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Abstract: As brain-computer interfaces (BCI) must provide reliable ways for end users to accomplish
a specific task, methods to secure the best possible translation of the intention of the users are
constantly being explored. In this paper, we propose and test a number of convolutional neural
network (CNN) structures to identify and classify single-trial P300 in electroencephalogram (EEG)
readings of an auditory BCI. The recorded data correspond to nine subjects in a series of experiment
sessions in which auditory stimuli following the oddball paradigm were presented via earphones
from six different virtual directions at time intervals of 200, 300, 400 and 500 ms. Using three different
approaches for the pooling process, we report the average accuracy for 18 CNN structures. The results
obtained for most of the CNN models show clear improvement over past studies in similar contexts,
as well as over other commonly-used classifiers. We found that the models that consider data from
the time and space domains and those that overlap in the pooling process usually offer better results
regardless of the number of layers. Additionally, patterns of improvement with single-layered CNN
models can be observed.

Keywords: convolutional neural networks (CNN); auditory brain-computer interface (BCI); P300;
virtual sound; electroencephalogram (EEG); pool strategies; classification

1. Introduction

Brain-computer interfaces (BCI) provide a way for their users to control devices by basically
interpreting their brain activity [1]. BCI have enormous potential for improving quality of life,
particularly for those who have been affected by neurological disorders that partially or fully impede
their motor capacities. In severe conditions such as complete locked-in syndrome (CLIS), patients are
unable to willfully control movements of the eye or any other body part. In such cases, BCI based
on only auditory cues are a viable option for establishing a communication channel [2]. BCI can be
seen as module-based devices, where at least two essential parts can be recognized: the brain activity
recording module and the brain activity classification one.

To record brain activity, electroencephalography (EEG)-based technologies are often used
because they are noninvasive, portable, produce accurate readings and are affordable compared
with other methods [3–5]. Within the EEG readings, we can find some recognizable patterns, the P300
event-related potential (ERP) being of particular interest. The P300 is a positive deflection that can
be observed in the brain activity of a subject, and it can be elicited via cue presentation following
the oddball paradigm, an experimental setting in which sequences of regular cues are interrupted by
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irregular ones in order to evoke recognizable patterns within the brain activity of the subject. The P300
occurs between 250 and 700 ms after the presentation of an irregular cue in an experimental setting in
which the participant is asked to attend to a particular cue (an irregular one in the oddball paradigm).
The P300 has been exploited in many ways to produce a number of functional applications [6,7].
Although the specific technology used for recording the brain activity is closely tied to the final
performance of the classifier used, [8,9] demonstrated that training and motivation have a positive and
visible impact on the shape and appearance of the P300. Experimental setups using EEG and the P300
have been widely used in the development of BCI [10–13].

For data classification, machine learning models such as artificial neural networks (ANN) and
support vector machines (SVM) have not only been used widely but have also produced satisfactory
results in many BCI applications [14–18]. In recent years, the implementation of convolutional neural
networks (CNN) for classification purposes in tasks such as image and speech recognition has been
successful [19,20]. As a result, CNN have become an increasing topic of focus in various research
fields, especially those involving multidimensional data. The CNN topology enables dimensional
reduction of the input while also extracting relevant features for classification. For BCI, CNN have
successfully been used for rapid serial visual presentation (RSVP) tasks [21], as well as for navigation
in a virtual environment [22]. CNN consist of an arrangement of layers where the input goes through
a convolution and a sub-sampling process called pooling, generating in this way features and reducing
the size of the needed connections.

In the work of [15], which serves as a major inspiration and reference for the present study,
the authors advise against the use of CNN models that mix data from multiple dimensions during
the processes of the convolution layer for classification purposes in BCI. However, for our research,
we found that considering data from both the time and space domains for the pooling process of
the convolution layer results in better CNN classification accuracy. Additionally, we tested pool
processes with and without overlapping to assess whether this difference in processing impacts CNN
performance. These overlapping approaches were explored for image classification in the work of [23],
who reported better performance in the overlapping case, and with respect to speech-related tasks
in [24], who found no difference between the approaches and stated that it might depend strictly on
the data being used.

In this study, we present and test 18 different CNN models that use the above-mentioned
approaches for the pooling process, but also different numbers of convolution layers to classify
whether the P300 is present or absent in single-trial EEG readings from an auditory BCI experimental
setup. For the experiment, nine subjects were presented with auditory stimuli (100 ms of white noise)
for six virtual directions following the oddball paradigm and were asked to attend to the stimuli
coming from a specific direction at a time and count in silence every time this happened to potentially
increase the correct production of the P300. The BCI approach followed in this work is a reproduction
of the one presented in [25] as it has relevant characteristics for auditory BCI (especially portability)
such as the use of earphones to present the auditory stimuli and the capacity to simulate sound
direction through them. Unlike the work of [25], which considers only one trial interval of 1100 ms
between stimuli presentation, we considered variant time intervals (200, 300, 400 and 500 ms) between
presentations of the auditory stimuli for all 18 CNN models to evaluate the extent to which this
variation could affect the performance of the classifier.

