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Abstract: The present art of drug discovery and design of new drugs is based on suicidal 

irreversible inhibitors. Covalent inhibition is the strategy that is used to achieve irreversible 

inhibition. Irreversible inhibitors interact with their targets in a time-dependent fashion, and 

the reaction proceeds to completion rather than to equilibrium. Covalent inhibitors possessed 

some significant advantages over non-covalent inhibitors such as covalent warheads can 

target rare, non-conserved residue of a particular target protein and thus led to development 

of highly selective inhibitors, covalent inhibitors can be effective in targeting proteins with 

shallow binding cleavage which will led to development of novel inhibitors with increased 

potency than non-covalent inhibitors. Several computational approaches have been 

developed to simulate covalent interactions; however, this is still a challenging area to 

explore. Covalent molecular docking has been recently implemented in the computer-aided 

drug design workflows to describe covalent interactions between inhibitors and biological 

targets. In this review we highlight: (i) covalent interactions in biomolecular systems;  

(ii) the mathematical framework of covalent molecular docking; (iii) implementation of 

covalent docking protocol in drug design workflows; (iv) applications covalent docking: 

case studies and (v) shortcomings and future perspectives of covalent docking. To the best 

of our knowledge; this review is the first account that highlights different aspects of covalent 

docking with its merits and pitfalls. We believe that the method and applications highlighted 

in this study will help future efforts towards the design of irreversible inhibitors. 
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1. Introduction 

Computational and molecular modeling tools have become a close counterpart to experiment in the 

understanding of molecular aspects of biological systems [1–4]. The computational approaches like 

homology modeling, molecular docking and quantitative structure activity relationships (QSAR) and 

molecular dynamics (MD) are widely employed to discover the novel hits for various therapeutic targets. 

In a recent report, we have highlighted the interface between computational approaches and experiment 

as crucial tools in the drug discovery machinery [5]. With the prominent rising interest towards the 

design of covalent inhibitors, in this review we cover different aspects of covalent molecular docking as 

a tool that can be applied to understand covalent interactions between inhibitors and their target proteins. 

2. Covalent Interactions in Biological Systems 

In recent literature, there has been a growing interest in the design of drugs forming a covalent bond 

with the target protein, with nearly 30% of the marketed drugs targeting enzymes known to act by 

covalent inhibition (Table 1) [6,7]. These types of inhibitors derive their activity from both non-covalent 

interactions and the formation of the covalent bond between the inhibitor and the target protein [8–13]. 

The covalent drugs typically have much stronger binding affinity, with the targets because of the 

covalent linkage formed between the ligand (electrophilic) and the target (nucleophilic), hence stronger 

potency while maintaining a pharmaceutically favoured small molecule size. Covalent interaction with 

the target protein has the benefit of prolonged duration of the biological effect. However, these types of 

inhibitors tend to be associated with toxicity because of the difficulty of disassociation if off-target 

binding happens. Therefore, highly specified selectivity profiles of the covalent drugs are required. It is 

reported that approximately, 33% of the covalent drugs in the market are anti-infectives (most notably 

the β-lactam class of antibiotics), 20% treat cancer, 15% treat gastrointestinal disorders, and ~15% are 

used to treat central nervous system and cardiovascular indications [14]. The earliest example of a 

covalent drug is aspirin, which was first marketed over a century ago; aspirin covalently modifies 

cyclooxygenase by inducing the acetylation of a serine residue that is situated in the active site  

(Figure 1A) [15–18]. β-lactam antibiotics are other examples of a covalent drug which acylate the active 

site serine of penicillin-binding proteins (PBPs) and kill the bacteria by inhibiting the final step of  

cell wall biosynthesis. Tetrahydrolipstatin is another class of covalent inhibitors that inhibits fat 

absorption [19–22]. The reaction occurs between the β-lactone and the serine nucleophiles of the lipases 

to form stable ester bonds. Rivastigmine is a cholinergic agent for the treatment of mild to moderate 

dementia of the Alzheimer’s type (Figure 1C) [23]. It is reported that the catalytic serine nucleophile 

(Ser-200) is carbamylated, with the phenol-leaving group, which is retained in the active site. Neratinib 

(HKI-272) (Figure 1B, D) is a tyrosine kinase inhibitor under investigation for the treatment of breast 

cancer and other solid tumors [24–26]. It contains a 4-(dimethylamino) crotonamide Michael acceptor 

that forms a covalent bond with a conserved cysteine residue, Cys-773 in EGFR and Cys-805 in HER-2. 
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Table 1. List of FDA-approved drugs that form covalent interactions with targets. 

