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Abstract: We consider chemical plume tracing (CPT) in time-varying airflow 

environments using multiple mobile robots. The purpose of CPT is to approach a gas 

source with a previously unknown location in a given area. Therefore, the CPT could be 

considered as a dynamic optimization problem in continuous domains. The traditional ant 

colony optimization (ACO) algorithm has been successfully used for combinatorial 

optimization problems in discrete domains. To adapt the ant colony metaphor to the multi-

robot CPT problem, the two-dimension continuous search area is discretized into grids and 

the virtual pheromone is updated according to both the gas concentration and wind 

information. To prevent the adapted ACO algorithm from being prematurely trapped in a 

local optimum, the upwind surge behavior is adopted by the robots with relatively higher 

gas concentration in order to explore more areas. The spiral surge (SS) algorithm is also 

examined for comparison. Experimental results using multiple real robots in two indoor 

natural ventilated airflow environments show that the proposed CPT method performs 

better than the SS algorithm. The simulation results for large-scale advection-diffusion 

plume environments show that the proposed method could also work in outdoor 

meandering plume environments. 

Keywords: ant colony metaphor; chemical plume tracing; time-varying airflow 

environment; multiple robots; spiral surge 
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1. Introduction 

Olfaction is widely used by many animals for searching for food, finding mates, exchanging 

information, and evading predators. Such animals could be trained to help humans seek appointed gas 

sources. For example, it is well known that specially trained dogs are often used to find bombs, mines, 

drugs, and even people buried by avalanches [1]. However, it takes a long time to train such animals. 

In addition, animals are prone to fatigue so they cannot efficiently work for long periods. Moreover, 

animals are not suitable for working in dangerous areas (e.g., where there are toxic gases). 

Inspired by the odor source localization (OSL) abilities of many animals, in the early 1990s 

researchers started to build mobile robots with such abilities to replace trained animals [2–4]. 

Compared to animals, robots could be deployed quickly and maintained at low cost. In addition, robots 

could work for long periods without fatigue, and most importantly, they can enter dangerous areas. It is 

expected that mobile robot based OSL will play increasing roles in areas such as judging toxic or 

harmful gas leakage location, checking for contraband (e.g., heroin), searching for survivors in 

collapsed buildings, humanitarian de-mining, and fighting against terrorist attacks. 

The behavior based OSL task can be decomposed into three sub-procedures, namely plume finding, 

plume traversal, and source declaration, according to Hayes et al. [5], or four sub-procedures 

according to Li et al. [6], namely finding a plume, tracing the plume, reacquiring the plume, and 

declaring the source. During the initial phase, contact is made with a plume. Once the plume is 

detected the robot traces the chemical toward its source. In the final phase the robot locates the source. 

To our knowledge, until now most research related to OSL focuses on plume tracing, which may be 

why mobile robot based OSL is also called chemical plume tracing (CPT) [7,8]. The way in which a 

robot performs each of these phases depends upon the nature of the chemical plume, and the resources 

available to the robot.  

The commonly used methods for finding the chemical plume consist of zigzag [4,6] and spiral [5] 

motions. Experimental comparison of the spiral, up-flow and down-flow zigzag strategies conducted in 

outdoor natural airflow environments shows that all of these strategies present a high success rate, with 

the down-flow zigzag strategy consuming the shortest time in finding a plume [9].  

The traditional plume tracing methods include chemotaxis [10] and anemotaxis [4], which are 

biologically inspired algorithms. The custom algorithms such as fluxotaxis [8] and infotaxis [11] have 

also been proposed and tested. Several insect-inspired chemical plume-tracing algorithms, including 

surge anemotaxis, bounded search and counterturning have been compared using a mobile robot [12]. 

Four reactive robot chemotaxis algorithms, observed in the bacterium E. coli, the silkworm moth 

Bombyx mori, and the dung beetle Geotrupes stercorarius as well as a gradient-based algorithm, have 

also been implemented and evaluated [10]. Li et al. [13] presented a particle filter algorithm for odor 

source localization in outdoor time-variant airflow environments. 

To identify the gas source, Lilienthal and his colleagues [14] adopted an artificial neural network 

and support vector machine to classify whether or not an object was a gas source from a series of 

concentration measurements recorded while the robot performed a rotation maneuver in front of it. Li 

and his colleagues [6] designed a source declaration logic based on analysis, Monte Carlo simulation, 

and results of initial field experiments. Li and Meng [15] put forward a three-step single odor source 
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declaration method. Experimental results in indoor airflow environments using three small mobile 

robots validated the feasibility. 

Compared with the single-robot search, multiple robots might have at least two advantages: the 

expected search time could be decreased; and multi-robot systems could provide a greater robustness 

against hardware failures. The particle swarm optimization (PSO) algorithm was tested using computer 

simulation by Jatmiko [16] and Marques [17] using the plume models developed by Farrell [18] and 

Nielsen [19], respectively. Byrne and his colleagues [20] described a system of miniature mobile 

robots and the algorithms used to demonstrate cooperative plume tracing and source localization. The 

algorithm was implemented on a group of miniature mobile robots capable of measuring temperature 

plumes. Meng et al. [21] proposed a probability PSO (P-PSO) algorithm for multi-robot based OSL. 

The P-PSO algorithm used probability to express fitness function. The results of real-robot 

experiments in ventilated indoor environments and simulations for large-scale advection–diffusion 

plume environments demonstrated the feasibility and advantage of the proposed P-PSO algorithm. 