This paper is organized as follows: Section 2 contains the information regarding the conformation
of the dataset used, such as the experimental setup and data processing. The structure of proposed
CNN models, specific parameters considered for this study and the details of the selected models are
described in Section 3. A summary of the obtained results is presented in Section 4, with a strong
focus on the similarities between the observed patterns in the performance of the structures. Finally,
in Sections 5 and 6, we discuss our results and ideas for future work.
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2. Experimental Setup and Production of the Datasets

2.1. Experiment

The dataset used for this study corresponds to the evoked P300 waves of nine healthy subjects
(8 men, 1 woman) on an auditory BCI paradigm. A digital electroencephalogram system (Active Two,
BioSemi, Amsterdam, Netherlands) was used to record the brain activity at 256 Hz. The device consists
of 64 electrodes distributed over the head of the subject by means of a cap with the distribution shown
in Figure 1a. This study was approved by the ethics board of the Nagaoka University of Technology.
All subjects signed consent forms that contained detailed information about the experiment, and all
methods complied with the Declaration of Helsinki.

By using the out of the head sound localization method [26], the subjects were presented
with stimuli (100 ms of white noise) from six different virtual directions via earphones followed
by an interval in which no sound was produced (silent interval). Figure 1b shows the six virtual
direction positions relative to the subject.

We refer to one stimulus and one corresponding silent interval as a trial. Four different trial
lengths (200, 300, 400, and 500 ms) were considered in order to analyze the impact that the speed of
the stimuli presentation could have on the identification of the P300 wave.

For the creation of this dataset, each subject completed a task, which was comprised of a collection
of 12 sessions, for each of the proposed trial lengths. Figure 1c illustrates the conformation of a task.
Each session had as the attention target a fixed sound direction that changed clockwise from one
session to another starting from Direction 1 (see Figure 1b). Subjects were asked to attend only to the
stimuli perceived to be coming from the target direction and to count in silence the number of times it
was produced. The subjects performed this experiment with their eyes closed.

In each session, around 180 pseudo-randomized trials were produced, meaning that for every six
trials, sound from each direction was produced at least once and that stimuli coming from the target
direction were never produced subsequently to avoid overlapping of the P300 wave. Thus, of the
approximately 180 trials contained in each session, only a sixth of these would contain the P300 wave
corresponding to the target stimuli.
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Figure 1. (a) 64 electroencephalogram (EEG) channel layout used in the experiments. Reference
electrodes attached to the ears; (b) Virtual disposition of the six sound directions with respect to the
user. A stimulus is being produced from Direction 3; (c) Task constitution.

2.2. EEG Data Preprocessing and Accommodation

EEG data preprocessing is conducted as follows: The recorded EEG data are baseline corrected and
filtered. Baseline correction is carried out using a first order Savitzky–Golay filter to produce a signal
approximation that is then subtracted from the original signal. In that case, the baseline correction is
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conducted for the period from −100 ms before the stimulus onset until the end of the trial (i.e., end of the
silent period after the stimulus offset). This then becomes an example in the training or testing datasets.

For the filtering process, we use Butterworth coefficients to make a bandpass filter with low
and high cutoff frequencies of 0.1 Hz and 8 Hz, respectively. Once the correction and filtering are
completed, the data are then down-sampled to 25 Hz to reduce the size of the generated examples.

To generate the training and test sets that will be input into the CNN, trials are divided into
two groups, randomly: those with and without the target stimuli. Each trial constitutes an example in
the training or test set, so there are around 180 examples for each session. As there are 12 sessions for
each task and a sixth of the trials correspond to when the stimuli were heard, a total of approximately
360 target and around 1800 non-target examples can be obtained for a single subject in one task.
The target and non-target examples are distributed as closely as possible into a 50/50 relation among
the training and test sets. Regardless of the trial length, the examples have a matrix shape of 28× 64,
which corresponds to 1100 ms of recordings along the 64 EEG channels after the stimuli were presented.
This is done to assure each example contains the same amount of information.