Drug Biological Target Therapeutic Domain 

Amoxicillin PBP Anti-infective 
Cefaclor/Ceclor PBP Anti-infective 

Ceftriaxone/Rocephin PBP Anti-infective 
Cefuroxime axetil/ceftin PBP Anti-infective 

Cephalexin/keflex PBP Anti-infective 
D-cycloserine/seromycin Alanine racemase Anti-infective 

Fosfomycin/monurol 
UDP-N-acetylglucosamine-3-enolpyruvyl- 

transferase 
Anti-infective 

Isoniazid Enol-acyl carrier protein reductase Anti-infective 
Meropenem PBP Anti-infective 

Omnicef PBP Anti-infective 
Penicillin V PBP Anti-infective 
Azacytidine Methyltranferase Cancer 
Bortezomib Protesome Cancer 

Decitabine/azadC Methyltranferase Cancer 
Dutasteride/avodart 5-α-Reductase Cancer 

Exemestane/Aromasin Aromatase Cardio-vascular 
Floxuridine Thymidylate synthase Cardio-vascular 

Gemcitabine/gemzar Ribonucleoside reductatase Cardio-vascular 
Proscar/finasteride 5-α-Reductase Cardio-vascular 

Rasagiline MAO-B Parkinson’s disease 
Selegiline MAO-B Parkinson’s disease 
Warfarin Vitamin K reductase Cardio-vascular 

Vigabatrin/sabril GABA-Aminotransferase Anti-epileptic 
Nexium/esomeprazole H+/K+ ATPase Gastro-intestinal 

Orlistat/ Lipase Gastro-intestinal 
Prevacid/lansoprazole H+/K+ATPase Gastro- intestinal 
Prilosec/omeprazole H+/K+ATPase Gastro-intestinal 

Protonix/pantoprazole H+/K+ATPase Gastro-intestinal 
Aciphex/rabeprazol H+/K+ATPase Gastro-intestinal 

Aspirin Cyclooxygenase Inflammation 
Disulfiram/antabuse Aldehyde dehydrogenase Chronic alcoholism 

Eflornithine Ornithine decarboxylase Hirsutism 
Propylthiouracil/procasil Thyroxine-5-deiodinase Hyperthyroidism 

Saxagliptin/Onglyza DPP-IV Anti-diabetic drug 
Vildagliptin/Eugreas DPP-IV Anti-diabetic drug 

Phenoxy-benzamine hydrochloride α-Adrenoceptor Cardio-vascular 
mercaptopurine/purinthol Purine-nucleotide synthesis Cancer 

Carbidopa/lodosyn DOPA decarboxylase CNS 
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Figure 1. Examples of covalent inhibitors including their protein target(s) with active-site 

nucleophile: (A) aspirin; (B) neratinib; (C) rivastigmine; (D) Crystal structure of EGFR 

kinase domain in complex with neratinib, showing the covalent bond between the receptor 

and the ligand [27]. 

3. Molecular Docking: Non-Covalent and Covalent Docking 

Molecular docking is a computational procedure performed on structure-based rational drug design 

to identify correct conformations of small molecule ligands and also to estimate the strength of the 

protein-ligand interaction, usually one receptor and one ligand [28–30]. The most common docking 

programs and software include Autodock [31], Autodock Vina [32], GOLD [33] and FlexX [34]. Yet, 

these and many other methods similar to them mainly focus on the docking between the two molecules 

through non-covalent interactions (van der Waals interaction, the electrostatics interaction and hydrogen 

bonding), or using other empirical or knowledge-based scoring functions to characterize these  

non-covalent interactions [34]. However, not all drugs bind non-covalently to the active site; there are 

other categories of drugs, namely the covalent drugs [14]. 

Docking of ligands that are bound to a receptor through non-covalent interactions is relatively 

conventional nowadays. The majority of docking methods development research has been focused on 

the effective prediction of the binding modes of non-covalent inhibitors [35–40]. However, docking 

ligands that bind covalently to the receptor has been complicated, because of the reaction between the 

ligand and the receptor that needs to be taken into consideration [15]. 
  

