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Abstract: Waterway and canal systems are particularly cost effective in the transport of bulk
and containerized goods to support global trade. Yet, despite these benefits, they are among
the most under-appreciated forms of transportation engineering systems. Looking ahead, the
long-term view is not rosy. Failures, delays, incidents and accidents in aging waterway systems
are doing little to attract the technical and economic assistance required for modernization and
sustainability. In a step toward overcoming these challenges, this paper argues that programs for
waterway and canal modernization and sustainability can benefit significantly from system thinking,
supported by systems engineering techniques. We propose a multi-level multi-stage methodology
for the model-based design, simulation and formal verification of automated waterway system
operations. At the front-end of development, semi-formal modeling techniques are employed for
the representation of project goals and scenarios, requirements and high-level models of behavior
and structure. To assure the accuracy of engineering predictions and the correctness of operations,
formal modeling techniques are used for the performance assessment and the formal verification of
the correctness of functionality. The essential features of this methodology are highlighted in a case
study examination of ship and lock-system behaviors in a two-stage lock system.

Keywords: model-based systems engineering; formal verification; automation; modeling; waterways
operation; canal systems

1. Introduction

Waterway systems have provided an economical means for transporting high-bulk (e.g., grain,
steel, minerals, hazardous materials) and manufactured goods over long distances since the industrial
revolution. Today, waterway systems serve as critical arteries in national and world trade. Within
the U.S., for example, inland waterway systems carry large amounts of bulk cargo that would
otherwise travel by truck or by rail, easing congestion on complementary surface transportation
systems. These long-term benefits are now threatened by a host of problems: (1) Traffic demands on
canal systems that have far exceeded initial expectations; (2) Increases in the prevalence and severity
of delays caused by aging infrastructure; (3) Locks that are too small for modern ships and barges; and
(4) Competition from alternatives, such as intermodal freight transportation [1–3]. As a result, it is
becoming increasingly difficult to maximize system throughput and to minimize delays and operation
costs through operations controlled solely by humans alone.

In our opinion, if waterway systems are to remain economically competitive well into the 21st
Century, then modernization efforts will need to take advantage of information-age technologies.
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Good solutions will improve traffic flows through modernization and replacement of aging
infrastructure with systems that make increased use of automation either to handle tasks once handled
by humans or to support and enhance human performance. This, in turn, points to a strong need for
improved awareness and performance through sensing, fast control response and high resilience [4,5].
Indicators of this trend can be found in the modernization of traffic management systems for the
Bosporus Straits (Turkey), Tsushima Straits (Korea) and the Panama Canal (Panama). In the case of
the Panama Canal, lock operations now rely on an extensive sensor network coupled with lasers and
radar technologies to operate and ensure fault tolerance [6,7].

This paper departs from the piecewise approach of modernizing narrow waterway systems
and argues for the use of sound system thinking and systems engineering techniques for their
design and automated operation. The centerpiece of our work is model-based systems engineering
(MBSE) techniques, backed by methods for formal behavioral simulation and mathematical analysis
of the correctness of system functionality with respect to system goals, system performance, design
space exploration and formal verification. We propose a multi-level multi-stage methodology for the
model-based design, simulation and formal verification of automated waterway system operations.
At the front-end of development, semi-formal modeling techniques are employed for the representation
of project goals and scenarios, textual requirements and high-level models of behavior and structure.
To assure the accuracy of engineering predictions and the correctness of operations, formal modeling
techniques are used for the performance assessment and formal verification of the correctness
of functionality.

To demonstrate the essential features of the proposed methodology, the scope of this paper will
focus on an examination of these concerns for ships descending and ascending through an automated
two-lock system, as shown in Figure 1. The system structure consists of Locks 1 and 2 (called L1
and L2, respectively), Gates 0, 1 and 2, Pumps 1 and 2, a controller, ships and a reservoir (R), which
provides water to the lock system whenever needed. System behaviors will correspond to a mixture of
physical system behaviors (e.g., gate operations, fluid flows and ship movements) and cyber system
behaviors (e.g., sequences of control actions). For the purposes of illustration, let us assume that
a ship is positioned in Lock 2. The down-stepping process will be accomplished in a sequence of
three fluid-flow operations: Step 1: Water is transferred from Lock 2 to the reservoir; Step 2: Water is
transferred from the reservoir to Lock 1 for equalization of the water level with Lock 2; and finally,
after the ship is towed into Lock 1, Step 3: Water is transferred from L1 back to the reservoir R, thereby
allowing the ship to be lowered to sea level, then towed out. A similar three-step process is needed for
a ship ascending from the sea level to the lake.Systems2016, xx 3
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Figure 1. Simplified view of ships descending through a two-stage locksystem.
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The remainder of this paper is organized as follows: Section 2 describes a systems view
of waterways and their operations. Section 3 describes the pathway of the development of the
model-based design. The primary focus of this study is the fluid system, which is the main subsystem
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of the lock operations. Section 4 covers the related theory for the engineering analysis of the coupled
structure-fluid system and processes for the assessment of the correctness of system functionality
with modeling checking procedures and UPPAAL [8]. Section 5 presents the essential details of
the model-based design, assessment and formal validation of canal water lock operations. Finally,
Section 5.5 through Section 5.7 demonstrate the use of timed automata models to formally verify the
correctness of operations for the waterway system controller. MagicDraw SysML [9] is employed
for the representation of the requirements and fragments of system behavior in SysML. The water
lock fluid system performance will be represented as transfer equations, and the continuous system
time-history simulations will be computed in OpenModelica [10]. At this point, the bridge between
the continuous time-history simulation representation and the finite-dimensional real-time system
(timed automata) representation is manual, with discrete block approximations of the continuous time
history simulation acting as the timing constraint input for control verification in UPPAAL.

2. System View of Narrow Waterways

Whether they be man-made (canals) or natural (straits), looking at waterways from a systems
perspective provides an opportunity to understand and deal with them as a whole. Our view of
a system is as a collection of interconnected components having system-level functionality (as a whole)
that is beyond the execution capabilities of individual components. In other words, the system is more
than the sum of its parts. People, products and processes can be integral parts of a system. Thus,
narrow waterways are systems that link two water arms and serve as a bridge to ships. From this
perspective, they have all of the characteristics of a complex system:

A. Boundary: This is the physical perimeter of the waterway that separates it from its external
environment. This is defined based on the specificity of the given waterway, taking into
account the traffic, physical constraints, security and operation parameters. Geopolitical and
environmental considerations may play important roles in delimiting the boundaries of the
waterway system. We note, in particular, that most of the world’s straits are shared by two or
more countries, while the majority of canals are inland.