3. Convolutional Neural Networks

This particular neural network architecture is a type of multilayer perceptron with
a feature-generation and a dimension-reduction -oriented layer, which, together, compose what
is called a convolutional layer. Unlike other layer-based neural networks, the CNN can receive
a multidimensional input in its original form, process it and successfully classify it without a previous
feature extraction step. This is possible because the features are generated within the CNN layers,
preventing possible information loss caused by user-created features or data rearrangement. Figure 2
shows the process an input experiences before classification by one of our proposed CNN models.
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Figure 2. Structure of a convolutional neural network (CNN) depicting the results of applying
the convolution and pooling processes in the convolution layer for the input. Default pooling
(non-overlapping) is shown in this figure.

The convolution and pooling processes consist of applying patches (also known as kernels) to the
input or the result from the previous patch application to extract features and reduce their sizes. For our
study, a number M = 64 of feature maps is produced as a result of the applications of such patches, each
producing a feature map different from the other ones as the weights of the patches change. If an input,
convolution patch and pool patch with sizes of [t× s], [a× b] and [c× d], respectively, are considered,
the convolution patch is first applied to the input to extract features of interest, which generates
a feature map of size (t− a + 1)× (s− b + 1). Then, the pooling process takes place, which in our case
is max pooling. By taking a single desired value out of an area (of the feature map) defined by the size
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of the pool patch, this process generates a resulting feature map of size (t− a + 1)/c× (s− b + 1)/d
for those cases in which the pooling process does not overlap. For our case t = 28, s = 64, a, b, c, d
change depending on the patches being used. The resulting feature maps are then connected to the
output layer in which classification takes place. While in the convolution process, the applied patches
overlap, that is not normally the case for the pooling process (see Section 3.1.3 for details). In this study,
we test also CNN structures that cause the pool patches to overlap. The convolution and pooling
processes occur as many times as there are convolution layers in the CNN.

3.1. Proposed Structures

As with other neural network structures, there are several CNN parameters to be defined by the
user that will directly impact CNN performance. In this study, we considered as variables the number
of convolutional layers and the shape of convolutional and pool patches. However, the learning rate,
experiment stopping conditions, pool stride and optimization method are always the same regardless
of the structure being tested. By proposing variations to the above-mentioned parameters, we were
able to evaluate 18 different CNN structures in terms of classification rate. Figure 2 shows the general
structure of the CNN used in this study.

3.1.1. Number of Convolution Layers

We propose structures with one and two convolution layers. This is the biggest structural
difference the proposed models could exhibit as it heavily affects the size of the resulting feature
maps. Structures with more than two convolution layers are not advised for applications such as ours,
as early tests showed that the input was over simplified and the classification rate highly affected in
a negative way.

3.1.2. Shape of Convolution and Pool Patches

Each of the EEG electrodes experiences the presence of the P300 wave in different magnitudes,
and there are certain regions that are more likely to show it. This has been reported by different
studies [14,25]. However, in most studies that attempt to classify EEG data, the two-dimensional
position of the channels along the scalp of the user is mapped, generating a one-dimensional array
that positions channels from different regions of the brain next to one another.

Given that applying either of the kernels in a squared-shaped fashion like that demonstrated
in Figure 2 will result in feature maps that mix data from both the space and time domains, it is
advised [14] that patches be constructed such that they only consider information of one dimension
and one channel at a time. In this study, we considered three different convolution and pool patch
sizes, including one pool patch that considers data from two adjacent channels simultaneously in
the one-dimensional array. These patch sizes were chosen as a result of preliminary tests, in which
a wide number of options was analyzed using data from one subject. The different CNN structures
that were tested for this study consist of combinations of the selected number of layers and sizes of
convolution and pool patches, which are summarized in Table 1. For a given number of convolution
layers, the nine possible combinations of convolution and pool patches are considered. For the CNN
with two layers, the same combination of convolution and pool patches is used in each layer. For the
pooling operation, max pooling is applied.

Table 1. Proposed and tested number of convolution layers, size of convolution patches and size of
pool patches.

Convolution Layers 1 2

Size of convolution patch 2× 1 4× 1 5× 1
Size of pool patch 2× 1 3× 1 3× 2
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For easier identification within the text, we will use brackets to refer to the patches listed above,
e.g., pool patch [3× 2]. The convolution layers will only be referred to as layers in the following
sections. In this study, 64 feature maps of the same size are generated after the convolution.