CH3
O

O OH

O

O

H

R

R=Ser-CoX

O

N

H3C

H3C

NH

N

N

HN O N

Cl

O

H3C

H
S

R

R=Cys-EGFR/HER2

O

O

N
H3C CH3

H3C
N

CH3

CH3

H3C
O

R

R=Ser-AChE

A 
B

C D



Molecules 2015, 20 1988 

 

 

3.1. Covalent Docking: Theoretical Background 

Different routines have been developed to perform covalent docking of the inhibitors to the target 

proteins. However, most covalent docking softwares are only successful in predicting the binding energy 

between a nucleophilic receptor and electrophilic ligand (Figure 2). 

 

Figure 2. General scheme decribing the workflow of covalent docking in drug discovery. 

One common routine is the “link atom” approach. In this approach the program defines a “link atom” 

both in the ligand and in the protein. This forces the ligand link atom to occupy the same steric volume 

as the protein link atom to mimic the covalent binding event. This approach is implemented in molecular 

docking software called Gold [41]. Autodock [31], another widely used molecular docking software, 

applies two methods to covalently dock inhibitors to receptor: a “grid-based method” and a 

“modification of the flexible side chain” approach. In flexible side chain, the covalent bound ligand and 

the protein attachment are treated as a single flexible side chain and sampled as part of the receptor. The 

grid-based method, utilizes a Gaussian biasing function with is centered on the protein attachment atom 

and also the grid-based energy to bias the covalent bonding ligand pose. However, the application of a 

covalent docking feature requires manual definition of the reactive atoms and reaction type as well as 

manual preparation of the ligand and protein structure files, leading to difficulties in up-scaling the 

process for screening purposes. Another program called CovalentDock has addressed this problem by 

automatic preparation of ligand files but is limited in reactions [42]. In covalent binding the ligand binds 

first through non-covalently interaction with the protein in a pose that benefits the reaction, and then 

followed by the reaction between the elements to form a covalent. Thus, in CovalentDock the 

interactions between the ligand and its receptor are modelled the same as in conventional molecular 

dockings through non-covalent interactions with additional energy contribution from covalent linkage 

formation is estimated by a newly formulated model (Equation (1)):  
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(1)

where, rm is the maximum bond length without disassociation (which is defined as the distance when  

E = 0 where r > r0). α is a parameter controlling the well width, r is the bond length, and r0 is equilibrium 

bond length ΔSest is the conformation entropy estimated by Gaussian, C is a correcting empirical 

constant. In generally the standard enthalpy change (Equation (2)) only provides estimation on the 

perfect bond length, of sometime in molecular docking, that length might not be perfectly optimal. 

Ouyang et al., formulated the Morse potential with parameters fitting to simulated result from Gaussian. 

The enthalpy change brought by covalent bond formation on sub-optimal bond length. The enthalpy 

change of a given covalent bonding pair given by the Morse potential is show in Equation (3): 

STHG Δ−Δ=Δ  (2)

ΔH = D e−2α r−r0( ) − 2e−α (r−r0 )( )  (3)

where, D is the dissociation energy, α is a parameter controlling the well width, r is the bond length, and 

r0 is equilibrium bond length. The parameterization of this equation is subjected to the specified type of 

covalent bonding pairs. This new approach was successfully tested with the pose prediction of  

76 covalently bound complexes and a virtual screening study [42]. 

3.2. Implementation of Covalent Docking in Drug Discovery Workflows 

Figure 3 highlights the different applications of covalent docking that could be implemented within 

drug discovery workflows. In the following section (Section 4) we provide an up-to-date literature 

survey on the different computer-aided drug design approaches that utilize covalent molecular docking 

as a tool to describe covalent enzyme inhibition. 

4. Case Studies: Applications of Covalent Docking in Drug Design 

Covalent ligands gained significant less attention in the traditional process of drug discovery due its 

off-target reactivity as well as toxicity profile. However the discovery of telaprevir and boceprevir, two 

FDA-approved covalent inhibitors targeting HCV, re-emphasized the focus on covalent inhibitors. 

Covalent inhibitors possessed some unique advantages e.g.,: (i) covalent warheads can target rare,  

non-conserved residue of a particular target protein and thus led to development of highly selective 

inhibitors; (ii) covalent inhibitors can be effective in targeting proteins with shallow binding cleavage 

which will led to development of novel inhibitors with increased potency than non-covalent inhibitors [43]. 