B. Inputs and outputs: Ships are physical entities that enter and exit the waterway through the
above-mentioned boundaries. From a component and component assembly perspective, flows of
ships are the inputs and outputs of our system. Whether they navigate the waterway by their
own or with some help, they need and use information provided by the system controller (traffic
management system) to complete the crossing.

C. Subsystems and components: Straits and canals have subsystems and components that are distinct.
In the former, they are the “zoning” naturally created by the shape and width of the strait. In the
latter, sets of lock chambers are subsystems distributed along the canal. The waterway control
system regulates the traffic and/or commands the crossing operation as a core subsystem of
the waterway. Depending on the analysis need, subsystems can be decomposed recursively
into low-level components having well-defined repeatable functionality. We will illustrate this
decomposition process in the case study section below.

D. Connectivity: System connectivities are defined by the physical (wired) and non-physical (wireless)
connections between components. For our purposes, connectivities allow for the coordination
and sequencing of actions necessary to achieve efficient and safe execution of the ship crossing
process. In modernized waterway systems, connectivity can be achieved through the use of
geographical information systems (GIS) and communication between the distributed set of locks
in canal systems or check points in straits [11,12].

E. Surrounding environment: This comprises elements that are external to the system, but that might
influence its functioning and/or performance. Extreme weather events, such as heavy rain, are
environmental elements that can potentially affect the navigability of the waterway.

While this five-part description appears intuitive and straight forward, it lacks some critical
elements that characterize a system. First, many systems have properties that only emerge when the
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system is assessed as a whole. Failure to understand them can result in catastrophic consequences.
In the case of waterways, understanding mechanisms through which heavy rain and pollution fill
the passageway with sand and other waste is critical to ensuring they remain navigable. Second,
modern canals are systems that react to sequences of incoming events, as opposed to input/output
process-based systems [13]. In many cases, canals systems are safety-critical: any malfunctioning
could lead to loss of life and/or property. Finally, modern canal systems are operated by embedded
computers and comprise a control system that enforces the desirable behavior on the overall system.

3. Pathway of Development for Model-Based Design

The central tenet of model-based system engineering (MBSE) is the use of models as opposed to
documents as the main artifacts of system development. MBSE procedures provide a formal basis for:
(1) Closing the gap between what is needed and how the system will work through the development
of virtual prototypes; (2) Assisting in the management of complex systems; and (3) Early and formal
approaches to system validation and verification. The traditional role of engineering analysis of
waterway systems has been to focus on performance, where sophisticated techniques [14–17] are
justified by the adverse economics of poor system throughput. The introduction of automation into
canal management expands the range of design concerns that need to be addressed. For example,
a new fundamental question is: How do we know that an automated canal management system will
always do the right thing? Experience [18–21] indicates that these challenges need to be addressed
through a combination of mechanisms involving systematic application of decomposition, composition,
abstraction and use of semi-formal and formal analysis.

3.1. Multi-Level Approach Model-Based System Design

We propose a multi-level approach model-based system design having an intricate combination
of mechanisms, as shown in Figure 2.
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Figure 2. Multi-level approach model-based systems engineering. Semi-formal models provide
a high-level view of the complete system (efficiency). Formal models provide a detailed view of the
actual system (accuracy).

The pyramid structure partitions the development effort into four interrelated blocks organized
into two levels. The top level contains semi-formal models capturing ideas (goal/scenarios) and
preliminary designs represented in graphical languages, such as the Unified Modeling Language (UML)
and the System Modeling Language (SysML) [22,23]. Together, goals and scenarios analysis and the use
of UML/SysML provide the designer with a “big picture” summary of the system under development
and highlight the major components, their connectivity and performance. Representations for
preliminary/tentative design need to be based on semi-formal models (e.g, UML and SysML)
that have a fixed syntax and semantics and, thus, can be used to communicate ideas among the
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participating disciplines [22,23]. The lower level comprises models built from formal languages having
precisely-defined semantics. These models provide computational support for: (1) Detailed simulation
of system behavior to assess achievable levels of performance; (2) Verification of the correctness
of functionality, particularly in the system control; and (3) Systematic design space exploration.
Together, the combination of high- and low-level representations work to prevent serious flaws in
design direction and to provide deep insight into the system behavior and functionality through
formal analyses.

3.2. Pathway of Development

Figure 3 shows the pathway from an operations concept to simplified models for behavior and
structure, requirements, system-level design and model checking.

Revise Use Cases and

Activity Diagrams

Sequences of tasks

between ohjects.
Sequence of messages

Models of System Behavior
and System Structure.

Req 1.

Req 2.

High−Level Requirements.

Design Space Exploration Model Checking

Detailed SimulationTrade−off Analysis
Constraints

Scenarios ....

and Scenarios

−− scenario 4
−− scenario 3

Use Case 2

−− scenario 2
−− scenario 1

Use Case 1

Use Case Diagram

Sequence  Diagrams

Individual Use Cases

Figure 3. Pathway from operations concept to simplified models for behavior and structure, to
requirements, system-level design and model checking.

The first important task is to develop a functional description for what the system will do?
Since a system does not actually exist at this point, these aspects of the problem description will
be written as design requirements and mathematical constraints. It is important to note that while
use-cases and textual scenarios are neither requirements nor functional specifications, they imply
requirements, objects and object interactions and interfaces in the stories they tell. As a case in point,
when use-cases are associated with a specific class (in the system), working scenarios are, in essence,
an invocation of the operations in the class. Some use-cases will correspond to only a single operation.
Others will involve a set of operations, usually occurring in a well-defined sequence. Further design
requirements/constraints will be obtained from the structure and communication of objects in the
models for system functionality (e.g., required system interfaces). Models of behavior specify what the
system will actually do; often they can be represented as networks and hierarchies of tasks, functions
and processes. Models of structure specify how the system will accomplish its purpose. The system
structure corresponds to collections of interconnected objects and subsystems, constrained by the
environment within which the system must exist. The nature of each object/subsystem will be captured
by its attributes, such as the physical structure of the design, environmental elements that will interact
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with the system and the system inputs and system outputs. We create the system-level design by
mapping fragments of system functionality onto specific subsystems/objects in the system structure.
Thus, the behavior-to-structure mapping defines in a symbolic way the functional responsibility of
each subsystem/component. In the system evaluation, the performance and characteristics of the
system-level design are evaluated against the test requirements.

