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Abstract- The Traveling Salesman Problem (TSP) is one of the extensively studied 

combinatorial optimization problems. Various exact or approximation algorithms are 

devised for solving Euclidean TSP that determine the shortest route through a given set 

of points in 3-dimensional Euclidean space. In this paper, we proposed a genetic 

algorithm-based solution for TSP where all points are on the surface of a sphere. A 

Java-based interactive visualization tool is also developed using Java 3D and 

optimization results obtained for different problem sizes are presented.  
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1.INTRODUCTION 

 

 The Traveling Salesman Problem (TSP) also known as the traveling salesperson 

problem is a well known, popular and extensively studied problem in the field of 

Combinatorial Optimization and attracts computer scientists, mathematicians, and 

others. Euclidean TSP which is a NP-hard problem is related with determining the 

shortest tour through a given set of points in d-dimensional Euclidean space. In metric 

TSP the nodes lie in a metric space (i.e., the distances satisfy the triangle inequality), 

whereas in Euclidean TSP the nodes lie in R
2
 (or more generally, in R

d
 for some d) and 

distance is defined using the ℓ2 norm [1].  

 

Many methods based on exact algorithms (branch-and-bound algorithms, progressive 

improvement algorithms) and approximation algorithms (genetic algorithms, simulated 

annealing, tabu search, neural nets, ant system, etc.) are devised to find solution for the 

TSP since 1950s [3] [4] [5]. Many local search methods for finding approximate 

solutions have been surveyed by [6]. GRASP [7] is iterative two phase search consists 

of a construction phase and a local search procedure [8]. Some researchers have been 

performed studies on hybrid evolutionary algorithms for better TSP results which can 

be found in [9] [10] and [11]. [12] solved 3D-TSP for the multi-dimensional city 

location. An exact solution for 15,112 German cities from TSPLIB was found in 2001 

using the cutting-plane method via linear programming. In March 2005, the TSP of 

visiting all 33,810 points in a circuit board was solved using Concorde which is a 

computer code for the symmetric TSP [2]. 
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Genetic algorithm (GA) as a computational intelligence method is a search technique 

used in computer science to find approximate solutions to combinatorial optimization 

problems. It applies biologically inspired concepts such as crossover and mutation. 

Researchers have been tackled the TSP with GAs since 1985. 

 

The k-opt method is one of the most well-known TSP solving local search algorithms. It 

improves the tour edge by edge and reverses the order of subtour [13]. The complexity 

of the k-opt algorithm is O(n
k
) where n is the number of nodes in TSP. 2-opt procedure 

was introduced by [14] for the TSP and deletes two edges from a tour and reconnects 

them those paths in the other possible way (as exchange heuristic), keeping the change 

if it leads to a better tour. 

 

A sphere is a set of points in three dimensional space equidistant from a point called the 

center of the sphere (Figure 1). The distance from the center to the points on the sphere 

is called the radius r of the sphere. All the points satisfying the following lie on a sphere 

of radius r centered at the origin as a function of 3 space coordinates (x,y,z):  

x
2
 + y

2
 + z

2
 = r

2
        (1) 

 
Figure 1. Spherical Surface, lines of longitude and latitude. 

 

A great circle is the intersection a plane and a sphere where the plane also passes 

through the center of the sphere. A geographic example of a great circle is the Earth’s 

equator. Great circles become more important when we realize that the shortest distance 

between two points on the sphere is along the segment of the great circle. This shortest 

path is called a geodesic. The curves that minimize the distance between points are 

called geodesics on any surface. Every meridian of longitude is exactly half a great 

circle. The parallels of latitude are smaller circles except for the equator. 

 

A path planning study and solution to the TSP on a cuboid can be found in [15]. We 

proposed a simple and fast algorithm for finding a solution to the TSP on a sphere as a 

different 3D shape using a hybrid method employing genetic algorithms and 2-opt in 

this study. This problem differs from the TSP in that all the cities (points) are on a 

sphere and also it is only allowed to travel on the surface of the sphere. We developed 

also 3D visualization software for spherical environments. 

 

Some of real-world objects are not ideal shapes. For example, a ball is spherical in 

shape; it is not ideal or perfect sphere. Approximated shapes and objects similar to 
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sphere can be found easily around us. The surface of the earth we live on is a good 

approximation to a sphere. The Earth is not an exact ellipsoid. It is oblate spheroid. 

