness in the face of such accidental failures. When 100 nodes were randomly removed
from the supply network, the network entropy ∆HS1

1 of five communities decreased by 0.14%, 0.15%,
0.14%, 0.29% and 0.35%, respectively. When we focused on Figure 11a, the ◦ marks showed the results
of the degree-prior node failure. The network entropy of five communities significantly changed to
that of accidental failures, and ∆HS2

1 decreased by 2.88%, 3.10%, 2.62%, 7.61%, and 7.57%. In particular,
C3 had a minimal decrease compared to the other four communities, which indicated that C3 was
a much more robust network structure in the face of both accidental and degree-prior failures.

The results supported the research issue suggested by Hearnshaw and Wilson [10] where they
revealed that the channel leader firms determined the resilience of the SN against both random
disturbances and targeted attacks. As C3 represents a scale-free-like SN interdependence as suggested
by Capaldo and Giannoccaro [12,13], it was easier to synchronize SN activities, reduce transaction cost;
hence beneficially affecting SN efficiency.

Second, we focused on the loss entropy caused by the individually removed nodes at each
enumerative step. The loss function is defined as follows:

∆H2 = Ht−1 − Ht (13)

which denotes the variation of entropy between t − 1 and t steps when the tth node is removed
from the network. According to the additivity of entropy [41], Equation (13) can also measure
the information It of node t. Figure 11b shows the variation of loss entropy ∆H2 when the supply
networks face degree-prior failure. Here, the results showed that ∆H2 of each supply network
(C1, C2, C3, C4, and C5) self-organized into a scale-free power law distribution [24], and the slopes
(solid lines) were k1 = 3.83, k2 = 4.00, k3 = 4.16, k4 = 3.41, and k5 = 3.07. The results also supported
the research issue suggested by Hearnshaw and Wilson [10] where they revealed that resilient SNs
demonstrate a power law distribution of relationship importance for all connection types.

Furthermore, C3 represented the maximal slope, which also indicated that it had a highly
inter-connected SN interdependence when compared with other communities. Capaldo and
Giannoccaro discussed different structures of SNs, and revealed that SN interdependence moderated
the relationship between SN resilience and SN efficiency which varied across different network
structures [12,13] and is illustrated in Figure 12. Figure 12a represents an exponential feature [42], which
would separate into several smaller communities in the event of degree-prior failures. The network
shown in Figure 12b represents a scale-free feature [24,42], which shows a preferential attachment
based on degree-prior choice. Therefore, the network structure of C3 is highly robust to a coordinated
attack against their pivotal firms (referred to as LEs), which only fracture the network to separate
the SMEs into non-communicating islands.

Finally, we focused on the entropy of the remained network when firms were removed from
the SN, and the entropy of remained network was recalculated by Equation (11). The solid lines
represent the results by applying the P-prior elimination strategy where the slopes were k1 = −9.02,
k2 = −8.89, k3 = −11.68, k4 = −7.81, and k5 = −9.20, respectively. The slopes represented the
importance of the hub firms in each community where C3 represented the maximal slope. The larger
slope indicated that the hub firms play important roles to benefit SN efficiency. Conversely, the SN
would reduce in performance if such nodes were lost with targeted attacks of P-prior. As shown in
Figure 11c, the entropy of C3 was lower than C1 after removing 20,257 nodes, and lower than C2 after
removing 25,083 nodes, which was also observed between C4 and C5. Additionally, when we simulated
P-prior elimination strategy with the disappearance of random indirect links (S4), the dashed lines
represented a more dramatic fall than S3.
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(a)

(b)

Figure 12. Inter-connected features of different supply networks. (a) Network structure of C1, C2, C4,
and C5; and (b) Network structure of C3.

4.4.4. Visualization of a Real-World Case Study

The visualization of the SN enabled us to intuitively understand the purpose of our analysis.
We selected C3 as a real-world case study, and represented it from the vertex-level perspective as shown
in Figure 13a, where the size of the nodes were arranged by degree. We extracted the top ten firms
that accounted for the majority of the transactions (Table 10) where Aichi (A) and Manufacturing (e)
ranked first.