The heavy arrows in Figure 3 show the pathways of traceability and iterations of refinement within
the model-based development. Engineers should be able to look at a requirement and understand:
(1) the goals and scenarios from which the requirements emanated; and (2) the ways in which the
requirement has been satisfied in the system implementation. Pathways to requirement verification can
involve a multitude of analytical procedures involving (continuous system) simulation for performance
assessment and formal approaches to the analysis of (discrete) control actions for the verification of
the correctness of system functionality. Usually, several iterations of development will be needed to
modify the system behavior, system structure, perhaps even the original operations concept, and to
achieve a design that satisfies all of the system-level requirements.

3.3. Goals and Scenario Analysis

The front-end of system development is where most of the important decisions are made in terms
of the project direction (and hence, the commitment of available funds) and the expectations of system
functionality, behavior and cost.

Figure 4 shows the pathway from goals and scenarios into high-level requirements. The project
goals come from the project stakeholders (or a customer), and may be listed very informally, as
needed. A stakeholder might describe, for example, what he/she has in mind in terms of functionality,
performance and cost. Since these needs may be (very) informally stated and may not have been
completely thought through, several iterations of development may be required to elicit, analyze
and clarify the project goals (measures of effectiveness), scenarios and requirements. The functional
aspects of the project goals (i.e., what the system will do) are traced to use-cases, which, in turn, can
be elaborated in terms of detailed textual scenarios and SysML diagrams. The project goals that are
related to performance and cross-cutting system-level considerations (e.g., reliability, security) trace
directly to the textual requirements. In working from the left- to right-hand sides of Figure 4, we
systematically transform an informal representation into a semi-formal representation, suitable for
acting as a stepping stone to formal analysis. The final point to note is that when systems development
is a team activity, requirements emanate from multiple sources (some external to the project itself).
This leads to clusters of goals and scenarios, use-cases and requirements connected via one-to-many
and many-to-many relationships. The latter is one of the main reasons why modeling, traceability and
evaluation of cause-and-effect relationships across various stages of development is difficult.

transformation

Goals Use Cases Scenarios Requirements***1**

SysML diagramsTextual requirements

feedback to refine project goals.

FunctionalPerformanceEconomics

drive

Goals and Scenario Analysis

Informal Representation Semi−formal Representation

Figure 4. Transformation of goals and scenarios into high-level requirements.
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4. Related Theory for Engineering System Behavior and Formal Verification Processes

This section introduces theory relating to the behavior modeling and formal validation of
functionality in the canal system. Procedures for the assessment of the canal system performance will
be based on variational analysis of fluid system flows and sequencing of pump and gate operations.
Timed (finite state) automata and model checking procedures will be used to assess the correctness of
functionality for waterway system operations.

4.1. Mathematical Modeling of the Fluid System

The desired configuration of the fluid system is the one that: (1) does not violate flow continuity
constraints of fluid, i.e., water in this case, and (2) maintains the fluid pressure compatibility
constraints in the system. Thus, instead of the full loop variational indicator [24], we rely on the
complementary form of Hamilton’s principle, which results in the fluid system obeying the following
set of Lagrangian’s equations of motion.

d
dt

(
∂L∗

∂V̇j

)
− ∂L∗

∂V̇j
+

∂G
∂V̇j

= Pj (1)

where G is the content of the fluid dissipators, Pj the generalized fluid pressure source of the jth fluid
volume coordinate; j = 1, 2, ..., g. The system co-Lagrangian L∗ is defined based on the total co-kinetic
energy of the system fluid inertances T∗ and the total potential energy of the system fluid flow stores
U as follows (r ≤ g).

L∗ = T∗(V̇1, V̇2, ....., V̇r)−U(V1, V2, ....., Vr) (2)

The fluid system Lagrangian L is defined based on the total kinetic energy of the system fluid
inertances T and the total co-potential energy of the system fluid flow stores U∗ as follows.

L = U∗(Γ̇1, Γ̇2, ....., ˙Γm)− T(Γ1, Γ2, ....., Γm) (3)

Equations (1) through Equation (3) describe the behavior of a wide range of dynamical systems.
The next step is to customize the mathematical formulation to the specific details of fluid-flow operation
in our canal system setup.

Step 1. The relative configuration of Lock 2 and the reservoir means that water can flow from Lock 2
to the reservoir by gravity alone. Therefore, L2 is the only volume considered; thus, g = 1, and T∗, U
and G are defined using the reservoir capacitance C f R, pipe inertance I f and resistance R f as follows.

T∗ =
1
2

I f V̇2
2 (4)

U =
1

2C f R
V2

2 (5)

G =
1
2

R f V̇2
2 (6)

We combine Equations (4) and (5) into Equation (2) and replace the result into Equation (1) along
with Equation (6). We also have Pj = PS, the pressure of the ship, and express the volume of the water
in Lock 2 as a function of its section A2 and water height h2 by V2 = A2h2. These transformations
result in the following differential equation that captures the dynamics of water flow from lock L2 to
reservoir R.

A2 I f ḧ2 + A2R f ḣ2 +
A2

C f R
h2 = PS (7)
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Step 2. Water is transferred from the reservoir to Lock 1 for equalization of the water level with
Lock 2. This step is accomplished with nodal analysis, which is a fluid momentum-based (Γ) approach
appropriate for understanding the dynamic of the water flowing from the reservoir R to Lock L1.
Lagrangian’s equations of motion are written as follows:

d
dt

(
∂L
∂Γ̇j

)
− ∂L

∂Γ̇j
+

∂J
∂Γ̇j

= Qj (8)

where J is the co-content of the fluid dissipators; Qj the generalized fluid flow source associated to the
jth fluid momentum coordinate; j = 1, 2, ..., l.