Spears and her colleagues [22] proposed a multi-robot CPT algorithm called fluxotaxis that follows the 

gradient of the chemical mass flux to locate a chemical source emitter. Ferri and his colleagues [23] 

used a biologically-inspired algorithm called Searching Pollutant Iterative Rounding Algorithm 

(SPIRAL) with a Multi-robot for Odor Monitoring (MOMO) platform to localize a gas source in an 

indoor environment with no strong airflow. Meng et al. [24] applied an improved ant colony 

optimization (ACO) algorithm to multi-robot odor-plume tracing in indoor airflow environments, and 

real robot experiments demonstrated its feasibility.  

Multi-robot based OSL has not been well studied and has mostly been restricted to simulated robots 

and simulation environments. To our knowledge, only a few publications have discussed the CPT 

problem with multiple real robots. Hayes [5] proposed a spiral surge (SS) strategy for multiple robots 

CPT with real robot hardware. Several fans were used to produce an artificial wind field. Lytridis and 

his colleagues [25] combined the biologically inspired chemotaxis strategy with biased random 

walking (BRW) strategy to form a chemo-BRW algorithm for multi-robot plume tracing with three 

BIRAW robots. A Gaussian-shaped odor field was created using a fan. Lochmatter et al. [26] 

introduced a crosswind formation algorithm for chemical plume tracking and carried out experiments 

in a wind tunnel with laminar airflow. Marjovi and Marques [27] presented a cooperative distributed 

approach for searching odor sources in unknown structured environments with multiple mobile robots. 

The gas plume in real airflow environments is patchy and/or meandering due to the turbulence-

dominated gas molecules dispersion. In addition, local concentration maxima caused by large eddies 

often exist in indoor environments, especially in corners. Therefore, tracing such a dynamic gas plume 

down to its source is not a trivial task.  

The main motivation of our research was to adapt ant colony metaphor for the multi-robot CPT 

problem in time-varying airflow environments. It is well known that, owing to its inherent features 

such as a highly efficient form of best-path exploitation (pheromone detection) and a sensible 

mechanism for exploration (probabilistic path selection), the traditional ACO algorithm proposed by 

Dorigo [28] has been successfully applied to combinatorial optimization problems in discrete domains. 

Since the search area is physically continuous and the gas plume is time-variant (patchy and/or 

meandering), the CPT is actually a dynamic optimization problem in continuous domains. Therefore, 

the traditional ACO algorithm cannot be directly copied to the multi-robot CPT problem.  
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To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimensional continuous 

search space is discretized into grids, and the virtual pheromones are released in the grids by the 

robots. The virtual pheromone is updated using both the gas concentration and wind information. To 

prevent the adapted ACO algorithm from being trapped prematurely in a local optimum, the upwind 

surge behavior is adopted by the robots with relatively higher gas concentration in order to explore in 

more areas. 

The adapted ACO combined with upwind surge (AACO+US for short) is executed iteratively. At 

every iteration step, the robots are dynamically divided into two subgroups according to the sampled 

concentrations. The subgroup with relatively lower concentrations is coordinated by the adapted ACO 

algorithm to move toward the high-pheromone areas while guaranteeing that distances between robots 

remain small, meanwhile the other subgroup with relatively higher concentrations searches upwind to 

explore the plume in more area and thus prevents them from being trapped in local optima.  

The proposed AACO+US and the comparative SS algorithms have been verified in two different 

indoor time-varying airflow environments using real-robot hardware platforms. The CPT performances 

(including the searching efficiency and success rate) of the two algorithms are compared. The effect of 

robots‘ number on the two CPT algorithms‘ performances is also presented. The possible reasons 

leading to unsuccessful CPTs are also discussed. The proposed CPT algorithm is also conducted in 

simulated large-scale advection–diffusion plume environments in order to figure out whether it could 

cope with the plume meander problem. 

The remainder of this paper is organized as follows: in Section 2, the continuous space 

representation for multi-robot CPT is described. The proposed AACO+US algorithm framework is 

outlined and explained in Section 3. The comparative algorithm, i.e., the SS algorithm, is briefly 

introduced in Section 4. Section 5 presents the infrastructures and the CPT performance evaluation 

indexes for the real-robot experiments. The real-robot experimental results are given and discussed in 

Section 6. Section 7 shows the CPT simulation, followed by the conclusions presented in Section 8. 

2. Continuous Space Representation 

The discrete versions of the ACO algorithm are able to handle highly constrained order-based 

problems, and there are well-defined paths for transitions between nodes in discrete domains. For the 

CPT problem, the given searching area is physically continuous, owing to the fact that there are no 

well-defined ―nodes‖ or ―edges‖, so the traditional ACO cannot be directly used for multi-robot CPT 

problem unless some kind of order-based representation is invented. 

To adapt the ant colony metaphor to the multi-robot CPT problem, the two-dimension continuous 

search area is divided into numerous square grids (see Figure 1). The grid size is set to 20 cm  20 cm 

and 50 cm  50 cm in indoor and outdoor environments, respectively. The two different grid sizes are 

set considering the real dimensions of our robots designed for indoor and outdoor environments. The 

geometric central point of each grid, corresponding to the node in the traditional ACO, has a virtual 

pheromone value. Every central point is perceived as a feasible solution of the CPT problem, i.e., the 

possible gas source location. The straight dashed lines connecting the robot to the central points form 

the edges in the adapted ACO. It should be noted that the pheromone in the adapted ACO is deposited 
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in the ―nodes‖ instead of ―edges‖. For the convenience of description, we also say that the pheromone 

is deposited in the grid. 