3.1.3. Pool Stride

For this study, a fixed pool stride of size 2× 1 was considered for all 18 proposed CNN structures.
Normally, the pool stride is the same size as the pool patch, which means that the pool process takes
place in areas of the data that do not overlap. However, in early tests, that approach proved to be
inadequate especially for the structures with two convolution layers. A fixed pool stride as the one
proposed in this study implies that the area in which the pool kernels are applied overlap for the [3× 1]
and the [3× 2] pool patches. The consequences of fixing the pool stride for the proposed pool patches
can be seen in Figure 3, where the gray areas are those that the pool process has already considered,
while the dark-colored ones correspond to those areas considered more than once (overlap) in the
current application of the pool patches. Regardless of the pool patch size, their application occurs
one space to the right of the previous one at a time and, when meeting the end of the structure, going
back to the start, but spaced two spaces vertically. Although the consequences of the overlapping
pooling process are still unknown in the application of CNN in BCI, this approach has successfully
been used for image recognition [23]. With the selected size of the fixed pool stride and the proposed
pool patches, we can account for CNN that do not experience overlapping in the case of pool patch
[2× 1], other ones that do experience overlap for the [3× 1] patch and, finally, models that experience
overlapping and also consider data from two channels simultaneously, which corresponds to the pool
patch [3× 2]. Depending on the pool strategy used, the size of the resulting feature map varies slightly.
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Figure 3. Proposed pooling patches applied on a 5× 3 structure to show overlapping caused by the
fixed pooling stride. Gray areas represent those in which the patch has been applied, and dark-colored
areas are those in which the patch overlaps with previous iterations.

3.1.4. Learning Rate

The discussion towards learning rate usually goes in two directions: whether it is chosen based
on how fast it is desired for the training to be finished or depending on the size of each example in
the dataset. The learning rate used for this study is 0.008. Several other learning rate values ranging
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from 0.1 to 0.000001 were tested in preliminary tests with noticeable negative repercussions for CNN
performance, either with respect to the time required to train or the overall classification rate. The value
was chosen as it allows one to see gradual and meaningful changes in the accuracy rate evolution
during both training and test phases.

3.1.5. Optimization Method

We used stochastic gradient descent (SGD) to minimize the error present during training.
The work of [27] has demonstrated that this method is useful for training neural networks on large
datasets. For this case, the error function E(w) is given as a sum of terms for a set of independent
observations En(w), one for each example or batch of examples in the dataset being used in the form:

E(w) =
N

∑
n=1

En(w). (1)

Thus, making the weight updates based on one example or batch of examples at a time, such that:

w(τ+1) = w(τ) − η∇En(w(τ)) (2)

where w is the weight and bias of the network grouped together (weight vector), τ is the number of
iterations of the learning process in the neural network, η is the learning rate and n ranges from one
to Q, which is the maximum number of examples or possible batches in the provided set depending
on whether the batch approach is used or not. For this study, batches of 100 examples were used when
training any of the proposed CNN structures.

3.1.6. Output Classification

We used a softmax function to evaluate the probability of the input x belonging to each of the
possible classes. This is done by:

p(Ck|x) =
p(x|Ck)p(Ck)

∑j p(x|Cj)p(Cj)
, (3)

where Ck is the current class being considered, and j = 1, ..., L, where L represents the maximum number
of classes. After the probability is computed for each class, the highest value is forced to one and the
rest to zero, forming a vector of the same size as the provided teaching vector (labels). The vectors are
then compared to see if the suggested class is the same as the one given as the teaching vector.

3.1.7. Accuracy Rate

As the data-sets used for training and testing the different CNN contained examples for two classes
of stimuli (target and non-target) in different amounts, the accuracy rate is defined by the expression:

accuracy =

√
TP
P
× TN

N
, (4)

which heavily penalizes poor individual classification performance in binary classification tasks.
TP stands for true positives and is the number of correctly classified target examples, and TN, which
stands for true negatives, is the number of correctly classified non-target examples. P and N represent
the total number of examples of the target and non-target classes, respectively, for this case.

All the CNN structures were implemented using a GeForce GTX TITAN X GPU by NVIDIA in
Python 2.7 using the work developed by [28].
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4. Results for P300 Identification

In this section, we compare the obtained results from the 72 CNN models (18 for each of the
four trial intervals) and group them in two different ways in order to facilitate the appreciation of
patterns of interest. First, the obtained accuracy rates with fixed convolution patches as seen in Table 2
are discussed. Then, we describe the results of models with fixed pool patches, as shown in Table 3.
These two ways of presenting the same results allows one to recognize some performance patterns
linked to the convolution or pool patches used for each model. The results show the mean accuracy of
each model for the nine subjects that took part in the experiment. At the same time, the results are the
mean value obtained from a two-fold cross-validation, where the accuracy for each fold was calculated
using Equation (4).

The highest accuracy rate obtained among all the tested models was 0.927 for trials 500 ms long
in the model with one layer, convolution patch [4× 1] and pool patch [3× 2]. The lowest accuracy
rate was 0.783 for trials 200 ms long in the model with two layers, convolution patch [5× 1] and pool
patch [2× 1].