Step 3. Water is transferred between lock L1 and the reservoir. From Equation (1) through Equation (8),
l = 2, and T, U∗, Qj and J are defined using, in addition to the parameters defined above, the reservoir
capacitance C f R, section AR, water height hR and the water height in Lock 1 h1 as follows.

U∗ =
1
2

C f 1Γ̇2
1 +

1
2

C f RΓ̇2
R (9)

T =
1

2I f
(Γ1 − ΓR)

2 (10)

J =
2

3R1/2
f

Γ̇R
3/2 (11)

The first order linearization of Equation (11) at the connection Point B of the pipe to the reservoir
(as close as possible to the bottom of the reservoir) results in the following equation.

JB(Γ̇R) =
2Γ̇B

3/2

3R1/2
f

+

(
Γ̇B
R f

)1/2

(Γ̇R − Γ̇B) (12)

We replace Equations (9) and (10) into Equation (8) and subsequently into Equation (7) along with
Equation (12). Since there is no external source of water flow to any of the two tanks, we have Qj = 0.
Furthermore, we have P = Γ̇ = A

C f
h. Equipped with these transformations, we compute the derivate

of the resulting expression of Equation (7), respectively, to Γ1 and ΓR and obtain the following set of
differential equations.

A1ḧ1 +
A1

I f C f 1

∫ t

0
h1(τ)dτ − AR

I f C f R

∫ t

0
hR(τ)dτ = 0 (13)

AR ḧR +
AR

I f C f R

∫ t

0
hR(τ)dτ − A1

I f C f 1

∫ t

0
h1(τ)dτ +

(
Γ̇B
R f

)1/2

= 0 (14)

With the ship now in Lock 1, a pump with pressure Pt is needed to pump the water out of L1 to the
reservoir R. We perform another loop variational analysis using the same set of Lagrangian’s equations
of motion as Equation (1) and rewriting Equations (3) to (5). After combination, simplification and
replacement of A by the section of the ship in contact with water in Lock 1, i.e., A1S, we obtain:

A1S I f ḧ1 + A1SR f ḣ1 +
A1S
C f R

h1 = Pt (15)

Equations (6), (13) and (14) describe the behavior of the water lock system, that is water
equalization between Locks L1 and L2 during an outbound ship crossing. Along with Equation (15),
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this set of equations fully represents the three sequences of behavior for the water lock fluid system
during an outbound crossing.

4.2. System Behavior Modeling with Networks of Timed Automata

Timed systems are those where timing and scheduling of events (i.e., logical results of computation)
are relevant to correct operations [25]. In a hard real-time system, correct operation depends
on the satisfaction of hard deadlines. Missing a deadline in a safety-critical system may have a
disastrous effect. Soft real-time systems have correct operations that depend on the satisfaction of
“average time” constraints.

Many complex engineering systems can be easily modeled using networks of communicating
finite state machines (e.g., software systems; digital circuits; control of traffic through intersections).
Individual processes are represented as finite state machines (FSM); embedded software systems can
be modeled as networks of communicating FSM, as illustrated in Figure 5. A deterministic finite
automaton (DFA) is a simple machine that reads an input string (one symbol at a time) and then, after
the input has been completely read, decides whether to accept or reject the input [26]. In mathematical
terms, a DFA is a five-tuple (Q, ∑, δ, qo, F) where: (1) Qis a set of states; (2) ∑ is a finite alphabet;
(3) δ: Q × ∑ → Q is the transition function; (4) qo ∈ Q is the start state; and (5) F ⊆ Q is the set of
accepting states. The language recognized by a DFA M is the set of all strings accepted by M and is
denoted L(M). Simply put, automata are simple, but useful models of computation. They keep notions
of state, stepping between states and well-defined start and end states, but omit notions of memory,
variables, commands and expressions. Constructions on automata are a way of systematically building
automata from (smaller automata) components [26]. In other words constructions operate on automata,
yielding new automata. Therefore, constructions are a way of systematically building automata from
(smaller automata) components. For example, the product automaton takes two DFAs and delivers the
product automaton, also a DFA. Conceptually, the product automaton is a single machine that runs its
two component machines in parallel on the same input string. At each step of the computation, both
machines access the (same) current input symbol, but make transitions according to their respective
transition functions. Construction operations provide closure under union, intersection, complement
and concatenation operations.

communication.

FSM FSM

communication.

Figure 5. Modeling of systems as networks of communicating finite state machines (or more simply, as
networks of communicating finite state automata).

A timed automaton is a stripped-down finite-state machine extended with clock variables.
Mathematically, we state that a time automaton A over clocks C and actions Act is a four-tuple (L, lo, E, I)
where: (1) L is a finite set of locations; (2) lo is the initial location; (3) E ⊆ L × B(X) × Act × P(C) × L is the
set of edges; and (4) I:L → B(X), each location to an invariant. Within an automaton model, the
system’s states are defined by the locations of all automata, the clock constraints and the values
of discrete variables in the model. Every automaton may fire an edge separately or synchronize
with another automaton, which leads to a new state. Edge firings are not allowed to be carried out
simultaneously; therefore, the automata do not really operate in parallel, but rather in an interleaving way.
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4.3. Model Checking

While semi-formal procedures such as SysML are useful for preliminary design (mainly because
they force a designer to think about what they really want!), some errors, such as safety and liveness
conditions, may be far too subtle to catch by inspection. Therefore, there is a strong need for automated
procedures for the analysis of design specifications. Model checking [27] is a technique that relies on
building a finite state model of a system and checking that a desired property holds in that model.
Given a state-transition graph (M) and a formula (f), the model checking problem aims to decide
whether the formula (f) is true for all possible runs. In mathematical terms, model checking solves
the problem:

M, s| = f (16)

That is, find all states “s” of “M”, such that formula “f” holds. If the property does not hold, then
a counter example will be provided. To date, model checking has been used primarily in hardware
and protocol verification; the current trend is to apply this technique to analyzing specifications of
software systems.

4.4. Model Checking with UPPAAL

UPPAAL [8] is an integrated tool environment for modeling, simulation and verification of
finite-dimensional real-time systems that can be modeled as a collection of non-deterministic processes
(timed automata). Assessment procedures are described in terms of temporal logic. Typical areas
of application include real-time controllers and communication protocols in particular, those where
timing aspects are critical. Thus, as a real-time system, our water lock system falls within the scope of
this software.