Figure 1. Discretization of the CPT searching environment. The search area is divided into 

a number of grids. The gray-scale of each grid represents the pheromone value deposited 

into that grid. Darker color indicates higher pheromone value. The straight dashed lines 

connecting the robot and the central points are interpreted as edges in the traditional ACO. 

The robot performing the adapted ACO strategy chooses one of the central points as its 

temporary goal and moves toward it. 
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For the multi-robot CPT problem, both the sampled gas concentration and wind information are 

considered in the pheromone update (details can be seen in Section 3). The global pheromone 

distribution map is shared by all the robots via communication in the adapted ACO, while in the 

traditional ACO only pheromones deposited on the edges connected to the current node are known. 

Because the search area in the CPT problem is continuous, any grid is directly accessible to all robots 

regardless of the physical distance. Thus, all the grids are connected to current robot in a sense. Each 

robot is assigned a taboo list, in which the maximal-pheromone grids the robot has passed through are 

recorded.  

3. AACO+US Algorithm 

Figure 2 shows the flowchart of the proposed AACO+US algorithm. At the initial phase, the robots 

move toward different directions to find plume. The robots measure the wind and gas information, and 

the pheromones that reflect the newly sampled concentrations are calculated and deposited in the 

corresponding grids. The robots ―deposit‖ pheromone by modifying appropriate pheromone variables. 

At the decision-making phase (see the Section 3.1), the robots are dynamically divided into two 

subgroups according to the pheromones of the grids in which they are located. The goal point is 
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allocated to each robot. When the robots arrive at new positions where the wind and gas information 

are sampled, the pheromone map and taboo list are updated accordingly. If no pheromone has been 

detected for several times (five times in our experiments), the robots will scatter to move upwind to  

re-find the plume. 

Figure 2. The flowchart of the proposed AACO+US algorithm. The variables ρi and ρavg 

stand for the virtual pheromone in the ith grid and the average pheromone, respectively. 
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3.1. Decision Making 

The multiple robots‘ motion is coordinated via the AACO+US algorithm. At first, the average 

pheromone of the grids in which the robots are located is calculated (ρavg in Figure 2). Then each robot 

compares the pheromone of the grid where it is located (ρi in Figure 2) with the average value. The 

robots are divided into two subgroups according to the results of the comparison. The higher-

pheromone subgroup (the robots located in the grids with higher pheromone than the average value) 

surges upwind to explore more areas, expecting to detect even higher concentration and avoid being 

trapped in local optima prematurely. The lower-pheromone subgroup, by contrast, performs the 

adapted ACO strategy to move toward the maximal-pheromone areas while guaranteeing that the 

distance between the robots remains small, in order to keep the historical and colonial optimal 

solutions. Each robot of this subgroup chooses (via roulette wheel) one of the five grids with the 
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highest pheromone value as its goal. The transfer probability that the robot k in the ith grid moves 

toward the jth grid at time t is determined by Equation (1): 
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where:  

τij(t) and ηij(t) represent the pheromone and heuristic information, respectively, 

ρj(t) is the pheromone of the jth grid at the time t,  

dij(t) stands for the Euclidian distance between the ith and jth grids, 

C, D,  and β are constants, and 

max(t) stores the indices of five maximal-pheromone grids at the current time t.  

Here p
k
ij(t) has the same expression as that of the traditional ACO algorithm. The effect of the item 

τij(t) in the adapted ACO is to make the robots move according to the pheromone, while the item ηij(t) 

makes the robots move according to the distance information. 

3.2. Pheromone Deposit and Update 

The given search area is divided into M × N grids, and the detailed values of M and N depend on the 

dimensions of environments and robots. At the very beginning, the pheromone in each grid is set to 

zero. The pheromone deposited in the qth grid ( )( tposq , pos(t) stores the indices of grids in which 

the robots are located) is calculated as follows: 
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where cavg is the averaged gas concentration detected by the robot in the qth grid at the time t; and cmax 

is the upper limit of the concentration that the gas sensor can measure, thus the value of the pheromone 

ρq(t) is between 0 and 1.  

The pheromone updates include global update and local update. The global update mainly considers 

gas concentration (i.e., the virtual pheromone) evaporation in all the grids caused by the wind speed, 

which can be expressed as follows:  
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where ρi(t) stands for the pheromone map at the time t; ρi(t + Δt) indicates the updated pheromone map 

at the time t + Δt, Δt denotes the time step; Vavg(t) represents the average wind strength measured by 

the robots at the time t; Vmax(t) is the maximal wind strength up to the current time t measured by the 

robots. Hence the value of δ(t) is smaller than 1.  
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The local pheromone update only considers the grids in which the robots are located, and it uses 

both the historical and new pheromones. The newly deposited pheromone weighs more heavily in the 

local update, which can be expressed as follows:  
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where ρq(t + Δt) in the LHS of Equation (4-a) is the updated pheromone in the qth grid at the time t + Δt; 

ρq(t) stands for the pheromone in the qth grid left by the new robot at the time t , which is calculated by 

Equation (2); ρq(t + Δt) in the RHS of Equation (4-a) is the pheromone globally updated using 

Equation (3); σf(t) and σf_max(t) in Equation (4-b) stand for the wind-direction variance at the time t and 

the maximal wind-direction variance up to the time t, respectively. If the value of ω(t) is bigger than 1, 

ω(t) is set to 1. The newly deposited pheromone, however, weighs more heavily because it is thought 

that the pheromone left by the new robot is more believable. Here we set a constant 0.6 in ω(t) to 

ensure that the weight of the new pheromone is 0.6 at least. Larger σf(t) indicates more violent 

fluctuation in wind direction, and the historical pheromone becomes less credible, so less weight is 

distributed to it. 