Katritch et al., applied covalent docking in conjunction with homology modeling to explore a detailed 

structural model of the ubiquitin-like poxvirus proteinase (ULP) I7L substrate-binding site (S2–S2'). The 

3D model of the I7L ligand-binding site was then utilized to perform covalent docking and virtual 

screening of a comprehensive library of about 230,000 available ketone and aldehyde compounds to 

search for novel smallpox antiviral hits. Out of 456 predicted ligands, 97 inhibitors of I7L proteinase 

activity were confirmed to be active in biochemical assays (20% overall hit rate) [44]. 
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Figure 3. Implementation of covalent docking within computer-aided drug design 

approaches. In case of covalent docking target protein explored the interaction between 

nucleophilic target protein and electrophilic ligand. 

In 2009, Lawandi et al., designed a class of covalent inhibitors from bicyclic scaffolds to study the 

optimal shape required for these small molecules to target propyl oligopeptidases (POP) to treat human 

brain disorders [45]. These structures bear nitrile functional groups that we previously predicted to be 

able to bind covalently to the catalytic serine of the enzyme. From the covalent docking study two 

compounds (Figure 4A,B) were selected for synthesis and subjected for biological assay. One compound 

was identified as a potent, highly selective, and cell-permeant POP inhibitor. Furthermore, the docking 

studies (using the FITTED docking engine and defaults parameters) also identified the configuration of 

the stereo-genic center at the ring junction as a limiting factor for optimal activity of which this can be 

used to develop second generation of potent inhibitors [45]. 

20S proteasome have an important role in the regulation of several important cellular processes, 

therefore is has been an attractive target in the field of anti-tumor research. Peptide aldehydes have been 

previously reported to inhibit the 20S proteasome activity by covalently binding to the active site of the 

β subunits. 

Zhang et al., reported covalent docking (using GOLD version 4.0) in conjunction with molecular 

dynamics (MD) simulation (Amber Molecular Dynamics Package version 8.0) to explore the binding 

mode of peptide aldehyde inhibitors as anti-tumor drugs (Figure 4C,D). Form the covalently docking 
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results, two conformations with the highest binding affinity (lowest docking energy) were selected 

subjected to molecular dynamics simulations. The binding mode analysis revealed that a space an 

aromatic group with a short linker at the position 4 site of the peptide aldehyde inhibitor (Figure 4C) 

would form favorable hydrophobic contacts with the neighboring subunit. A bulky substituent at the P2 

position would also increase the binding stability by reducing water accessibility of the covalent bond. 

This study contributed to the understanding of the mechanism and structure-activity relationship of the 

peptide aldehyde inhibitors and may provide useful information for rational drug design [46]. 

 

Figure 4. Covalent inhibitors, (A,B) bicyclic scaffolds; (C) MG132; (D) MG101;  

(E) NAC; (F) NMC; (G) GSH; (H,I) dipeptidyl boronic acid proteasome inhibitors. 

Another study was conducted by Wang, et al., in which the authors described the application of 

covalent and 3D-QSAR Studies to explore the intermolecular interactions of isatin sulfonamide 

analogues as caspase-3 inhibitors. A series of 59 isatin sulfonamide analogues were docked into the 

binding site of the human caspase-3. The docking study provided an insight in the binding mode of the 
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inhibitors. Furthermore, the use of a 3D-QSAR approach complements the docking analysis by 

providing a “custom” scoring function for the particular protein studied capable of predicting 

bioactivities for ligands similar to those found in the training sets. The study showed that structure-based 

design methods (such as docking) can cultivate the development of reliable QSAR models [47]. 

Recently, Juhl et al., applied substrate-imprinted docking, a technique that combines covalent 

docking, geometry optimization and geometric filter criteria to identify productive substrate poses, to 

model: (i) enantioselectivity of Candida antarctica lipase B and a W104A mutant; (ii) enantioselectivity 

and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase; and (iii) substrate 

specificity of an acetyl- and a butyrylcholine esterase. The experimentally observed differences in 

selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was 

robust toward small differences in initial structures (different crystallization conditions or a co-crystallized 

ligand), although large displacements of catalytic residues often resulted in substrate poses that did not 

pass the geometric filter criteria [48]. 

In 2010, Chernorizov et al., reported an in silico screening study in order to identify a series of cysteine 

and glutathione derivatives as potential inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

This is a glycolytic enzyme reported to be directly involved in the apoptotic death of neurons in 

Parkinson’s disease. The compounds were theoretically capable of forming a disulphide bond with 

amino acid residue Cys14 (Figure 4E–G). Three compounds were discovered through covalent docking 

that showed high affinity to the NAD binding. The inhibitory effects of these compounds were tested on 

GAPDH from rabbit muscles using isothermal calorimetry and kinetic methods. From the biological 

assay two compounds that inhibited GAPDH. Cys149 is an important residue for interacting with Siah1. 