System behavior is described in terms of timed automata extended with variables and real-valued
clocks where clock variables evaluate to a real number, increase without bound and may be associated
with a transition, in a guard or in a reset, and with a node, using an invariant. This is a dense-time
model. The state of the system is defined by the locations of all automata, the clock constraints and the
values of the discrete variables. Every automaton may fire an edge separately or synchronize with
another automaton, which leads to a new state. Edge labels may include constraints on integer variables
and array components in their guards, similar to timing constraints, and may specify assignments to
variables in their actions, which are executed simultaneously.

To avoid the need for dealing with an infinite number of clock values, UPPAAL uses zones defined
by sets of constraints on clock values. When a system is in a particular state (location), we do not have
a concrete value of time; instead, differences defined by region boundaries. A particular simulation
explores only a particular execution trace (i.e., sequence of states of the system). The model checker
uses state-space exploration to ascertain whether certain combinations of control nodes and constraints
on clocks and integer variables are reachable from an initial configuration. Other properties, such as
bounded liveness, can be checked by reasoning about the system in the context of testing automata
or annotating the system description with debugging information and then checking reachability
properties. In checking a property, a diagnostic trace can be automatically reported explaining why
the property is satisfied or not. This trace can be visualized by running it through the simulator.

5. Case Study: Model-Based Design and Formal Validation of a Canal Water Lock

We now exercise the proposed methodology through the model-based design and formal
validation of behaviors for a ship crossing a water lock by following the design flow illustrated
in Figures 3 and 4. For the purposes of illustration, our main focus will be on the fluid subsystem of
the water lock system. The primary function of a two-lock system is to safely carry ships from one
water source to another in a timely manner. Lock chambers are the centerpieces and bottlenecks of the
canal navigation systems; they define system capacity and performance and regulate its operations.
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The computer system, which is overseen by operators, is responsible for ensuring that ship movements
are safe and efficient.

5.1. Water Lock Operations and Fluid System Design

Fragments of water lock system behavior are motivated by scenarios, such as sequences of
operations for inbound and/or outbound crossings and associated requirements to achieve acceptable
levels of performance and safety. Inbound crossings occur when a ship enters the water lock from the
sea and exits it on the lake side. Outbound crossings are defined by a ship traveling in the opposite
direction. The case study will focus on an outbound crossing (i.e., as a ship traverses from right to left
in Figure 1), with the ship initially waiting in Lock 2 (L2). As already noted in the Introduction, the
crossing is executed in a sequence of three fluid-flow operations:

Step 1. Water is transferred from Lock 2 to the reservoir (R), then,
Step 2. Water is transferred from the reservoir (R) to Lock 1 (L1) for equalization with L2.

Finally, after the ship is towed into L1:

Step 3. Water is transferred from L1 back to the reservoir R, thereby allowing the ship to be lowered
to sea level, then towed out.

Thus, the fluid system behavior needs to satisfy three requirements:

1. Water equalization between locks during towing,
2. Fluid system operation i.e., elevate and lower ships, and,
3. Limited reservoir capacity.

For equalization purpose, water in the chamber L1 has to be raised to the same level as in L2 to
allow the tow boat to tow the ship from L2 to L1.

5.2. System Architecture and Modeling

The requirements engineering subprocess uncovered the following results:

• Six goals covering the desired functionality, performance, maintenance, security and economics of
the waterway system operation. For convenience, the corresponding use-cases can be organized
into four viewpoints: ship, humans, computer system and system engineer.

• Thirteen use-cases stemming from the six goals. The interactions between the water lock system
and external actors in each use-case are described in more detail by a textual scenario.

• A use-case (UC) task interaction matrix and model.
• Scenario specifications with a step-by-step description of the expected functionality, with

a traceability back to individual use-cases and individual goals.

The following snippet illustrates the pathway from a goal to a use-case and related textual scenarios.

Goal 1: The lock system must allow large container ships to traverse the lock system.
Use-case 01: Operate the lock system.
Scenario 1.1: A large container ship crosses the lock system inbound in a small amount of time.
Scenario 1.2: A large container ship crosses the lock system outbound in a small amount of time.
Scenario 1.3: The system accomplishes its operations with a minimal amount of water usage.

Use-case 01: Operate the lock system expresses the system functionality of receiving and processing
a crossing request from a ship and is elaborated with Scenarios 1.1, 1.2 and 1.3, as they all involve
some control of the crossing process. A complete scenario description (details not included here) will
include preconditions for the scenario to activate a step-by-step description of required functionality
under normal operations, and step-by-step descriptions for how the system will react in response to
various types of failure. While the general relationship between goals and scenarios is many-to-many,
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a one-to-one relationship exists between use-cases and their specification. There should only be one
detailed description of each functionality of the system throughout the design flow. Analysis of
abnormal events in use-case specifications along with preliminary behavior and structure designs
provides a wealthy source of data and information for the identification of derived requirements that
progressively expand and enrich the requirement tree, starting from the initial statement, as shown
in Figure 6.

Figure 6. Water lock system requirements. Lower level requirements D1.0, D2.0 and D6.0 have direct
effects on the design of the fluid system. However, its operation is highly influenced by D4.0 and D5.0,
as well as the constraint set by Req.1.2.

A second benefit of textual scenarios is the insight they provide toward figuring out the sequences
of actions (or steps) for correct execution of system functionality. A careful examination of the different
elements involved, considering the constraints defined by lower level requirements, helps uncover
elements of the system structure and the sequences of message exchange needed for the implementation
of system behavior. For the case study problem, this leads to the initial design where a controller,
two pumps, three valves and a water reservoir are identified as the key elements of the fluid system.
Figure 7 illustrates the system behavior and its allocation to structural elements of the fluid system (FS).
The structural elements are as follows.

• FS controller: control and regulate the portion of crossing operations performed by FS,
• Lock (x2): provide room and a road (water) to the ship during crossing process,
• Valve (x3): drain water from/to the locks to/from the reservoir,
• Pump (x2): displace water from/to the locks to/from the reservoir to the required elevation and
• Reservoir: store reusable water for crossing operations.

