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1. Introduction

All graphs considered in this paper are simple, finite and undirected. Chartrand et al. in [1]
proposed the following problem. Assign positive integer labels from the set {1, 2, . . . , k} to the edges
of a simple connected graph of order at least three in such a way that the graph becomes irregular,
i.e., the weights (label sums) at each vertex are distinct. What is the minimum value of the largest label
k over all such irregular assignments? This parameter of a graph G is well known as the irregularity
strength of the graph G. An excellent survey on the irregularity strength is given by Lehel in [2].
For recent results, see the papers by Amar and Togni [3], Dimitz et al. [4], Gyárfás [5] and Nierhoff [6].

Motivated by these papers in [7], an edge irregular k-labelling as a vertex labelling ρ : V(G)→
{1, 2, . . . , k} was defined, such that for every two different edges xy and x′y′, there is wρ(xy) 6=
wρ(x′y′), where the weight of an edge xy ∈ E(G) is wρ(xy) = ρ(x) + ρ(y). The minimum k for which
the graph G has an edge irregular k-labelling is called the edge irregularity strength of the graph G,
denoted by es(G). In [7] are estimated the bounds of the parameter es(G), and the exact values of the
edge irregularity strength for several families of graphs are determined, namely paths, stars, double
stars and the Cartesian product of two paths.

In [8], the authors defined the total labelling ϕ : V(G) ∪ E(G) → {1, 2, . . . , k} to be an edge
irregular total k-labelling of the graph G if for every two different edges xy and x′y′ of G one has
wtϕ(xy) = ϕ(x) + ϕ(xy) + ϕ(y) 6= wtϕ(x′y′) = ϕ(x′) + ϕ(x′y′) + ϕ(y′). The total edge irregularity
strength, tes(G), is defined as the minimum k for which G has an edge irregular total k-labelling.
Estimations of this parameter are obtained in [8], which provides the precise values of the total edge
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irregularity strength for paths, cycles, stars, wheels and friendship graphs. Further results on the total
edge irregularity strength can be found in [9–15].

The seminal problem for irregular labellings from [1] arose from a consideration of graphs with
distinct degrees. In a simple graph, it is not possible to construct a graph in which every vertex
has a unique degree; however, this is possible in multigraphs (graphs in which we allow multiple
edges between the adjacent vertices). The question then became: “What is the smallest number of
parallel edges between two vertices required to ensure that the graph displays vertex irregularity?”
This problem is equivalent to the labelling problem as described at the beginning of this section.

Using both [1,8] as the motivation, in [16], the authors decreed that the vertex labels should
represent loops at the vertex. The consequence was two-fold; first, each vertex label was required to be
an even integer, since each loop added two to the vertex degree; and second, unlike in total irregular
labelling, the label 0 was permitted as representing a loopless vertex. Edges continued to be labelled
by integers from one to k.

Thus, for a graph G, in [16] are defined labellings fe : E(G)→ {1, 2, . . . , ke} and
fv : V(G)→ {0, 2, . . . , 2kv}, and then, labelling f is a total k-labelling of G defined such that f (x) =
fv(x) if x ∈ V(G) and f (x) = fe(x) if x ∈ E(G), where k = max{ke, 2kv}.

The total k-labelling f is called an edge irregular reflexive k-labelling of the graph G if for
every two different edges xy and x′y′ of G, one has wt(xy) = fv(x) + fe(xy) + fv(y) 6= wt(x′y′) =

fv(x′) + fe(x′y′) + fv(y′). The smallest value of k for which such labelling exists is called the reflexive
edge strength of the graph G and is denoted by res(G).

The result of this variation was not widely manifest in the labelling strengths, but did produce
some important outcomes:

tes(K5) = 5 whereas res(K5) = 4

The effect of this change was immediate in the following conjecture where we were able to remove
the pesky exception.

Conjecture 1. From [12]. Any graph G with maximum degree ∆(G) other than K5 satisfies:

tes(G) = max
{⌈

∆+1
2

⌉
,
⌈
|E(G)+2

3

⌉}
In terms of reflexive edge irregularity strength, we now propose:

Conjecture 2. Any graph G with maximum degree ∆(G) satisfies:

res(G) = max
{⌊

∆+2
2

⌋
,
⌈
|E(G)|

3

⌉
+ r

}
where r = 1 for |E(G)| ≡ 2, 3 (mod 6), and zero otherwise.