Table 2. Summarized results for the 18 convolutional neural networks (CNN) structures for all
considered trial lengths with fixed convolution patches. PP = pool patch, CP= convolution patch,
CL= convolution layers.

500 ms 400 ms 300 ms 200 ms

CP PP CL 1 CL 2 CL 1 CL 2 CL 1 CL 2 CL 1 CL 2

[2× 1]
[2× 1] 0.882 0.915 0.860 0.914 0.850 0.903 0.842 0.880
[3× 1] 0.920 0.910 0.899 0.906 0.865 0.883 0.880 0.891
[3× 2] 0.907 0.910 0.919 0.906 0.881 0.884 0.897 0.887

[4× 1]
[2× 1] 0.855 0.869 0.867 0.880 0.796 0.809 0.837 0.814
[3× 1] 0.880 0.884 0.901 0.864 0.858 0.855 0.838 0.832
[3× 2] 0.927 0.916 0.912 0.868 0.872 0.836 0.911 0.848

[5× 1]
[2× 1] 0.869 0.840 0.855 0.867 0.805 0.827 0.841 0.783
[3× 1] 0.896 0.847 0.880 0.868 0.874 0.839 0.841 0.826
[3× 2] 0.897 0.857 0.895 0.859 0.890 0.824 0.915 0.820

Table 3. Summarized results for the 18 CNN structures for all considered trial lengths with fixed pool
patches. PP = pool patch, CP= convolution patch, CL= convolution layers.

500 ms 400 ms 300 ms 200 ms

PP CP CL 1 CL 2 CL 1 CL 2 CL 1 CL 2 CL 1 CL 2

[2× 1]
[2× 1] 0.882 0.915 0.860 0.914 0.850 0.903 0.842 0.880
[4× 1] 0.855 0.869 0.867 0.880 0.796 0.809 0.837 0.814
[5× 1] 0.869 0.840 0.855 0.867 0.805 0.827 0.841 0.783

[3× 1]
[2× 1] 0.920 0.910 0.899 0.906 0.865 0.883 0.880 0.891
[4× 1] 0.880 0.884 0.901 0.864 0.858 0.855 0.838 0.832
[5× 1] 0.896 0.847 0.880 0.868 0.874 0.839 0.841 0.826

[3× 2]
[2× 1] 0.907 0.910 0.919 0.906 0.881 0.884 0.897 0.887
[4× 1] 0.927 0.916 0.912 0.868 0.872 0.836 0.911 0.848
[5× 1] 0.897 0.857 0.895 0.859 0.890 0.824 0.915 0.820

4.1. Fixed Convolution Patches

Producing good results by mixing information from two adjacent channels in a mapped channel
vector was considered with skepticism. However, if a direct comparison between the structures with
different pool patches is considered (see Table 2), in all cases but one for the one-layered structures and
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considering all trial lengths, the best results were obtained by those models using the pool patch [3× 2],
which considers both spatial and temporal information. This behavior is not seen for models that use
two layers. Additionally, regardless of the number of layers, 58.3% (42 models) of the time, the best
results were from structures that used pool patch [3× 2], 25% (18 models) of the time for when pool
patch [3× 1] was applied and 16.6% (12 models) of the time for structures that used pool patch [2× 1].

With respect to the convolution patch [5 × 1] for trials 200 ms long, the lowest accuracy
corresponded to the structure with one layer and pool patch [2× 1]. In this condition, an accuracy rate
of 0.915 was also achieved by another structure (one layer and pool patch [3× 2]), thus representing
the biggest accuracy rate gap (around 13%) among results produced for a trial of the same length and
convolution patch.

4.2. Fixed Pool Patches

In Table 3, the results are now accommodated by fixing the pool patches. Comparing results
between different convolution patches on the structures with one and two layers separately reveals
a tendency for the convolution patch [2× 1] to offer the best accuracy rates for 70.8% of the cases
(51 models). As for the convolution patches [4× 1] and [5× 1], for 16.6% (12 models) and 12.5%
(9 models) of the time, they produce the best results, respectively. If only the two-layer models are
considered, the convolution patch [2× 1] offers the best results for all cases except one (the model
with PP = [3 × 2] and CP = [2 × 1]), similar to the pattern for the one-layer models in Table 2
discussed before.

4.3. Mean Accuracy Rate for Fixed Patches

Given the fixed convolution or pool patches presented in Tables 2 and 3, the mean accuracy for all
possible CNN models is presented in Figure 4 to show the differences in patch performance.

fixed convolution patches fixed pool patches

[2 x 1]
[4 x 1]

[5 x 1]
[2 x 1]

[3 x 1]
[3 x 2]

0.9

0.8

0.7

a
cc

u
ra
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Figure 4. Mean accuracy, along with the accuracy’s standard deviation, for all models with fixed
convolution patches (left) and pool patches (right).