We synthesize the design by combining the structural decomposition of the FS and its behavior.
Figure 8 is an internal block diagram that shows: (1) how the various parts of the FS are connected to
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one another; and (2) unidirectional flows (i.e., water, signal, energy) that occur through input/output
ports during equalization between components. We can also identify some of the water flows
represented in Figure 7, for instance W f1 ⇐⇒ Low1D2or W f2 ⇐⇒ Low2D2.

Figure 7. System Modeling Language (SysML) activity diagram for fluid-system behavior during the
equalization of water levels. Behaviors are allocated to elements of the system structure (pump, valve
and reservoir). The action of the controller on structural elements allows the water to change height
(Hi) and to flow (W f j) in and between the lock (Lk) and reservoir containers.

Figure 8. SysML internal block diagram (outbound crossing) of the synthesized fluid-system (FS)
design. The FS controller is powered by electricity, and it controls structural components (valves,
pump) through control signals sent to actuators. Sensors on the components send feedback signals to
the FS controller and collect measurements.
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It is important to keep in mind, however, that due to the weak semantics of the SysML modeling
language, this process is not free of errors, ambiguities, redundancies and omissions [28]. As such, at
this point, the model artifacts are not complete enough for performance and safety evaluation, as per
the system requirements. To close this gap, we need to customize the mathematical equations to the
sequence of fluid flows needed to allow a ship to descend through the lock system, build and simulate
formal models of the system and compare the results to the expected levels of performance.

5.3. Time-History Simulation

We employ OpenModelica to solve the set of differential Equations (6) and (13) to (15) for an outbound
crossing. The implementation incorporates constrained variables of the system requirements shown in
Figure 6 and relevant predefined physical variables and parameters.

Figure 9 shows the result for each of the three steps introduced in Section 5.1. From Figures 1
and 6, and the textual requirements therein, the relevant values for the water level are as follows:
(1) H0 = 17 m is the sea water elevation at the foot of the lock structure; it is not 0 m, because there
needs to be a minimum of a 15.2-m deep of water to account for the draft (see Req.1.2); (2) H2 = 22 m
is the equalized water elevation between Locks 1 and 2; it is half way between H0 and H4, as per
Req. 1.3; and (3) H4 = 27 m the elevation of the lake. We can verify that H4−H0 = 10 m, as per Req. 1.3.
The first plot, which lasts approximately 10.5 s, shows what is happening during Step 1. When the
water height in Lock 2 decreases by five meters, we observe a linear increase of the water in the
reservoir. The former is half of the specified value in source Requirement 1.3 (elevation). In the absence
of a pump, Step 2 (middle plot) shows that it takes almost 12 h for the water to transfer from the
reservoir to Lock 1 by gravity flow, to reach the target height (H2 = 22 m) in Lock 1 and to equalize
with Lock 2. Equalization of water levels in Locks 1 and 2 enables the ship to be towed to Lock 1. The
extremely long transfer time by gravity flow alone highlights the need for a pump to improve the
performance of the fluid-system behavior. With the assistance of a pump operating at 1 psi, Step 3 lasts
approximatively 9 s. The water level in Lock 1 is lowered from H2 = 22 m to H0 = 17 m, thus lowering
the ship to sea level where it can be towed away.

Step 1 Step 2 Step 3

Figure 9. Simulation of the fluid-system behavior (i.e., Step 1→ Step 2→ Step 3) during an outbound
crossing. Step 3 is accomplished with a pump pressure = 1 ksi. Legend: h1 = variable for water
level in Lock 1; h2 = variable for water level in Lock 2; hR = variable for water level in the reservoir;
H10 = initial water level in Lock 1; H1f = final water level in Lock 1; HR0 = initial water level in the
reservoir; H20 = initial water level in Lock 2; H2f = final water level in Lock 2.
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A similar three-step process exists for the sequencing of fluid flows needed to elevate an incoming
ship from sea level to lake level. Briefly, the details are: Step 1, transfer water from lock 2 to the
reservoir; Step 2, elevate the ship by transferring water from reservoir to Lock 1; and Step 3, elevate
the ship by transferring water from reservoir to Lock 2. In the preliminary simulation, the durations
for each step are 10, 12,900 and 13,100 s, respectively.

5.4. Design Space Exploration

Design space exploration is the activity of systematically exploring design alternatives before
implementation. Exploration can include determination of boundaries between the feasible and
infeasible domains, as well as distributions of measures of effectiveness throughout the feasible
domain. When the number of design alternatives is very large, exhaustive enumeration may be
computationally prohibitive. From an end-user perspective, however, insight into the nature of the
design space can be gained by systematically exploring small subsets of the design space. As a case in
point, a designer might wonder if a pump is really needed to complete Step 3 of the outgoing traversal.
Figure 10 shows the time history of water-level elevations for Step 3 when the pump is removed from
the fluid-flow operations. Even though the pumping pressure (1 psi) is very small, it is nonetheless still
needed. Similar analyses can be conducted to find a range of pumping pressures that will increase the
flow rate and reduce the time needed to complete Step 2. A pump pressure of about 50 psi works well.

GAP: Target Water Level Not Met.

Figure 10. Design space exploration and an example of an infeasible design solution. Water elevation
in the reservoir and Lock 1 (L1) versus time for gravity fluid flows (no pump). Legend: hr1 = variable
for the water level in Lock 1; hR = variable for the water level in the reservoir; H10 = initial water level
in Lock 1; H1f = final water level in Lock 1.

5.5. System Controller Design and Verification Approach

Now that the behavior associated with sequences of fluid-flows between the locks and the
reservoir is in place, the next step is to consider simulation and verification of the control system
design. It is important to note that while the fluid-flow behaviors are continuous, the lock system
control is defined by sequences of discrete control actions acting over an ensemble of concurrent
subsystem-level behaviors. We use timed automata models introduced in Section 4.2 to formally verify
the correctness of operations for the waterway system controller and, thus, satisfaction of the safety
constraints. The proposed approach takes the durations of time needed to complete the water transfer
steps and uses them as input to the control model. Thus, the control systems verification problem
boils down to sequencing of intervals of time and synchronization of events to achieve good system
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performance, while assuring that the system operations remain safe. Such problems can be represented
as networks of nondeterministic finite automata (NDFA) based on temporal logic and simulated and
verified in UPPAAL (see Section 4.4).