In this paper, we investigate the reflexive edge strength for generalized friendship graphs.
The friendship graph fm is a collection of m triangles with a common vertex. It may be also
pictured as a wheel with every alternate rim edge removed. Let us mention that the reflexive edge
strength for wheels can be found in [17]. The generalized friendship graph fn,m is a collection of
m cycles (all of order n), meeting at a common vertex. We will refer to the friendship graph fm

as an instance of the generalized friendship graph and write it as f3,m. The generalized friendship
graph may also be referred to as a flower; see [18]. In this nomenclature, the cycles are referred
to as petals. For our purposes, we refer to vertices in the following way: the central vertex is
named x, and all other vertices are addressed in the form xj

i , where j, 1 ≤ j ≤ m indicates which
cycle contains the vertex and i, 1 ≤ i ≤ n points to the position of the vertex within the cycle.
Therefore, x = xj

n for all j. Then, we denote the edge set of the generalized friendship graph such that
E( fn,m) = {xj

i x
j
i+1 : 1 ≤ i ≤ n− 2, 1 ≤ j ≤ m} ∪ {xxj

1, xxj
n−1 : 1 ≤ j ≤ m}.



Mathematics 2017, 5, 67 3 of 11

2. Constructing an Edge Irregular Reflexive Labelling for fn,m, n = 3, 4, 5

Let us recall the following lemma proven in [16] and the theorem proven in [19].

Lemma 1. From [16]. For every graph G,

res(G) ≥


⌈
|E(G)|

3

⌉
if |E(G)| 6≡ 2, 3 (mod 6),⌈

|E(G)|
3

⌉
+ 1 if |E(G)| ≡ 2, 3 (mod 6).

The lower bound for res(G) follows from the fact that the minimal edge weight under an edge
irregular reflexive labelling is one, and the minimum of the maximal edge weights, that is |E(G)|, can
be achieved only as the sum of three numbers, at least two of which are even.

Theorem 1. From [19]. For every positive integer n ≥ 3:

res(Cn) =

{
d n

3 e if n 6≡ 2, 3 (mod 6),

d n
3 e+ 1 if n ≡ 2, 3 (mod 6).

In this section, we determine the exact value of the reflexive edge strength for the generalized
friendship graphs fn,m, n = 3, 4, 5, m ≥ 1.

Theorem 2. For every positive integer m ≥ 1:

res( f3,m) =


3 if m = 2,

m if m is even, m ≥ 4,

m + 1 if m is odd.

Proof. The graph f3,m has 3m edges; thus by Lemma 1, we have:

res( f3,m) ≥
{

m if m is even,

m + 1 if m is odd.

As f3,1 is isomorphic to C3, thus according to Theorem 1, we get res(C3) = 2.
It is easy to see that res( f3,2) ≥ 3. Two non-isomorphic edge irregular reflexive three-labellings

for f3,2 are illustrated in Figure 1.

2 0

02

1
2

1
3

12 2

2 0

02

2
1

2
3

32 0

Figure 1. Two non-isomorphic edge irregular reflexive three-labellings of f3,2.

For m ≥ 3, we distinguish two cases.
Case 1. When m is even, we define an m-labelling f of f3,m such that:

f (x) = m− 2,
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f (xj
1) = 0 j = 1, 2, . . . , m− 2,

f (xj
1) = m j = m− 1, m,

f (xj
2) = 2d j

2e − 2 j = 1, 2, . . . , m− 2,

f (xj
2) = m j = m− 1, m,

f (xxj
1) = j j = 1, 2, . . . , m− 2,

f (xxm−1
1 ) = m− 3,

f (xxm
1 ) = m− 1,

f (xxj
2) = m− 1 j = 1, 3, . . . , m− 3,

f (xxj
2) = m j = 2, 4, . . . , m,

f (xxm−1
2 ) = m− 2,

f (xj
1xj

2) = 1 j = 1, 3, . . . , m− 3,

f (xj
1xj

2) = 2 j = 2, 4, . . . , m− 2,

f (xm−1
1 xm−1

2 ) = m− 1,

f (xm
1 xm

2 ) = m.