Literally, geoid means Earth-shaped. The geoid is a representation and empirical 

approximation of the surface of the earth. The geoid of Earth can be expressed in the 

shape of a sphere of revolution. Other planetary bodies including planets, satellites, 

asteroids and comet nuclei are also good approximations to sphere. Some fruits (orange, 

apple, melon, pumpkin, etc.), vegetables (eggplant, onion, lettuce, etc.) and seeds are in 

this form. Geometry of egg has many features in common with that of a sphere. Some 

furniture parts human-made food products, glass products, plastic products are also 

spherical.  

Sphere is the thermodynamically most stable shape with the lowest overall surface 

energy. Sphere allows low friction in motion by rolling. Another property of the sphere 

preferred as wheels can rotate around any axis. A dome is the hollow upper half of a 

sphere and a common architectural structure element. Hemispherical dome roofs are 

preferred because of having great deal of structural strength. The sphere has the smallest 

surface area among all shapes enclosing a given volume. Surface tension minimizes the 

surface area. So, sphere instances like small water drops and bubbles appear in nature. 

An isometry of the sphere is a mapping of the sphere to itself which preserves the 

distance between points. Another example of an isometry is the antipodal map, which 

maps a point onto the point on the other side of the sphere.  

 

Structures like atoms, molecules, proteins in many research areas like chemistry, 

biology and physics are represented as spheres. So, solution of spherical TSP can find 

direct applications for micro and  macro systems such as route planning, robot path 

planning studies based on part picking, part placing. 

 

2. GENETIC ALGORITHM BASED SOLUTION FOR TSP ON A SPHERE 

  

 TSP on the surface of a sphere is a special case of the standard TSP. Salesperson 

(or walking insect, robot etc.) can only travel on the surface of the sphere where all 

points (cities in TSP terminology) lie. Constraint is that points don’t lie within the and 

outside the sphere.  

 

We define the problem as salesperson must travel and a visit N point having coordinates 

on the surface of the sphere, returning to the starting point, and is required to minimize 

the total cost of the trip. 

 

A simple and fast method was proposed for finding a solution to the TSP on the sphere: 

• Find geodesics (shortest distances) between all pairs of cities on the surface of 

the sphere.  

• Solve TSP problem using genetic algorithms and 2-opt. 

Details of the algorithm and method are given in the next subsections.  

 

2.1. Representation of a point on the surface of a sphere 

 The Cartesian description for positions along the path of a curve can be given in 

parametric form using the following vector point function [16]: 



 

 

A. Uğur, S. Korukoğlu, A. Çalışkan, M. Cinsdikici and A. Alp 
 

222 

))(),(),(()( uzuyuxuP =         (2)  

where each of the coordinates is a function of a parameter u. In most cases, we can 

normalize the three coordinate functions so that parameter u varies 0 to 1.0 [16].  

 

We can represent coordinate positions on a surface using the following Cartesian vector 

point function [16]:  

)),(),,(),,((),( vuzvuyvuxvuP =                (3) 

Each of the Cartesian coordinates is now a function of the two surface parameters u and 

v. A spherical surface with radius r and center at the coordinate origin can be described 

with the equations [16]: 

x(u,v) = r cos(2πu) sin(πv)       (4) 

y(u,v) = r sin(2πu) sin(πv) 

z(u,v) = r cos(πv)  

Parameter u describes lines of constant longitude over the surface, while parameter v 

describes lines of constant latitude [16]. Coordinate positions for different values of 

parameters u, v on spherical surface is shown in Figure 2. 

 

 
Figure 2. Coordinate positions for different values of parameters u, v on spherical 

surface. 

 

We used a unit sphere which is simply a sphere of radius one for simplification of 

calculations. Results or path lengths can be evaluated easily for spheres of radius r, 

multiplying by r.  

 

2.2. Finding geodesics between all pairs of points on the surface of unit sphere 

 Shortest distance between two points (p1, p2) on a spherical surface is along the 

arc of a great circle (Figure 3). So, it can be used the value of angle theta (θ) in radians 

between two vectors 1v  and 2v . Scalar product of two vectors is: 

θcos2121 vvvv =•         (5) 

where θ is the angle (smaller one) between two vector directions.  

Scalar product is calculated as  

zzyyxx ppppppvv 21212121 ++=•       (6) 
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Magnitudes of vectors 1v  and 2v  are 1 for points on the surface of unit sphere. So 

shortest distance formula is: 

)arccos( 21 vv •=θ         (7) 

 
Figure 3. Geodesic: shortest distance between two points on a spherical surface. 