3.3. Taboo List Update 

Each robot has a taboo list recording the maximal-pheromone grids that the robot has passed 

through. To make the robot search more areas and avoid being trapped in a local concentration 

optimum, the robot moves upwind if the maximal-pheromone grid toward which the robot would move 

is one of the grids stored in the taboo list. In each iterative loop, both the taboo lists of the robots and 

the maximal-pheromone grids are updated. The grids stored in the taboo list that do not belong to the 

newest maximal-pheromone grids are removed. 

4. The Comparative SS Algorithm 

The AACO+US strategy proposed in this paper is compared with the SS algorithm proposed by 

Hayes [5] to verify the performance of the former algorithm. The traditional SS algorithm finds the 

plume by an initial outward spiral search pattern (SpiralGap1). When the robot detects an odor packet 

with a concentration value higher than a certain threshold during spiraling, the wind direction is 

sampled and the robot moves upwind for a certain distance (StepSize). If the robot detects another odor 

packet during surge, it resets the surge distance but does not resample the wind direction. As the robot 

has reached the surge distance, it behaves a tighter spiral casting (SpiralGap2) for another plume hit. If 

the robot re-detects an odor packet, it repeats the surge behavior. If there is no odor packet detected in 

a set time (CastTime), a plume re-finding behavior (less local spiral) is performed.  

The detection threshold, which determines the behavior of the robot, is a key parameter in the SS 

algorithm. The amplitude threshold for odor detection in [5] was set at 4 times the baseline standard 

deviation (recorded from 10,000 samples taken at an average rate of 85 Hz). Considering that odor 
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concentration accumulates with time in indoor environments, however, a moving average 

concentration value [13] is set as the threshold in our study: 
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where c(t) is the output value of the gas sensor at the time t. )(tc  and )( ttc   are the moving average 

value, i.e., the threshold, at the time t and t – Δt, respectively. Thus, the amplitude threshold can be 

adapted automatically to the accumulation of odor concentration. If the odor accumulates in a certain 

area, the concentration threshold increases accordingly, and vice versa. 

Figure 3. Definition of upwind and downwind directions based on the robot orientation 

and the sensed wind directions. The solid black arrow stands for the robot orientation, and 

the green arrows represent the wind directions. (a) Upwind; (b) Downwind. 
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As mentioned in [5], an ―ATTRACT‖ communication between robots is used to hold the group 

together. The detailed rule of ―ATTRACT‖, however, was not explained. In this paper, the ATTRACT 

is conducted as follows. If the robot faces the wind direction (see Figure 3(a)), we say that the robot is 

in the upwind direction. Otherwise, the robot is in the downwind direction (see Figure 3(b)). If the 

robot is surging upwind, it can attract all the robots downwind or with no plume information. If a robot 

is attracted by several other robots, it only moves to the nearest one. 

5. Real-Robot Experiments 

Both the proposed AACO+US algorithm and the SS algorithm could work in a distributed mode. To 

facilitate the experiments process, a centralized way was used in our real-robot experiments. The 

sensed gas concentrations and airflow information were sent from each robot to a central workstation, 

and the control commands were sent from the workstation to each robot, both via wireless 

communication. 

5.1. Real-Robot Hardware Platform 

Four small olfaction robots, named MrCollie, meaning Mobile Robots for Cooperative Odor-source 

LocaLization in Indoor Environments, were used in the experiments. The robots were designed and 
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assembled by the Institute of Robotics and Autonomous Systems of Tianjin University in 2006. One of 

the MrCollie robots and its onboard sensors are illustrated in Figure 4. The robot is driven 

differentially by two wheels, one mounted on the left and the other one on the right. Two castors on the 

front and back sides are used for balance. The robot is equipped with a two-dimension ultrasonic 

anemometer (Windsonic, Gill), a gas sensor (TGS2620, Figaro), eight sonar sensors (L Series 

40LPT16, Senscomp), eight infrared sensors (GP2D15, Sharp), and a wireless communication module 

(RPC module, Radiometrix). 

Figure 4. The small mobile robot MrCollie and its onboard sensors. 

 

 

The gas sensor is placed in a closed air chamber inside the robot. A small pump and a pipe are 

connected to the chamber at the back end and front end, respectively. The gas is sucked into the 

chamber through the pipe. The measured response time and recovery time of the gas sensor in our 

robot were 0.8 s and 20 s, respectively. 

There is a unique location identifier at the top of each anemometer. An overhead charge coupled 

device (CCD) camera sent the image of each robot‘s location identifier to the workstation, and the 

position and orientation of each robot were extracted by the workstation via a simple pattern 

recognition algorithm. A traffic-rule based method was adopted to avoid robot collision.  

5.2. Gas Sensor Calibration 

The advantage of high sensitivity, long life-span and low cost makes metal oxide semiconductor 

(MOS) sensors the most widely used gas sensors in mobile robot based OSL. TGS2620, a kind of 

MOS sensor produced by Figaro Engineering Inc., was used in our real-robot OSL experiments. 