Timing analysis: Before getting into the specifics of the controller design, it is necessary to identify and
understand the interplay between the different processes that compose the system. Design structure
matrices [29] provide a means to identify groups of tasks that should be clustered. For the inbound
crossing process, twenty nine (29) low level tasks are bundled into five clusters corresponding to the
following operations:

1. Transfer water from Lock 2 to the reservoir.
2. Transfer water from the reservoir to Lock 1.
3. Transfer water from the reservoir to Lock 2.
4. The ship leaves the lock system.
5. Reinitialize the lock system.

Figure 11 shows the interplay between time and the synchronization of events that occurs during
an inbound crossing. The top row of Figure 11 shows the timing of actions for Steps 1 through 3.
The middle row shows the timing of operations for Gates 0, 1 and 2. The bottom row shows the profile
of water level elevation of the ship versus time. The vertical lines represent the actions of the system
components during the ship traversal (e.g., ship enters Lock 1, Valve v2 opens, etc.). The ship, gate and
valve operations communicate through message passing. At the conclusion of the ship traversal, the
lock system is reinitialized so that it is ready to begin processing the next ship.

Figure 11. Timing diagram for an inbound water lock crossing.

5.6. Controller Modeling and Verification

Figure 12 shows the UPPAAL model of ship behavior for an inbound crossing of the lock system.
The control model is composed of lower-level processes that participate in the sequence of actions
that enable the crossing process. Based on the previous analysis, we have identified five components,
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the behavior of which has been modeled in UPPAAL: ship, gate, valve, scheduler, main controller.
The automata behaves as follows.

Figure 12. UPPAAL model of ship behavior during an inbound traversal of the lock system.

1. The ship approaches the lock system and requests crossing (automatic detection by a sensor).
If the system is free, i.e., there are no other ships in the water lock system, it will be towed directly
into the lock ahead i.e., Lock 1 for inbound crossing and Lock 2 for outbound crossing. Otherwise,
it waits in the sea/lake for the signal from the controller to proceed.

2. The ship waits in the lock for the water to be raised/lowered up to the level of the water in lock
ahead (equalization).

3. When the water in the actual lock is the same as the one in the lock ahead, the ship is towed to the
lock ahead.

4. For inbound crossing, when the lake is reached, the ship is released and can leave the system,
which has to be reinitialized before another ship can proceed.

5. For outbound crossing, the water in Lock 1 is lowered to the sea level, and the ship is towed in the
sea and released; then, the system is reinitialized.

Similarly, the gates’ and valves’ behaviors are modeled as a network of automata with
open/opening and closed/closing as basic states. The execution of the states is constrained by their
timing as per the simulation results in Section 5.3 and the timing analysis in Section 5.5. Furthermore, a
scheduler is needed to manage the queue at the entrance of the lock system. It determines the order in
which the ships will cross the system and communicates the appropriate information to the controller
and the incoming or waiting ships. It also encapsulate the global status of the water lock system
through its state, which is either busy or free.

Main controller: The main controller of the waterway system is the element at the center of the
waterway operations. The controller interacts with each of the aforementioned components, sending
signals and messages and synchronizing operations to achieve a proper execution of each task in real
time. This leads to a complex set of tasks performed in a timely and safe manner.
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Figure 13 shows the behavior model for our controller. Controlled behavior can be summarized
by the following macro steps (highlighted by the call outs):

1. After the scheduler frees a space in the queue, the ship requesting the crossing gets into Lock 1,
and the controller oversees the Hate 0 closing process.

2. The controller sends the proper signal (opening and closing) to the valve actuators in order to
start Sequences 1 and 2, which correspond to water equalization between Lock 1 and 2. It controls
the opening and closing of valves, as well as the durations of sequences.

3. Once Step 2 is completed, it opens Gate 1 to let the ship get into Lock 2 and also performs the
closing of Gate 0.

4. It now commands actuators of valves V3 and V4 to perform Step 3 (water equalization between
Lock 2 and the lake). It controls both the time and proper execution of the sequence.

5. Having reached the lake, the ship can now exit the system. The controller first ensures the Gate 2
is closed and oversees the ship clearing the water lock system.

6. In the last step, the controller reinitializes the system by activation of reservoir and Lock 1 flooding
valves to bring the water in those containers at the appropriate level prior to the beginning of the
next crossing cycle.

Figure 13. Simplified UPPAAL model of the system controller.

5.7. Model Simulation and Verification

Simulation trace: The proper composition of the various processes modeled above renders the
simulation of the behavior of the fluid system possible in UPPAAL. During the simulation, we
can visualize and extract the trace of the crossing process execution for further analysis. Figure 14
shows a view of the simulation of the system with its trace. In this case, three ships are requesting the
crossing of the water lock system, and only one (Ship 1) is actually granted that right, while others are
waiting in the sea; this is actually the kind of behavior expected from our system.
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Figure 14. Model simulation and the view of a simulation trace.

Verification and system traceability matrices: The simulation of the system provides us a glimpse
of the proper execution of the crossing process. However, only a formal verification of the system
requirements can provide a definitive proof of the correctness of the design and system operation.
Thus, we use UPPAAL Verifier to specify the queries formally verifying the system properties. Queries
are organized into three categories of properties, as shown in the third column of Table 1:

Safety: A safety property asserts that nothing bad happens, such as an accident, to the system during
its operation. Properties P1 through P3 are illustrations.

Liveness: A liveness property asserts that, for a given state of the system, it will eventually progress
onto the next one i.e., something good will eventually happen. Thus, it requires the water lock
system (automated and distributed) to make progress despite the fact that some of its concurrent
processes may have to run in sequence at time, especially on parts of the composed system that
cannot be simultaneously ran by multiple processes. Properties P4 through P11 are examples
of liveness properties.

Reachability: A reachability property asserts that, given an initial state s0, there exists a path p that
allows the system to reach a particular state s f in the future. Such properties are P12 to P15.