For the convolution patches, [2 × 1] achieved the overall highest accuracy (presented with
the standard deviation), i.e., with 0.891 ± 0.021, followed by [4 × 1] and [5 × 1], in that order,
with 0.864± 0.034 and 0.855± 0.032, respectively. As for the pool patches, the approach in which the
pool patch is the same size as the pool stride, i.e., no overlapping occurs, yielded the lowest overall
accuracy at 0.853± 0.026, followed by [3× 1], the patch representing the overlapping pool process,
with 0.872± 0.035, and finally, by the pool patch that not only causes overlap, but also considers data
from two adjacent channels in the mapped version of the channels, [3× 2], with 0.885± 0.03.
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5. Discussion

In this study, we proposed and tested the efficacy of 18 different CNN for classifying the presence
or absence of the P300 wave from the EEG readings of nine subjects in an auditory BCI with virtual
direction sources. We approached the classification task by testing three pooling strategies and
considering four different trial lengths for the presentation of the auditory stimuli. The implementation
of the mentioned strategies is possible due to the fixed pooling stride explained in Section 3.1.3 and
present in all of the CNN models. The fixed pooling stride also prevents the resulting feature maps
from being oversimplified, as having a stride that matches the size of the pooling kernel might not be
possible in all cases due to the down-sampling of the data.

5.1. Pooling Strategies and Other Studies

The first pooling strategy, represented by pool patch [2× 1], is the most common approach used
in CNN and consists of a pooling process in which the pool patch and stride are of the same size.
In this study, this approach led to the lowest general accuracy rates.

The goal of the second strategy, represented by [3× 1], is to cause overlapping of the pool patches.
This strategy has been tested in previous work, although with data of a very different nature. While [24]
reported no differences between performance for approaches with or without overlapping for speech
tasks, we have found that, as in the work of [27], better CNN model performance can be achieved
using an overlapping pool strategy.

The third strategy, represented by pool patch [3 × 2], showed that the performance of the
overlapping strategy can be further enhanced by also considering data from two different adjacent
channels simultaneously. This consideration is not applied to the original input, but rather to feature
maps generated after the convolution patch is applied.

Past studies involving the classification of single-trial P300 includes the work of [14], in which
results are reported for P300 identification using raw data from Dataset II from the third BCI
competition [17]. Rather than changing the parameters of a CNN model, they presented the results
of changing the way the input is constructed. In the best scenario, they achieve accuracy rates of
0.7038 and 0.7819 for each of two subjects, with a mean accuracy of 0.7428. In the work of [29],
three experiments were conducted, which compared different classifiers for classification of single-trial
ERPs for rapid serial visual presentation (RSVP) tasks. They found that the best performance is
achieved by a CNN, with a mean accuracy and standard deviation of 0.86± 0.073. Another RSVP task
is presented in [21] where CNNs are also used for classification. By applying the CNN classifier, they
found that they could improve the results obtained in previous studies. These studies are well known,
but were not focused on single-trial P300 classification; however, they present approaches that inspired
this work and provide a reference to what has normally been achieved in this context.

In [25], single trial P300 classification is reported as part of their results. By using support vector
machines (SVM), they achieve a mean accuracy rate of approximately 0.70 for seven subjects when
considering a reduced number of EEG channels. Another case of a single-trial identification attempt
comes from [30], where Fisher’s discriminant analysis (FDA) regularized parameters are searched for
using particle swarm optimization, achieving an accuracy of 0.745 for single trials and no channel
selection. These results can be fairly compared to ours (see Section 5.4), as the goal of these studies,
their experimental setup and BCI approach are the same as the ones we present.

In this study, the highest mean accuracy rate for nine subjects was 0.927, and the lowest was 0.783.
The mean accuracy rates for all the models for fixed trial intervals were 0.855± 0.036, 0.853± 0.031,
0.884± 0.021 and 0.888± 0.026 for the 200-, 300-, 400- and 500-ms trial interval, respectively.

5.2. Convolution Patches and Number of Layers

Although we approached this study expecting the pooling strategies to play the most relevant role
performance-wise, we also observed patterns of improvement depending on the selected convolution
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patch (as presented in Figure 4) and the number of layers. Considering less information in the time
domain for the convolution process leads to better mean accuracy rates. We found the difference
between the highest and lowest mean accuracy rate in the convolution patch to be 0.036, which is
slightly bigger than the difference between the lowest and highest mean accuracy rates between the
tested pool strategies (0.032).