TGS2620 consists of a silicon semiconductor layer formed on an alumina substrate of a sensing chip 
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together with an integrated heater. In the presence of a detectable gas, the voltage across the heater 

causes an oxygen exchange between the volatile gas molecules and the metal coating material. 

Electrons are attracted to the loaded oxygen and result in decreases in sensor conductivity. A simple 

electrical circuit can convert the change in conductivity to an output signal which corresponds to the 

gas concentration. 

The relationship between the gas concentration and the sensor resistance is expressed as follows: 

Rs = R0(1 + a × Cgas)
–b

      (6) 

where Rs and R0 represent the sensor resistances in gas and air, respectively; Cgas 
means the gas 

concentration; a and b are constants. A signal processing circuit converts the change in resistance to 

output voltage Vout: 

Vout = V0(1 + a × Cgas)
b
     (7) 

where V0 is the output voltage when Cgas = 0. 

The calibration process is described as follows: a certain amount of liquid ethanol was injected into 

a flask, and a fan was employed to speed up the evaporation. The amount of ethanol liquid was 

calculated according to the desired concentration of the ethanol vapor and the volume of the flask. The 

vapor was sucked by an air pump into a chamber and contacted with the gas sensor therein. The sensor 

outputs were recorded after the readings got steady. The calibration device is shown in Figure 5. 

Through curve fitting, the constants a and b in Equation (7) could be obtained.  

Figure 5. The device for gas sensor calibration. A TGS2620 gas sensor was mounted 

inside the air chamber. 
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5.3. Experiment Arenas 

Multi-robot CPT experiments were conducted in two rooms, which are named Arena I and Arena II 

in our experiments. Figures 6 and 7 show the two arenas seen from overhead cameras. The dimensions 

of Arena I and Arena II are about 5.3 m  5.0 m (the detailed dimensions can be seen in Figures 1 and 8) 

and 9.6 m  6.5 m, respectively. There are two doors and two windows in Arena I and one door and 
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two windows in Arena II. The height of windows is about 1.2 m off the ground. Along the four sides of 

two arenas, there are computer desks and chairs, and the central area was left for experiments. In each 

arena, an overhead CCD video camera was used to localize the robots and record the experiment 

processes.  

Figure 6. Arena I as seen from the overhead camera. 
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A humidifier (see Figures 6 and 7) filled with liquid ethanol was used as the gas source in both 

arenas. The release rate was 25 mg/s. In Arena I, the gas source was placed in the vicinity of the upper 

left door, and the robots were initially positioned evenly along an arc. For Arena II, the gas source was 

placed at the right side, and the robots started from the left side.  

Figure 7. Arena II as seen from the overhead camera. 
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Figure 8. The average natural wind speed and direction of each anemometer over  

150 seconds in Arena I. The arrows indicate the directions of the airflow and their lengths 

indicate the speeds. Notice the large eddy in the lower left corner. 
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Figure 9. Wind measurements in Arena I by the anemometer 5. The arrows‘ directions 

indicate the directions of the airflow and their lengths indicate the speeds. (a) Polar plot 

measurements recorded by the central anemometer; (b) Wind speed histogram for the 

measurements recorded by the central anemometer. 
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Figure 9. Cont. 

 

(b) 

5.4. Indoor Airflow Field 

The natural indoor airflow field in Arena I was created by opening the two doors (with the two 

windows being closed). Before the CPT experiments, the airflow field was measured using nine  

two-dimension ultrasonic anemometers (Windsonic, Gill) and analyzed. The layout of wind sensors is 

given in Figure 8. Each anemometer was 0.4 m off the ground, the same height as the anemometers 

mounted on the robots. All measured wind speeds and directions were transmitted to a laptop through 

RS232 cables, with a sampling frequency of 2 Hz. 

Figure 10. The average natural wind speed and direction of each anemometer over 150 

seconds in Arena II. The arrows indicate the directions of the airflow and their lengths 

indicate the speeds. 
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The natural airflow field measured in Arena I is presented in Figures 8 and 9, which show that the 

natural winds were time and space variant. A large eddy was formed in the lower left corner. 

Sometimes the wind fluctuated violently and it might blow from the lower right door to the upper left 

one. Figure 9(a) shows polar plot, which is acquired by the anemometer in the center position (i.e., the 

anemometer 5). The arrows‘ directions indicate the directions of the airflow and their lengths indicate 

the speeds. The wind speed histogram is illustrated in Figure 9(b), which shows the fluctuation of wind 

speed. For ease of presentation, the measurements displayed in Figure 9 are extracted every 5 s from 

the total data. 

Arena II was ventilated by opening the two windows and the door to generate natural airflow. The 

airflow field was measured in the same way as in Arena I. Figures 10 and 11 illustrate the average 

wind speed/direction at nine locations and the real-time wind speed/direction measured by the central 

wind sensor, respectively.  

Figure 11. Wind measurements in Arena II recorded by the central anemometer. (a) Polar 

plot measurements recorded by the central anemometer. The arrows‘ directions indicate the 

directions of the airflow and their lengths indicate the speeds; (b) Wind speed histogram 

for the measurements recorded by the central anemometer. 

 

(a) 

 

(b) 
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5.5. Plume-Tracing Performance Evaluation 

Two indexes are proposed for evaluating the CPT performance. One is distance ratio, which is 

defined as the ratio of the actual average distance traveled by all the robots to the Euler distance 

between the start point and the gas source. The other index is success rate, which is defined as the 

percent of the success times out of the total trails. The time of the first robot approaching the source, 

however, has large randomness. Even multiple robots move randomly, within a period of time it is 

possible that one of the robots could approach the source. To reduce the chance of random arrival, the 

success is divided into two cases: one is that any robot approaches a small circular region centered at 

the gas source within a given time, the other is that all the robots approach the small circular region. 