Table 1 summarizes the results of system properties verification. For the case (N = 3 ships), all of
the key safety and reachability properties are verified. Of the three properties not verified, the first (P4)
is due to a design choice we made (no duplication of V3 representation to simplify the model of the
controller). However, property P5 ensures that that choice does not impact the ability of the system
to operate properly. The second (P9) can be explained by the fact that its satisfaction depends on the
beginning of a new cycle, constrained by the presence or not of a ship requesting crossing, which
is not always guaranteed. Given the complexity and volume of verification tasks needed to ensure
its correctness, the last one (P10) is much more complex to troubleshoot. We suspect, however, the
reason behind the non-verification of P4 to be the cause of this failure. Our belief is reinforced by the
fact that P11 ensures us of the safe operation of the system the same way P5 did for P4. Thus, we can
conclude from these results the proof of the correctness of our controller in satisfying automatic water
lock operations.
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Table 1. Summary of the simulation parameters (legend: S = safety; L = liveliness; R = reachability).

ID Property Type Query (UPPAAL) Satisfied?

P1 The system is deadlock free. S A[] not deadlock Yes
P2 There is never more than one ship crossing the lock. S A[] forall (i : ids) forall (j : ids) Ship(i).TowtoL2 && Ship(j).TowtoL2 imply i == j Yes
P3 There can never be N ships (>1) in the queue (thus the array will not overflow). S A[] Scheduler.list[N] == 0 Yes
P4 Whenever a ship approaches the system, it will eventually cross. L Ship(0).ApprG0→ Ship(0).TowtoL2 No
P5 A ship approaching the system will ultimately find a way to cross. L E[] Ship(0).ApprG0 imply Ship(0).TowtoL2 Yes
P6 Whenever a gate opens, it will eventually close later. L Gate1(1).Open→ Gate1(1).Closed Yes
P7 Whenever a gate closes, it will eventually open later. L Gate1(1).Close→ Gate1(1).Opened Yes
P8 Whenever a sequence start, it will finish at a certain point in time. L Controller(0).Seq2Start→ Controller(0).Seq2End Yes
P9 Whenever a sequence finish, it will start over at a certain point in time. L Controller(1).Seq2End→ Controller(1).Seq2Start No
P10 Whenever the system is busy, will system free eventually hold?. L Scheduler.Busy→ Scheduler.Free No
P11 A busy system will ultimately become free. L E[] Scheduler.Busy imply Scheduler.Free Yes
P12 Any ship can reach at least Lock 2. R E <> Ship(1).WaitInL2 Yes
P13 Any ship crossing inbound can reach the lake. R E <> Ship(0).ClearSystem Yes
P14 Ship 0 can be crossing the lock system, while Ship 1 is waiting to cross. R E <> Ship(0).TowtoL2 and Ship(1).WaitInSea Yes
P15 Ship 0 can cross the lock system while the other ships are waiting to cross. R E <> Ship(0).TowtoL2 and (forall (i : ids) i ! = 0 imply Ship(i).WaitInSea) Yes

Table 2. System traceability matrix (partial).

Use Cases Source Requirements Derived Requirements Fluid System

ID Name ID Name ID Name Spec. Components

UC01 Operates the lock system 1.4 Automation D4.0, D5.0 Operation control; sensors and tracking Controller
1.3 Elevation D2.0 Fluid system UR1-5, VR1-6, PR1-5, RR1-5 Pump, valve, pipe, reservoir

UC02 Provides water to locks 1.5 Reservoir D6.0 Reservoir capacity VR1-6; PR1-5; RR1-5 Reservoir, pipe, valve
1.1 Transportation D1.0 Water equalization LR1-4; UR1-5; VR1-6; PR1-5; RR1-5 Lock, reservoir, pump, valve, pipe

UC03 Provides system health information 1.8 Interfaces N/A

UC04 Logs into the system 1.8 Interfaces N/A

UC05 Monitors lock operations 1.7 Locks D1.0, D2.0 Water equalization; fluid system LR1-4; UR1-5; VR1-6; PR1-5; RR1-5 Lock, reservoir, pump, valve, pipe
1.8 Interfaces N/A

UC06 Navigates lock system
1.2 Ship profile N/A
1.6 Tugboats D3.0 Tugboat Power
1.8 Interfaces N/A

UC07 Stores reusable water 1.5 Reservoir D6.0 Reservoir capacity RR1-5 Reservoir
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System traceability: At this point, we can trace the system initial use-cases to the component
specifications, as well as the mechanisms through which they are related to system functionality.
From this perspective, the derived system requirements serve as bridges between source requirements
and subsystem components requirements, i.e., the fluid system in this case. We can also observe
that not all source or derived requirements are tracked down to the components of the fluid system.
This actually makes sense since as many as seven other subsystems need to be developed in order
to obtain a complete design of the water lock system (see Figure 1). Table 2 provides a convenient
means of ensuring that all of the system requirements associated with the fluid system are satisfied by
the selected components. Thus, we can check the box for Requirement 1.4 (under reserve on the final
testing of requirements D4.0 and D5.0 once the system is built).

6. Discussion and Conclusions

Waterway systems are cost effective in the transport of bulk and containerized goods to support
global trade. Yet, they are among the most under-appreciated forms of transportation engineering
systems. Looking ahead, the long-term view is not rosy. Failures, delays, incidents and accidents
in aging waterway systems are doing little to attract the technical and economic assistance required
for modernization and sustainability. In a step toward overcoming these challenges, the purpose of
this paper has been to describe a multi-level multi-stage methodology for the model-based design,
simulation and formal verification of automated waterway operations. Challenges include the need
to work with mixtures of informal and formal model representations, mixtures of continuous (fluid
flows) and discrete (control actions) behavior and system-level behavior defined by the composition of
multiple lower-level concurrent behaviors.

To illustrate the essential features of the proposed methodology, the case study example employed
SysML for high-level representations of system structure and behavior, OpenModelica for the
simulation of continuous fluid flow behaviors and UPPAAL for the composition and formal verification
of the control system design. We have manually connected the various steps in the proposed
methodology, but moving forward, some of the model transformations could be automated and
the models organized into a design platform architecture [21]. For example, MagicDraw [30] can be
used for the generation of SysML diagrams and connected to OpenModelica (and Jython [31] and
MATLAB) through plugins. Co-simulation of concurrent behaviors is also possible through the use
of the Functional Mockup Interface (FMI) standard [32]. In either case, aggregated results of the
OpenModelica simulations show up as parameter values in blocks of SysML parametric diagrams.
Work is also underway to automate the pathway from simulation to model checking with adaptive
interval abstractions [33].
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