Then, we get:

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = (m− 2) + j + 0 = m + j− 2

for j = 1, 2, . . . , m− 2,

wt f (xxm−1
1 ) = f (x) + f (xxm−1

1 ) + f (xm−1
1 ) = (m− 2) + (m− 3) + m = 3m− 5,

wt f (xxm
1 ) = f (x) + f (xxm

1 ) + f (xm
1 ) = (m− 2) + (m− 1) + m = 3m− 3,

wt f (xxj
2) = f (x) + f (xxj

2) + f (xj
2) = (m− 2) + (m− 1) + (2d j

2e − 2) = 2m− 4 + j

for j = 1, 3, . . . , m− 3,

wt f (xxj
2) = f (x) + f (xxj

2) + f (xj
2) = (m− 2) + m + (2d j

2e − 2) = 2m− 4 + j

for j = 2, 4, . . . , m− 2,

wt f (xxm−1
2 ) = f (x) + f (xxm−1

2 ) + f (xm−1
2 ) = (m− 2) + (m− 2) + m = 3m− 4,

wt f (xxm
2 ) = f (x) + f (xxm

2 ) + f (xm
2 ) = (m− 2) + m + m = 3m− 2,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = 0 + 1 + (2d j
2e − 2) = j

for j = 1, 3, . . . , m− 3,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = 0 + 2 + (2d j
2e − 2) = j

for j = 2, 4, . . . , m− 2,

wt f (xm−1
1 xm−1

2 ) = f (xm−1
1 ) + f (xm−1

1 xm−1
2 ) + f (xm−1

2 ) = m + (m− 1) + m = 3m− 1,

wt f (xm
1 xm

2 ) = f (xm
1 ) + f (xm

1 xm
2 ) + f (xm

2 ) = m + m + m = 3m.

It is not difficult to see that the edge weights are from the set {1, 2, . . . , 3m}. This shows that f is
an edge irregular reflexive labelling of f3,m for m ≥ 4 even.

Case 2. When m is odd, we define an (m + 1)-labelling f of f3,m such that:

f (x) = m− 1,

f (xj
1) = 0 j = 1, 2, . . . , m− 1,

f (xm
1 ) = m− 1,
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f (xj
2) = 2d j

2e − 2 j = 1, 2, . . . , m− 1,

f (xm
2 ) = m + 1,

f (xxj
1) = j j = 1, 2, . . . , m,

f (xxj
2) = m j = 1, 3, . . . , m− 2,

f (xxj
2) = m + 1 j = 2, 4, . . . , m− 1,

f (xxm
2 ) = m− 1,

f (xj
1xj

2) = 1 j = 1, 3, . . . , m− 2,

f (xj
1xj

2) = 2 j = 2, 4, . . . , m− 1,

f (xm
1 xm

2 ) = m.

Thus, the vertices are labelled with even numbers, and the edge weights are:

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = (m− 1) + j + 0 = m + j− 1

for j = 1, 2, . . . , m− 1,

wt f (xxm
1 ) = f (x) + f (xxm

1 ) + f (xm
1 ) = (m− 1) + m + (m− 1) = 3m− 2,

wt f (xxj
2) = f (x) + f (xxj

2) + f (xj
2) = (m− 1) + m + (2d j

2e − 2) = 2m− 2 + j

for j = 1, 3, . . . , m− 2,

wt f (xxj
2) = f (x) + f (xxj

2) + f (xj
2) = (m− 1) + (m + 1) + (2d j

2e − 2) = 2m− 2 + j

for j = 2, 4, . . . , m− 1,

wt f (xxm
2 ) = f (x) + f (xxm

2 ) + f (xm
2 ) = (m− 1) + (m− 1) + (m + 1) = 3m− 1,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = 0 + 1 + (2d j
2e − 2) = j

for j = 1, 3, . . . , m− 2,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = 0 + 2 + (2d j
2e − 2) = j

for j = 2, 4, . . . , m− 1,

wt f (xm
1 xm

2 ) = f (xm
1 ) + f (xm

1 xm
2 ) + f (xm

2 ) = (m− 1) + m + (m + 1) = 3m.

Thus also for n odd, m ≥ 3, the edge weights are distinct numbers from the set {1, 2, . . . , 3m}.
This concludes the proof.

Theorem 3. For every positive integer m ≥ 1:

res( f4,m) =

{
d 4m

3 e if m ≡ 0, 1 (mod 3),

d 4m
3 e+ 1 if m ≡ 2 (mod 3).

Proof. Let us denote m = 3r + t, where r ≥ 0 and t ∈ {0, 1, 2}.
As |E( f4,3r+t)| = 4(3r + t) = 12r + 4t, then according to Lemma 1, we get:

res( f4,3r+t) ≥
{
d 12r+4t

3 e if t 6= 2,

d 12r+4t
3 e+ 1 if t = 2.