The distance ratio reflects the efficiency of the algorithms, while the success rate indicates the 

robustness. 

6. Experimental Results and Discussion 

In the CPT experiments, the robots moved in a run-stop-run-stop mode (running for 5 s and 

stopping for 5 s) for both the AACO+US and the SS algorithms. The motion speed of each robot was 

set to 2.5 cm/s. Both the airflow and gas concentration were sampled five times, once per second, 

during the 5 s stop.  

6.1. Experimental Results in Arena I 

The group size of robots in Arena I ranged from two to four. For each group size, twenty trials were 

carried out for the AACO+US strategy and the SS algorithm, so totally one hundred and twenty trials 

were conducted. The AACO+US and SS algorithms were conducted alternately in order to have the 

airflow fields for both algorithms keep similar. Each trial was expected to be finished within 900 s (the 

distance traveled in 900 s by each robot was about three times the distance from the start area to the 

odor source). 

Figure 12. One of recorded CPT processes in the natural airflow field of Arena I using the 

AACO+US strategy (four robots were used). 
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Figure 12 shows the user interface and presents one of the CPT processes using the AACO+US 

strategy in the natural indoor airflow field with a group of four robots. The grids by which the robots 

passed and in which the measured concentration was higher than a threshold (0 ppm in the 

experiments) were filled with grey color, with darker color indicating higher concentration. The five 

maximal-pheromone grids were marked with solid lines. Considering the dimension of MrCollie (see 

Figure 4), the grid size was set to 20 cm  20 cm. The large dashed circle centered at the gas source 

indicated the boundary of the target area. The radius of the dashed circle was set to 60 cm, while the 

radius of the real gas source was about 10 cm. The robots started from the lower right corner and the 

trajectories were recorded by the overhead CCD camera. The four robots were expressed as four 

circles filled in different colors with a short line indicating the attitude angles. In a systematic way, the 

parameters C, D, , and β in (1) were set to 1.50, 500, 5 and 5, respectively. 

Figure 13. One of recorded CPT processes in the natural airflow field of Arena I using the 

SS algorithm (four robots were used). 

 

One of the CPT processes using the SS algorithm is shown in Figure 13. The thinner part of the 

curves suggests no odor packet was encountered in the latest detection, while the bolder part suggests 

odor packet was detected. On the basis of several optimization trials, the SpiralGap2 and StepSize 

were set to 35.7 cm and 50.0 cm, respectively. 

For ease of presentation, we define a parameter DRn, which indicates the distance ratio when n 

robots approach the immediate vicinity of the gas source (i.e., within the 60-cm-radius circle around 

the source) simultaneously for the first time. n is smaller or equal to the group size of robots. We also 

use ACO-N to indicate the trials carried out by N robots using the AACO+US algorithm, and SS-N 

using the SS algorithm.  

Figures 14–16 show comparison of the average distance ratio for real-robot trials using the 

AACO+US and the SS algorithms in different respects. To make the plots easy to see, the trend lines 

are horizontally staggered a little. All error bars in the two plots indicate the intervals with 95% 

confidence level. 

Results of DRn 
for real-robot experiments in Arena I using the AACO+US algorithm and the SS 

strategy are illustrated in Figures 14(a,b), respectively. For each n, DRn decreases with an increase in 

the group size. 
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Figure 14. DRn for real-robot experiments using the AACO+US and the SS algorithms in 

Arena I. (a) AACO+US algorithm; (b) SS strategy. 

 

(a) 

 

(b) 

Figure 15. The mean value and confidence interval of distance ratio on condition that the 

first robot approached the gas source. 
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Figure 16. The mean value and confidence interval of distance ratio on condition that the 

whole robots colony approached the gas source. 

 

The distance ratio when the first robot approached the gas source is illustrated in Figure 15. For 

both CPT algorithms, the distance ratio and the corresponding confidence interval decrease with an 

increase in the group size, that is, multi-robot search improves the efficiency of plume tracing. 

Furthermore, the AACO+US travels less distance than the SS. 

To reduce the randomness, the distance ratio when the whole robot colony approached the gas 

source was also investigated. As shown in Figure 16, it gets more difficult for all the robots to 

converge to the target area as the group size increases. The AACO+US algorithm, however, still 

performs better than the SS. 

Figure 17. The success rate for the CPT task in Arena I: (a) Success rate on condition that 

the first robot approached the source; (b) Success rate on condition that all the robots 

approached the odor source. 

  
(a)       (b) 

The success rates for different experimental conditions are presented in Figure 17. Both algorithms 

have high success rates for the CPT task. The success rates increase with an increase in the group size 

on condition that the first robot approached the odor source but decrease in general on condition that 

the whole robots colony approached the odor source. The AACO+US shows a little higher success 
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rates than the SS algorithm on the first condition. On the second condition, however, the AACO+US 

has the highest success rate when the group size is 3, and has lower success rate than the SS as the 

group size is 2. That might be due to the relatively larger standard deviation of the search time. 

6.2. Experimental Results in Arena II 

The relation between the number of robots and the CPT performance has been demonstrated in 

Arena I, in this section we only want to show the performances of both CPT algorithms in different 

indoor environments. To shorten the experimental time, only three robots were employed in the CPT 

trials in Arena II. Twenty trials were carried out for each of the AACO+US and SS algorithms. The 

parameters were set the same as those in Arena I except that the StepSize for SS was set as 91 cm. The 

search time for Arena II was limited to 1,500 s. 