 

Problem differs from Euclidean TSP, because shortest distance between two points (pi, 

pj) is calculated by using 3D Euclidean distance (which is a straight line) instead of arc 

length in 3D Euclidean TSP: 

222 )()()( ijijijij zzyyxxd −+−+−=       (8) 

 

Distance from any point pi to any point pj is the same as the distance from point pj to 

point pi on the sphere. In this step, NNx  symmetric distance matrix D = [d(pi; pj )] 

which gives the geodesics between all pairs of points on the spherical surface was 

computed. 

 

2.3. Solving TSP on the Surface of Unit Sphere Using Genetic Algorithms 

 After obtaining distance matrix, problem is converted to classical TSP. So any 

optimization method can be used to solve the problem using this matrix. We used a 

hybrid method that uses GA and 2opt.  

 

Genetic Algorithm  

Generate random population of n chromosomes 

Repeat 

   Evaluate the fitness f(x) for each chromosome using distance matrix. 

   Select two parent chromosomes from the population according to their fitnesses. 

   Generate new population using offsprings (children) through  

crossover with pc (crossover probability) 

2-opt mutation with pm (mutation probability) 

Until terminating condition 

 

3. JAVA 3D BASED INTERACTIVE VISUALIZATION TOOL 

  

In this study we developed a 3D tool (SphereTSP) to solve this problem using 

Java and made accessible at http://yzgrafik.ege.edu.tr/~ugur/SphereTSP/. The Java 3D 
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API (from https://java3d.dev.java.net/) must be installed on the machine and browser 

before use.  Java is an object oriented programming language that takes advantage of 

the strengths of the Internet [17]. The Java 3D API (a higher level 3D graphics API) 

which is a standard extension to the Java 2 JDK is an application programming interface 

used for writing three-dimensional graphics applications and applets. It gives developers 

high-level constructs for creating and manipulating 3D geometry and for constructing 

the structures used in rendering that geometry. Application developers can describe very 

large virtual worlds using these constructs, which provide Java 3D with enough 

information to render these worlds efficiently.    

 

Java 3D scene-graph is a collection of nodes in a tree-like graph structure. Scene graphs 

are ideal for 3D graphics applications and games. The scene-graph is an object-oriented 

data structure which consists of objects to define the geometry, sound, lights, 

transformations and appearance of visual objects. This structure is constructed of Node 

objects in parent-child relationships. Group objects allow constructing related scene 

parts by grouping together one or more child nodes. In our web-based tool, axes, points 

(cities), path lines, lines of longitude and latitude are some branch groups. 

 

Unit sphere and x, y, z axes are always in the Scene. All three principal axes (coordinate 

system) are rotated by dragging the left-mouse button over the sphere. Coordinate 

system is translated (XY plane) via a mouse drag motion by the right mouse button and 

translated in z direction by Alt-Gr + dragging the left mouse button (zoom effect).     

 

If “Lines” checkbox contains a checkmark, lines of longitude and latitude are drawn on 

the surface of the sphere (Figure 4a). If unchecked, these lines are removed. 

“Transparency On” shows all points and path on the sphere (Figure 4b). Only front 

points which are on the surface from viewing position are visible in “Transparency Off” 

mode. 

    
Figure 4. Shortest tour on the sphere for 5 points. Transparency is a) off b) on.  

 

GA Parameters can be input by the user. Solution is found quickly for small values of 

“Generation Size” and “Population Size” parameters. Better results can be obtained for 
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bigger values of these parameters. “Solve” button solves TSP on the surface of unit 

sphere using our genetic algorithm based method. Shortest path found is shown on the 

surface and tour length is set to related Text Field.   

 

 “Add Random Point” button inserts a new randomly placed point into the system (on 

the surface of unit sphere). Some point operations (u+, u-, v+, v-) can be performed on 

current point. Value of u or v is increased or decreased by 0.02. User can also specify u, 

v parameter values and add a point to this position using “Add” button, or change the 

position of the current point on the surface using “Set” button. x, y, z labels provide x, 

y, z values of current point at any time. User can change the current point using “Next” 

and “Prev” buttons. Number of points in the system appears at the bottom-left. 

“Remove” button removes the current point. “Reset” button removes all the points from 

the system.     

 

4. EXPERIMENTAL RESULTS 

 

Simulation results were obtained for N = 100, 150, 200, 250, 300, 350, 400 points on 

the unit sphere. Simulations were repeated 100 times for each value of N. A new 

random point set was generated for each trial. This approach is preferred instead of 

using predefined set of points because of generalizing the results on the unit sphere.  