Therefore, the compounds were assumed to inhibit the formation of the proapoptotic complex  

GAPDH–Siah1 and therefore have potential effect against Parkinson’s disease [49]. 

Zhu et al., synthesized and modelled a series of novel dipeptidyl boronic acid proteasome inhibitors 

composed of β-amino acids. Docking results indicated that inhibitors termed “4q” and “4b” (Figure 4H,I) 

nearly interacted with 20S proteasome in a similar way as bortezomib. This indicated that they adopted 

a similar mode to inhibit the 20S proteasome as bortezomib [50]. 

In 2011, Ma et al., synthesized and covalently docked a new series of peptide aldehyde derivatives, 

which had a bulky P3 moiety aiming to increase the hydrophobic interactions (Figure 5A). Covalent 

docking was used to simulate the binding of the peptide aldehyde compounds with 20S, and the docking 

mode is similar to that of the observed crystal complex and that the P3-postion substitutes are crucial for 

inhibitor potency. The suggested binding mode provides a potential way to design more potent inhibitors 

of the 20S proteasome [51]. 

In 2012, Roy et al., reported the synthesis and pharmacological evaluation of a novel series of 16 

carbamates. Among the 16 compounds, only three compounds (Figure 5B–D) exhibited promising  

in vitro AChE inhibitory activities comparable to the existing drug rivastigmine. Furthermore, the 

AChE–carbamate Michaelis complexes of these potent compounds including rivastigmine and 

ganstigmine were modeled by means of covalent docking and important structural factors governing the 

complex stability observed. Analyses of docking results revealed that rivastigmine and ganstigmine  

had a distinct orientation with respect to the active site architecture of TcAChE enzyme, even though 

they shared the same binding site. The interaction patterns of the two new potent carbamates  

(Figure 5B,D) were very similar to that of ganstigmine [52].  
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Figure 5. Covalent inhibitors: (A) proteasome inhibitor, (R = substituted groups and  

P = substituted amino acids); (B–D) carbamate derivatives; (E) CP243522. 

In 2013, Schröder et al. presented the implementation of a docking-based virtual screening workflow 

for the retrieval of covalent binders, human cathepsin K was utilized as a test case. A set of 44 candidate 

compounds with unknown activity on cathepsin K selected for biological. The most potent inhibitor,  

4-(N-phenylanilino)-6-pyrrolidin-1-yl-1, 3, 5-triazine-2-carbonitrile (CP243522) (Figure 5E), showed a 

Ki of 21nM and was confirmed to have a covalent reversible mechanism of inhibition [53]. 

In 2014, Blake et al., reported the application of a unique hybrid ligand/structure-based virtual 

screening using covalent docking to search for irreversible protein splicing inhibitors as potential  

anti-TB drugs. The method was validated by means of MD simulation to ensure that docked complexes 

are stable and there were no possible docking artifacts [54]. Also in 2014, Dong et al., showed that 

covalent docking can be a useful tool for substrate discovery, they investigated the accuracy of docking 

poses and substrate discovery in the GST superfamily, by docking 6738 potential ligands from the 

KEGG and MetaCyc compound libraries into 14 representative GST enzymes with known structures 

and substrates [55]. 
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5. Software and Web Servers for Covalent Docking 

To address the challenges of covalent docking, several popular non-covalent docking software’s 

implemented covalent docking protocols to understand covalent interaction between ligand and receptor. 

Besides standalone docking software, several research groups implemented covalent docking capability 

on cloud to perform covalent docking using web servers (Table 2). Implementation of covalent docking 

gets a huge boost with incorporation of covalent docking code in the widely used non-covalent docking 

server DOCK. Recent implementation of web based large scale virtual screening (CovalentDock Cloud) 

with covalent docking capability is a huge boost forward to develop potent covalent inhibitors targeting 

a variety of diseases using structure based drug design approach [56]. 

Table 2. List of the most popular software’s and websites utilized for covalent docking. 