Figure 18. One of recorded CPT processes in the natural airflow field of Arena II using the 

AACO+US strategy (three robots were used). 

 

Figure 19. DRn 
for real-robot experiments using the AACO+US and the SS algorithms in 

Arena II. 

 

Figure 18 shows one of the CPT processes conducted in Arena II by adopting the AACO+US 

algorithm. The robots started from the left side of the search area, and converged to the gas source 
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finally. By analyzing the trajectory of the blue robot, it can be found that after entering the small 

circular region of the gas source, the blue robot detected relatively higher concentration and went on 

surging upwind. Gradually, however, it lost contact with the plume. Then, the ACO part of the 

AACO+US algorithm helped it to run back to the high-pheromone region.  

Results of DRn for real-robot experiments in Arena II using the AACO+US algorithm and the SS 

strategy are illustrated in Figure 19, from which it can be seen that the AACO+US has lower distance 

ratio than the SS. By using AACO+US algorithm, the success rate is 100% on condition that the first 

robot approached the gas source within the given time (1,500 s); on condition that all the three robots 

converged to the gas source, the success rate is 70% (14 successes out of 20 trials). For the SS 

algorithm, the success rates on condition that the first robot approached and that all the three robots 

approached were 90% and 65%, respectively. 

6.3. Discussion 

The AACO+US algorithm and the SS strategy employ different modes of cooperation among 

robots. The AACO+US algorithm works by division of labor. The robots are dynamically divided into 

two subgroups: one subgroup carries out the adapted ACO algorithm, and the other one surges upwind. 

The robots communicate indirectly via pheromone. In contrast, each robot runs a complete CPT 

algorithm and can accomplish the task independently in the SS strategy. Only simple ―ATTRACT‖ 

communication between robots is used to increase efficiency. Based on the analysis and the 

observation during the trials, it is found that the AACO+US algorithm has better cooperation 

mechanism than the SS strategy does. That might be one of the reasons why the AACO+US shows 

higher efficiency than the SS strategy. 

Wind is a key factor for the successful tracing of the gas plume in the two algorithms. Because the 

gas is released from the source and dispersed downwind, moving upwind upon odor-packet detection 

is an intuitive action for the robot to approach the source. As the airflow fluctuates violently both in 

amplitude and direction, the CPT performance becomes worse significantly owing to the upwind-

search mechanism of the both algorithms. The search trajectories get more meandering.  

The SS strategy embodies the spiral and the surge behaviors. The outward spiral pattern behavior, 

which is designed to find the lost odor packet via local search, cannot guarantee that the robot moves 

toward the gas source. The surge behavior, which makes the robots search upwind, probably searches 

straight toward the source. Nevertheless, the surge direction is determined by the instantaneous wind 

information. Therefore, it might lead the robot opposite to the gas source due to the frequent shifting 

wind direction. As for the AACO+US algorithm, it divides the robots into two subgroups according to 

the sampled concentration. The subgroup implementing the adapted ACO algorithm exploits the 

historical and colonial information to go back to the previous high-pheromone regions, where, 

however, is usually farther from the gas source. The upwind-surge subgroup serves the similar 

function as the surge behavior of the SS does, and shares the same weak points. Therefore, both the 

AACO+US and the SS strategies require relatively steady airflow and perform better in such wind 

field. Weak airflow combined with rapidly shifting wind directions is a big challenge to both of them. 

On the basis of the observations of the experiments, it is found that the frequent obstacle-avoidance 

behavior reduces the efficiency of the search in the relatively small arena, especially as the group size 
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increases. More robots may further cause worse performance. To speed up the search process, more 

efficient obstacle avoidance or path planning strategy is preferred. Another way to raise efficiency 

depends on the inner mechanism of the coordination algorithm, that is, the algorithm itself does not 

cause many collisions among robots. Reassignment of the goal points at each iteration to minimize the 

total distance [29] or the maximal time could also work, whereas it has two limitations. Firstly, the gas 

sensors should read the same value in the same condition. Secondly, this approach depends on the 

characteristic of the algorithm used. For example, the algorithm should have no special requirement on 

the path to the goal points. The gas sensors‘ slow response/recovery and the resulting run-stop-run-stop 

moving mode at a low velocity add extra search time in practice. 

7. Simulation Results in Large-Scale Plume Environments 

It is quite challenging for multiple robots to trace meandering plumes in outdoor large-scale airflow 

environments. CPT experiments in outdoor environments using multiple real robots are hard to carry 

out owing to the realistic difficulties. For example, it is not easy to exactly localize multiple small 

mobile robots in outdoor environments. In addition, by using the commonly used gas sensors for CPT 

research, the gas concentration cannot be reliably measured when the robots are located far away from 

the source. In this research, the large-scale advection–diffusion simulated plume environment created 

by Farrell et al. [18] was used to verify if the proposed AACO+US CPT algorithm could cope with the 

plume meander issue. 

7.1. Basic Simulation Assumptions 

The size of the robot is negligible compared with the large scale of the search space (100 m  100 m). 