 

Results which represent optimum tour length were obtained for five different genetic 

algorithm generation sizes (10, 20, 30, 40, 50 generations). Population size=100, 

crossover rate=0.80 and mutation rate=0.05 are fixed constant for all experiments. One 

point crossover was used and 2opt mutation applied. Calculated average values are 

shown in Table 2. Values are obtained for paths on the surface of a unit sphere.  
 

Table 2.  Average Spherical TSP tour lengths for N=100, 150, 200, 250, 300, 350, 400 

points on the surface of a sphere. 
Generation Number of Points 

Size 100 150 200 250 300 350 400 

10 90,1194 157,6443 227,2337 299,1799 374,1841 441,3127 532,6288 

20 72,0467 132,9872 187,7657 265,2366 333,5504 393,6967 472,2036 

30 53,0306 100,9841 162,8873 224,2341 288,0024 353,1749 439,4960 

40 42,6922 82,2588 141,7211 200,0556 259,6622 323,2888 393,7457 

50 37,1942 70,5737 115,1155 165,5674 226,1183 291,1789 354,3750 
 

Figure 5 shows the average tour lengths for different number of points on unit sphere in 

the table as a line chart.  

 

If two points are to be visited and these are antipodal points on unit sphere, tour length 

of Euclidean TSP is 4*r = 4 (attention: returning to the starting point) and tour length of 

Spherical TSP is 2 * pi = 6,283185 approximately (Figure 6).  

 

Antipodal points cause the maximum difference case between Euclidean and Spherical 

distances. There are an infinite number of great circles that pass through them for 

antipodal points. Two points on a sphere that are not antipodal define a unique great 

circle which traces the shortest path between them. 
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Figure 5. Average Tour Lengths for Different Number of Points on Unit Sphere.  

 

 
Figure 6. Antipodal points, Maximum distance on unit sphere for Spherical TSP and 

3D Euclidean TSP  
 

Optimum route found by SphereTSP for 50 points is shown in Figure 7. All points and 

path are seen at the same time in transparent mode on the left. Solid mode is useful to 

examine the surface by rotating the sphere system on the right. As in the figure, route 

found by using optimization techniques may not be the best, especially in large problem 

sizes. 

 

   
Figure 7. Minimum tour obtained on the sphere for randomly placed 50 points 

 

Better results can also be obtained by spending more time for unit sphere by changing 

values of parameters Generation size, Population size, Crossover rate and Mutation rate. 



 

 

Genetic Algorithm Based Solution for TSP on a Sphere 
 

227 

Increasing generation and population sizes will improve results for more points. Also, 

genetic algorithm based part of our method can be replaced by any other methods 

developed or will be developed for solving TSP by considering speed or large problem 

size issues. 

 

5. CONCLUSION 

 

Two important contributions of this paper are to be the first serious application of TSP 

on sphere which is one of the most common natural object shapes and to propose a 

simple and efficient genetic algorithm based solving method for spherical TSP which is 

different from 3-dimensional Euclidean TSP. Planar geometry is sometimes called flat 

or Euclidean geometry. The geometry of the two dimensional surface of a sphere is 

spherical geometry which is an example of a non-Euclidean geometry. Lines in plane 

geometry are replaced by great circles in spherical geometry. For example, minimum 

distance between points which is a straight line in plane geometry is replaced by 

geodesics (great circles). Another contribution is to develop java and web based 3D tool 

to experiment TSP on the surface of the sphere. Future work is to implement and adapt 

current best exact solution methods (i.e. Concorde) besides genetic algorithms to our 

method for solving spherical TSP. 

 

Adapting TSP to sphere and method we proposed are important for path planning 

studies on the surface of planets especially Earth and Mars or satellites especially moon 

and small ones. Part placing, picking or visiting vehicles (rovers, robots, etc.) 

determining the shortest tour will be more important in the field of planetary 

exploration. Autonomous and optimal path-planning by considering energy 

consumption is important for planetary rovers analyzing or picking rock and soil 

samples from different parts of these kinds of structures. Method can also be applied to 

long-range flights on Earth for air cargo services. Path planning on hemispherical crater 

cavity surfaces is another interesting area for this. Method (and tool) is also useful for 

understanding and comparing with insect behaviors on spherical structures such as 

orange and dome roof.  

 

High-level and web-based 3D graphics API’s will play important role to develop new 

3D optimization and artificial intelligence algorithms. Combining 3D optimization 

techniques with 3D visualization and computer graphics makes the area more enjoyable 

and understandable. 
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