On a related matter, the models with only one layer outperformed those with two layers in
21 (58.3%) of the 36 cases. As each time the pool patch is applied, the size of the input is reduced
significantly, a large number of layers might produce an oversimplification of the input. In our
preliminary research, models with three and four layers were tested for different tasks using the
datasets described in this work; however, they performed poorly in comparison to models with
only one or two layers. This situation might be different if the input we used did not consist of
down-sampled data, therefore not falling into the oversimplification problem with the proposed
CNN models.

To analyze whether the down-sampling negatively affects the performance of the CNN, we used
non-down-sampled data to test the model that achieved the highest accuracy as reported in Section 4.
The results, which favor the down-sampled data, can be seen in Figure 5.

downsampled data non-downsampled data
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Figure 5. Difference in mean accuracy for the model with the highest performance using down-sampled
and non-down-sampled data.

By using down-sampled data, we could not only boost the accuracy with respect to the
non-down-sampled data, but also shorten the training/testing times inherent in the size of the input.

5.3. Alternative Training Approach

For the results presented in Section 4, we used the training approach ‘single subject approach’
described in Section 5.3.1 trying to achieve the best possible performance. However, the ‘combined
subjects approach’ described in Section 5.3.2 is also a viable way to address CNN training. Next, we will
discuss the differences between both approaches and offer results that support our decision to
implement the former.

5.3.1. Single-Subject Approach

This approach consists of training one CNN using the data of a single subject at a time for each
trial length. As the ability to correctly recognize irregular auditory cues varies from one subject to
another, this approach allows some of the trained CNN models to perform particularly well if the
data come from a subject that excelled in the recognition task. The drawback of using this approach
is the large amount of time needed to obtain the mean accuracy of a single CNN model as each of
the proposed structures is trained individually for each subject. Therefore, considering a single trial
length, 9× 18 CNN were trained. The mean accuracy rate obtained for all subjects is presented as the
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result for a single CNN model. The average time spent on training was about 20 min for the structures
with one convolution layer and approximately 27 min for those with two layers.

5.3.2. Combined Subjects Approach

This approach consists of training only one CNN with examples from all of the subjects for each
different trial length and then testing each subject individually on the trained CNN. This approach
allows one to decrease the number of CNN to train in order to obtain the average accuracy rate for
a single CNN model and therefore the time needed to analyze the results. Using this approach also
means that the number of examples for training and testing will increase by the number of subjects.
A major drawback of this approach is that subjects who fail to recognize the irregular auditory cues will
produce examples that do not contain the P300 even if they are labeled otherwise, negatively affecting
the CNN performance. For a single CNN model considering data from all subjects, the average time
spent on training was about 32 min for the structures with one convolution layer and approximately
39 for those with two layers.

The model that exhibited the best performance in Section 4 was chosen to be tested using also the
previously explained combined subjects approach to determine if it offered better performance than
that of the currently used approach. Table 4 shows the comparison between the results for the single
subject and combined subjects approaches for each subject considering the CNN structure with the
overall highest accuracy rate (one layer, convolution patch [4× 1], pool patch [3× 2]). The difference
in the mean accuracy rate is about 6%, in favor of the single-subject approach. If subjects are compared
in terms of the two approaches, the combined subjects approach is better only in one out of the nine
cases. Subject 9, which produced the lowest accuracy in the single-subject approach, benefited slightly
from the combined subjects approach. In the eight cases in which the single-subject approach obtains
better results, the accuracy rates between both approaches varies between 0% and 11%, depending
on the subject. Figure 6 shows the receiver operating characteristic (ROC) curves for each of the nine
subjects for the CNN model with the highest accuracy under the single-subject approach. These curves
can serve to better understand the results presented in Table 4 for such an approach.

Although there is a substantial difference between both approaches of about five times in terms
of the amount of time each one required to produce the mean accuracy, the single-subject approach
offered better results.
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Figure 6. Receiver operating characteristic (ROC) curves of each subject for the CNN model with
one layer, convolution patch [4× 1] and pool patch [3× 2] using the single-subject approach.
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Table 4. Comparison between the accuracy rates obtained for the single-subject (SS) and combined
subject (CS) approaches for the CNN model with 1 layer, convolution patch [4 × 1] and pool
patch [3 × 2].