Standalone Software Webservers 

CovalentDock [42] CovalentDock Cloud [42] http://docking.sce.ntu.edu.sg/ 
Gold [41] Dockovalent (Covalent Docking Server) [57] http://covalent.docking.org/ 

CovDock-VS [58]  DockingServer [59] http://www.dockingserver.com/web/ 
Autodock [60]  

Glide [61]  
CovDock [62]  

6. Covalent Docking: Pitfalls and Future Prospectives 

In the recent literature there has been a resurgence of covalent drugs, which has led to increasing 

interest in computational modeling methods such as covalent docking [14]. A major problem of covalent 

inhibitors is their off-target reactivity due to the presence of electrophilic reactive groups. To neutralize 

this safety concern the off-target reactivity can be minimized by developing inhibitors with a balance of 

covalent and non-covalent interactions which will led to a similar binding specificity comparable to the 

optimized non-covalent inhibitors. However covalent docking has inherited problems similar to those 

faced by non-covalent docking such as poor scoring functions, with entropy, speed and accuracy leading 

the list of problems. For example, two of the most popular molecular docking packages, Autodock [60] 

and GOLD [41], do support covalent docking feature, but they have a major restrictions in their 

functionality, accuracy, and usefulness. In addition the lack of automation in setting up the experiment 

has also hampered the use of covalent docking since the preparation steps for covalent docking requires 

much effort. CovalentDock [42] and CovDock [62] have addressed this problem by automatic 

preparation of ligand files however this is limited in reaction types and protein rigidity [42]. 

CovalentDock currently outperforms the default covalent docking method found in Autodock and 

GOLD in terms of better structural agreement of the results compared to the native structures in PDB, 

as well in virtual screening test to retrieve the true active controls from a large library of decoys. Even 

though CovalentDock produces good accuracy in binding mode prediction and has automatic detection 

of reactive atoms using SMARTS patterns, it does not facilitate structure-based virtual screening (SBVS) 

due to calculation length. However, Warshaviak et al., has addressed this issue by the development of 

CovDock-VS which has shown to be a straightforward and efficient method that can be applied 

successfully in screening campaigns for covalent inhibitors [58]. However there is a need to develop a 
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better tuning of the energy estimation model as more knowledge of the structure and binding energy for 

covalent binding becomes available. Further research is needed to include the side-chain flexibility into 

CovalentDock-VS especially the flexibility on covalent-bond-forming residues, which is expected to 

enhance the performance of covalent docking [58]. 

Protein flexibility is also an issue for covalent docking even though; there have been numerous 

developments towards it. Abagyan and Totrov developed a 4D-docking protocol for Internal Coordinate 

Mechanics (ICM), where the receptor conformation is the fourth dimension [63–65]. In this protocol, 

multiple grids represent multiple receptor conformations and each is represented as a variable in the 

global optimization. This approach presented an increase in accuracy with no loss in effectiveness 

compared to single grid methods. AutoDock 4 fully models the flexibility of selected portions of the 

protein [31]. The side chains that are selected by the user are separated from the protein and treated 

explicitly during the simulation, allowing rotation around torsional degrees of freedom. The issues 

related to receptor flexibility have been extensively reviewed in literature [28,66,67]. 

Therefore, protein flexibility could be one of the major future directions in protein-ligand docking 

(both covalent and non-covalent) to improve this obstacle. They have not been much research conducted 

towards the field of covalent docking therefore; this leaves room for a breakthrough which more likely 

to come from better scientific understanding of protein–ligand interplay translated into better scoring. 

7. Conclusions 

Although covalent docking has been implemented in different drug discovery schemes and proved to 

be a useful tool to model covalent interactions between inhibitors and their biological targets, it is still 

an avenue for challenge and improvements. Some crucial aspects such as the lack of accuracy, speed, 

ligand sampling and protein flexibility should be revisited with more improved algorithms to overcome 

such shortcomings. 
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AChE Acetylcholinesterase 
CNS Central nervous system 
Cys Cysteine 

DPP-IV Dipeptidyl peptidase 4 
DOPA 3, 4-Dihydroxyphenethylamine 
EGFR Epidermal growth factor receptor 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 
KEGG Kyoto Encyclopedia of Genes and Genomes 
GABA γ-Aminobutyric acid 

H+/K+ ATPase Hydrogen potassium ATPase 
MAO-B Monoamine oxidase B 

MD Molecular dynamics 
PARP Poly-(ADP-ribose)-polymerase 
POP Propyl oligopeptidases 
PBP Penicillin-binding protein 

QSAR Quantitative structure activity relationships 
ULP Ubiquitin-like poxvirus proteinase I7L 

SBVS Structure-based virtual screening 
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