(a) (b)

Figure 13. Comparison of supply networks according to the pivotal firms. (a) Before removing the top
ten firms; and (b) After removing the top ten firms.
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Table 10. Top ten firms that accounted for the most transactions in C3.

No. Firm Name Transactions Region Industry

1 Toyota Tsusho Corp. 1,299 A i
2 Toyota Motor Corp. 897 A e
3 Denso Corp. 857 A e
4 Okaya Co., Ltd. 777 A i
5 Aisin Seiki Co., Ltd. 716 A e
6 Toyota Industries Corp. 644 A e
7 Suzuki Motor Corp. 558 S e
8 Toyota Auto Body, Co. Ltd. 536 A e
9 Yamaha Motor Co., Ltd. 438 S e

10 Toyota Boshoku Corp. 419 A e

(I) For operational resilience, we revealed that these pivotal firms not only held the most important
position, but also significantly influenced the supply transformation for focal locations and
focal industries.

When we removed these ten nodes from the network (Figure 13b), we determined that the average
degree of C3 decreased from 7.46 to 7.08 and the average path length of C3 increased from 5.69 to 6.56.
However, this result indicated that C3 lost more than 7000 business interactions, which also influenced
271 SMEs who separated from the SN into isolated firms. Nevertheless, the entire SN was not fractured
into several non-communicating islands, and the remaining firms could also reach their suppliers
(customers) via an additional path.

(II) In terms of strategic resilience, these pivotal firms represented gate-keepers who control the flow
of materials and communication. Furthermore, if the SN contains such firms, it could lead to less
distributed paths and wastes by making the SN more robust to prevent SN disruption.

5. Conclusions

This paper presents an exploratory study of a supply network (SN) using network analysis
techniques to analyze SN theory from multi-level perspectives of the whole network. Compared with
existing studies in the complex system discipline, most of them identify the SNs as complex adaptive
systems (CASs), and hence complex system theory can be widely used to generate, validate, and refine
the SNs properties from a network-level perspective. On the other hand, compared with existing
studies in the SCM discipline, most of them identify SNs as regional clusters or industrial sectors, and
analyze the specific firms considering geographic proximity or industrial affinity from a vertex-level
perspective. For these multi-level issues in SN theory, this paper proposed an integrated framework to
enrich the SN theory from a network-level perspective to a vertex-level perspective. One of the most
important contributions of this framework is to introduce community-level analysis, which can bury
the structural analysis hole between network-level analysis and vertex-level analysis.

In the network-level analysis, we applied the small-world properties to the SNs, and found
that SN efficiency depended on a short average path length and high clustering coefficient.
In the community-level analysis, we employed a network clustering method to detect communities
of SN interdependence, and found that better community structures could benefit SN efficiency,
namely community economics. As community economics has also been identified as connector
hub business, we extracted such hub firms by using z-P parameter space and found that the
number of hub firms could moderate the relationship between SN interdependence and SN efficiency.
Finally, in the vertex-level analysis, we introduced network entropy to measure the SN resilience,
and applied several scenarios to conduct analysis against random failures and targeted attacks.
The results revealed that SN resilience was dependent on SN interdependence. In the experiment,
we constructed an SN from the real-world case of the central region of Japan, which contains over
180,000 nodes and approximately 600,000 links. Compared with existing studies, our SN contained
eight prefectures and a full-scale sample of industries from 20 categories. Therefore, another most
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important contributions of this paper was to apply and investigate the SN theory in a real-world
large-scale supply chain. This paper not only familiarizes researchers and managers in the SCM
field with the existence of the integrated SN theory, but also delivers several managerial implications
to support SN design and management. We also hope that SN theory can be supported by public
institutions in policy development.

Our study had two limitations that will be addressed in future research. First, we did not identify
the SN as a directed networks. In our SN theory, the measures of CAS (such as clustering coefficient,
the shortest path length, and others) were used for undirected networks and ignoring link directions
although the real-world SN represented supplier-customer relationships with directed links [15,16].
Therefore, a future extension of SN theory will conduct a directed network, and frame SN as a directed
CAS. Second, this study also ignored the firm’s attributes. Real-world firms contain rich attributes such
as sales, number of employees, location, and industry sector, which are very useful for community
detection [5,45]. Therefore, we propose an attribute-associated network clustering method to enrich
current SN theory.
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