500 ms

Subject SS CS

1 0.926 0.858
2 0.893 0.817
3 0.914 0.912
4 0.948 0.877
5 0.969 0.851
6 0.953 0.854
7 0.969 0.915
8 0.916 0.836
9 0.854 0.865

Average accuracy 0.927 0.865

5.4. CNN and Other Classifiers

As presented in Section 5.1, there are many studies related somehow to the one we present now.
We considered it appropriate to compare some of the classifiers those works present that are not CNN.
To compare the obtained results from the CNN with other classifiers, we used support vector machines
(SVM) and Fisher’s discriminant analysis (FDA) for all of the available trial lengths. Details for how
we implemented these two classifiers can be found in the Appendix. Table 5 shows the comparison
between the accuracy, precision and recall results obtained from the SVM, FDA and the CNN model
that achieved the highest accuracy rate in four different trial intervals: 200, 300, 400 and 500 ms.

Table 5. Comparison between the overall accuracy rates, precision and recall obtained for the CNN
model with the highest accuracy rate, support vector machines (SVM) and Fisher’s discriminant
analysis (FDA).

Accuracy Precision Recall

CNN SVM FDA CNN SVM FDA CNN SVM FDA

500 ms 0.927 0.709 0.745 0.994 0.37 0.43 0.826 0.70 0.71
400 ms 0.912 0.711 0.731 0.987 0.37 0.41 0.836 0.70 0.68
300 ms 0.872 0.691 0.707 0.992 0.35 0.39 0.766 0.68 0.65
200 ms 0.911 0.662 0.688 1.00 0.34 0.36 0.833 0.62 0.61

The results from CNN with the highest accuracy compared to those of the SVM or the FDA are
clearly higher, and this difference decreases if we take into consideration the lowest accuracy obtained
by one of our CNN models, which is 0.783, with a precision of 1.0 and a recall of 0.618 for the 200-ms
trial interval.

5.5. Future Work

Like many previous studies, we used a mapped version of the EEG channels to create
a two-dimensional input for CNN. However, EEG data, especially those recorded during experiments
conducted using the oddball paradigm, exhibit areas where irregular events have more visible
repercussions. For this reason, it is of interest in the future for EEG analysis that the input of the CNN
is a three-dimensional structure. Images have this kind of topology, in which two dimensions are used
for the position of pixels and three channels define the color of a given pixel. Thus, instead of analyzing
one channel at a time to avoid mixing spatial and temporal information, larger two-dimensional
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patches could be used in both the convolution and pooling process to address a specific moment in the
EEG readings. The result would be a map showing the complete brain activity in that particular point.

Embracing different training schemes to reduce the computation time needed for the results to be
obtained should be considered. The presented accuracy rates were obtained by training and testing
a CNN for each subject on each of the proposed structures and repeating that for the different trial
lengths, resulting in long training sessions to obtain the mean accuracy rate of a single structure.

6. Conclusions

By proposing and testing CNN models to classify single-trial P300 waves, we obtained state of
the art performances for CNN models using different pooling strategies in the form of mean accuracy
rates for nine subjects. We proved that, in off-line classification, single-trial P300 examples could be
correctly classified in the auditory BCI we proposed, which uses headphones to produce sound from
six virtual directions, thus reducing the amount of hardware needed to implement the BCI in real
life. While similar previous studies obtained accuracy rates varying from approximately 0.70 to 0.745,
we found mean accuracy rates ranging from 0.855 to 0.888 depending on the trial interval and from
0.783 to 0.927 if individual models are considered. We achieved this by applying different pooling
strategies that affect the performance of CNN models dealing with EEG data for classification purposes,
as well as using a different number of convolution layers. We found that either of the approaches that
overlap in the pooling process or also consider data from two adjacent channels performed better than
the most common approach, which uses a pooling stride that is the same size as the pool patch and
only considers data from one channel at a time. In most cases, models with simple structures (only
one layer) perform better for this type of case and also offer faster training times. Other improvement
patterns were also observed for the different convolution patches, as well as for how to approach the
training and testing of CNN models.
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Appendix A

SVM

Analysis was performed using LIBSVM software [31] and implemented in MATLAB (MathWorks,
Natick, MA, USA). We used a weighted linear SVM [32] to compensate for imbalance in the
target and non-target examples. Thus, we used a penalty parameter of C+ for the target and
C-for the non-target examples. The penalty parameter for each class was searched in the range
of 10−6 to 10−1 (10−6 ≤ 10m ≤ 10−1; m: −6:0.5:−1) within the training. We determined the best
parameters as those that obtained the highest accuracy using 10-fold cross-validation for the training.
Using the best penalty parameters, we constructed the SVM classifier using all training data and
applied it to the test data.

FDA

We used a variant of the regularized Fisher discriminant analysis (FDA) as the classification
algorithm [30]. In this algorithm, a regularized parameter for FDA is searched for by particle swarm
optimization (for details, see [30]) within the training. In this study, we used all EEG channels
without selection.
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