It is assumed each robot is equipped with one gas sensor and one wind sensor. The gas sensor has the 

same response time and recovery time as that in real-robot experiments. The wind sensor measures 

wind speeds from 0 to 10 m/s and wind directions from 0 to 359. Zero-mean Gaussian noise is added 

to the output of the wind sensor, and the variances of the wind speed and direction are set as 0.05 m/s 

and 1, respectively. The sampling frequency of the gas concentration and wind sensors is 10 Hz. Each 

robot knows its current location and moves at a speed of 0.5 m/s. Gas concentration and wind 

information data recorded by the robots are sent to a workstation via wireless communication. The 

motion mode of each robot is planned by the workstation. 

7.2. The Gas Sensor Model 

To simulate the real response and recovery characteristics of metal oxide semiconductor sensors, a 

second-order sensor model is built here, with the response and recovery phases of the sensors both 

regarded as second-order inertia links. The two phases have different time constants, and therefore 

their design parameters are different. The left block in Figure 20(a) represents the switch module for 

the two phases, and the right two blocks represent inertia links of the two phases. When the output is 

greater than the input, the recovery phase is chosen; otherwise, the response phase is chosen. Gaussian 

noise added in the sensor response and recovery phases. In our simulation, the response and recovery 

time are set to 0.8 s and 20 s, respectively. The response and recovery phases simulated by the sensor 
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model are shown in Figure 20(b). As a step signal is given to the input terminal of the model, the 

output increases gradually over time and finally keep the same as the input. This is the response phase. 

When the step signal disappears, the output decreases slowly with the time, i.e., the recovery phase. 

Figure 20. (a) The gas sensor model. The second-order transfer functions with different 

time constants describe the response and recovery phases. The left block is a switch 

comparing the input and the feedback of the output to decide which phase to choose;  

(b) The response/recovery phase versus time. 
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7.3. Simulation Results 

The size of the simulation environment was 100 m  100 m. Each square grid of the environment 

was 0.5 m  0.5 m. The rate of puff release by the source was 5 puffs/s. The search algorithm repeated 

once per second. The plume-model update period was 0.01 s. The wind speed range was between 0.5 

and 2.5 m/s. The gas source was located at (20, 0) and the robots started at (90, –30), where the 

coordinate unit was meter. The AACO+US CPT algorithm was demonstrated for three different plume 

environments, which we referred to as slightly wandering, medium-wandering and greatly wandering 

plumes. The extents of the three plumes in the vertical direction were 20, 60 and 100 m (measured at x 

= 100 m), respectively.  
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Figure 21. The CPT scene at time t = 420 s for the medium-wandering plume environment 

(five robots are used). 
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Figure 21 shows the instantaneous CPT scene at time t = 420 s for the medium-wandering plume 

environment using five robots. Each red arrow indicates the direction of the motion of the robot. The 

blue arrows represent the wind, with the lengths of the arrows denoting wind strengths and the 

directions indicating wind directions. The five red points represent the maximal-pheromone-

concentration grids at the current time. 

Figure 22. The mean and confidence interval of the distance ratio for different group size 

in the slightly wandering, medium-wandering and greatly wandering plume environments. 

 

For each group size, twenty five trials were run for each of the slightly wandering, medium-wandering 

and greatly wandering plume environments. The statistical results are illustrated in Figure 22, in which 

the abscissa is the number of robots and the vertical ordinate expresses the distance ratio with a 95% 

confidence level. The symbols ACO-S, ACO-M and ACO-L indicate search results using the 

AACO+US method for the slightly wandering, medium-wandering and greatly wandering plume 

environments, respectively. The robots converge near the gas source with a 100% success rate on the 

condition that at least one robot approaching the odor source.  
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From the simulation results it can be seen that with an increase in the number of robots, both the 

distance ratio and confidence interval decrease. When there are relatively few robots, the robots travel 

longer to find the source in the greatly wandering plume environment. Using more robots, the search 

times for the three plume environments tend to be the same. Therefore, the AACO+US method has 

good robustness regarding different plume environments. 

8. Conclusions 

The adapted ACO combined with upwind surge strategy for chemical plume tracing proposed in 

this paper is investigated and compared with the spiral surge algorithm via multiple real robots 

experiments in two indoor natural airflow environments. The experimental results demonstrate that the 

efficiency and robustness of the proposed CPT algorithm are better than those of the SS algorithm. The 

results of simulations for large-scale advection-diffusion plume environments validate the feasibility of 

the proposed CPT algorithm in meandering gas plumes. In both the real-robot experiments and 

computer simulations, the local optimum phenomenon of the traditional ACO did not occur in the 

proposed AACO+US algorithm. 

Both the AACO+US algorithm and the SS strategy require a relatively steady airflow. The frequently 

changed wind direction makes it more difficult for the robots to trace the gas plume. With an increase 

in the fluctuation of wind direction, the chemical plume tracing performance becomes worse. 

In addition, the experiments also demonstrate that the CPT performance could be improved with an 

increase in the number of the robots. The proper cooperation among the robots helps increase the 

efficiency. Meanwhile, however, the performance loss caused by the collision-avoidance action among 

the robots in the confined search area also becomes significant as the group size increases. Even worse, 

it might be greater than the performance gain from cooperation, that is, more robots might not promise 

better performance. Therefore, reducing the internal inference of the robot swarms, e.g., collision 

avoidance, is a promising way of better performance. 

How to utilize the frequently fluctuating wind information is a challenging and significant issue 

worthy of further study. It is one of the key factors to improve the performance of the AACO+US 

algorithm. We will also try to extend the AACO+US algorithm for multiple gas source localization in 

the environments with obstacles in our future work. 
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