that is:
res( f4,3r+t) ≥ 4r + 2t

for every r ≥ 0 and t ∈ {0, 1, 2}.
We define a (4r + 2t)-labelling f of f4,3r+t such that:
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f (x) = 0,

f (xj
i) = 0 j = 1, 2, . . . , r + t, i = 1, 3,

f (xj
i) = 2j− 2 j = r + t + 1, r + t + 2, . . . , 2r + t, i = 1, 3,

f (xj
i) = 4r + 2t j = 2r + t + 1, 2r + t + 2, . . . , 3r + t, i = 1, 3,

f (xj
2) = 4r + 2t j = 1, 2, . . . , 3r + t,

f (xxj
1) = 2j− 1 j = 1, 2, . . . , r + t,

f (xxj
1) = 1 j = r + t + 1, r + t + 2, . . . , 2r + t,

f (xxj
1) = 6r + 2t + 2− 2j j = 2r + t + 1, 2r + t + 2, . . . , 3r + t,

f (xxj
3) = 2j j = 1, 2, . . . , r + t,

f (xxj
3) = 2 j = r + t + 1, r + t + 2, . . . , 2r + t,

f (xxj
3) = 6r + 2t + 1− 2j j = 2r + t + 1, 2r + t + 2, . . . , 3r + t,

f (xj
1xj

2) = 2r− 1 + 2j j = 1, 2, . . . , r + t,

f (xj
1xj

2) = 2r + 1 j = r + t + 1, r + t + 2, . . . , 2r + t,

f (xj
1xj

2) = 8r + 2t + 2− 2j j = 2r + t + 1, 2r + t + 2, . . . , 3r + t,

f (xj
3xj

2) = 2r + 2j j = 1, 2, . . . , r + t,

f (xj
3xj

2) = 2r + 2 j = r + t + 1, r + t + 2, . . . , 2r + t,

f (xj
3xj

2) = 8r + 2t + 1− 2j j = 2r + t + 1, 2r + t + 2, . . . , 3r + t.

Evidently, the vertices are labelled by even numbers, and none of the labels are greater than
4r + 2t. Moreover, for the edge weights, we get the following:

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = 0 + (2j− 1) + 0 = 2j− 1

for j = 1, 2, . . . , r + t,

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = 0 + 1 + (2j− 2) = 2j− 1

for j = r + t + 1, r + t + 2, . . . , 2r + t,

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = 0 + (6r + 2t + 2− 2j) + (4r + 2t) = 10r + 4t + 2− 2j

for j = 2r + t + 1, 2r + t + 2, . . . , 3r + t,

wt f (xxj
3) = f (x) + f (xxj

3) + f (xj
3) = 0 + 2j + 0 = 2j

for j = 1, 2, . . . , r + t,

wt f (xxj
3) = f (x) + f (xxj

3) + f (xj
3) = 0 + 2 + (2j− 2) = 2j

for j = r + t + 1, r + t + 2, . . . , 2r + t,

wt f (xxj
3) = f (x) + f (xxj

3) + f (xj
3) = 0 + (6r + 2t + 1− 2j) + (4r + 2t) = 10r + 4t + 1− 2j

for j = 2r + t + 1, 2r + t + 2, . . . , 3r + t,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = 0 + (2r− 1 + 2j) + (4r + 2t) = 6r + 2t− 1 + 2j

for j = 1, 2, . . . , r + t,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = (2j− 2) + (2r + 1) + (4r + 2t) = 6r + 2t− 1 + 2j

for j = r + t + 1, r + t + 2, . . . , 2r + t,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = (4r + 2t) + (8r + 2t + 2− 2j) + (4r + 2t)
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=16r + 6t + 2− 2j

for j = 2r + t + 1, 2r + t + 2, . . . , 3r + t,

wt f (xj
3xj

2) = f (xj
3) + f (xj

3xj
2) + f (xj

2) = 0 + (2r + 2j) + (4r + 2t) = 6r + 2t + 2j

for j = 1, 2, . . . , r + t,

wt f (xj
3xj

2) = f (xj
3) + f (xj

3xj
2) + f (xj

2) = (2j− 2) + (2r + 2) + (4r + 2t) = 6r + 2t + 2j

for j = r + t + 1, r + t + 2, . . . , 2r + t,

wt f (xj
3xj

2) = f (xj
3) + f (xj

3xj
2) + f (xj

2) = (4r + 2t) + (8r + 2t + 1− 2j) + (4r + 2t)

=16r + 6t + 1− 2j

for j = 2r + t + 1, 2r + t + 2, . . . , 3r + t.

It is not difficult to see that the edge weights are from the set {1, 2, . . . , 12r + 4t}. This shows that
f is an edge irregular reflexive labelling of f4,m for m ≥ 1.

Theorem 4. For every positive integer m ≥ 1:

res( f5,m) =

{
d 5m

3 e if m 6≡ 3, 4 (mod 6),

d 5m
3 e+ 1 if m ≡ 3, 4 (mod 6).

Proof. As the number of edges of f5,m is 5m, then using Lemma 1, we obtain:

res( f5,m) ≥ k =

{
d 5m

3 e if m 6≡ 3, 4 (mod 6),

d 5m
3 e+ 1 if m ≡ 3, 4 (mod 6).

It is easy to see that for m ≡ 5 (mod 6), the number k is odd, and otherwise, k is even.
As f5,1 is isomorphic to C5, thus according to Theorem 1, we get res(C5) = 2.
From the lower bound for res( f5,m), we get that res( f5,2) ≥ 4 and res( f5,3) ≥ 6. A corresponding

edge irregular reflexive four-labelling for f5,2 and an edge irregular reflexive six-labelling for f5,3 are
illustrated in Figure 2.

0
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2

24

4

4

0
3

2

11

2

3

1

44

2

0

0

6

4

66

6

6

6

0

0 0

0

4

1

21

2

3

2
3

4

6

12

3

1 5

0

Figure 2. An edge irregular reflexive four-labelling for f5,2 and an edge irregular reflexive six-labelling for f5,3.

Let m ≥ 4. We distinguish two cases according to the parity of k.
Case 1. When m 6≡ 5 (mod 6), that is when k is an even number, we define a k-labelling f of f5,m

in the following way:

f (x) = 0,
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f (xj
i) = 0 j = 1, 2, . . . , m− 2dm−4

6 e, i = 1, 4,

f (xj
i) = k− 2dm−4

6 e j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m, i = 1, 4,

f (xj
i) = k j = 1, 2, . . . , m, i = 2, 3,

f (xxj
1) = 2j− 1 j = 1, 2, . . . , m− 2dm−4

6 e,

f (xxj
1) = 2m + 2− 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

f (xxj
4) = 2j j = 1, 2, . . . , m− 2dm−4

6 e,

f (xxj
4) = 2m + 1− 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

f (xj
1xj

2) = k + 2− 2j j = 1, 2, . . . , m− 2dm−4
6 e,

f (xj
1xj

2) = k− 2m− 4dm−4
6 e − 1 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 0 (mod 6),

f (xj
1xj

2) = k− 2m− 4dm−4
6 e − 3 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 1, 2 (mod 6),

f (xj
1xj

2) = k− 2m− 4dm−4
6 e − 7 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 3 (mod 6),

f (xj
1xj

2) = k− 2m− 4dm−4
6 e − 9 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 4 (mod 6),

f (xj
3xj

4) = k + 1− 2j j = 1, 2, . . . , m− 2dm−4
6 e,

f (xj
3xj

4) = k− 2m− 4dm−4
6 e+ 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 0 (mod 6),

f (xj
3xj

4) = k− 2m− 4dm−4
6 e − 2 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 1, 2 (mod 6),

f (xj
3xj

4) = k− 2m− 4dm−4
6 e − 6 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 3 (mod 6),

f (xj
3xj

4) = k− 2m− 4dm−4
6 e − 8 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

m ≡ 4 (mod 6),

f (xj
2xj

3) = k + 1− j j = 1, 2, . . . , m, m ≡ 0 (mod 6),

f (xj
2xj

3) = k− j j = 1, 2, . . . , m, m ≡ 1 (mod 6),

f (xj
2xj

3) = k− 1− j j = 1, 2, . . . , m, m ≡ 2 (mod 6),

f (xj
2xj

3) = k− 2− j j = 1, 2, . . . , m, m ≡ 3 (mod 6),

f (xj
2xj

3) = k− 3− j j = 1, 2, . . . , m, m ≡ 4 (mod 6).

For the edge weights, we get:

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = 0 + (2j− 1) + 0 = 2j− 1

for j = 1, 2, . . . , m− 2dm−4
6 e,

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = 0 + (2m + 2− 2j) + (k− 2dm−4

6 e)
=2m + k− 2dm−4

6 e+ 2− 2j

for j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m,

wt f (xxj
4) = f (x) + f (xxj

4) + f (xj
4) = 0 + 2j + 0 = 2j
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for j = 1, 2, . . . , m− 2dm−4
6 e,

wt f (xxj
4) = f (x) + f (xxj

4) + f (xj
4) = 0 + (2m + 1− 2j) + (k− 2dm−4

6 e)
=2m + k− 2dm−4

6 e+ 1− 2j

for j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = 0 + (k + 2− 2j) + k = 2k + 2− 2j

for j = 1, 2, . . . , m− 2dm−4
6 e.

For j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m, we have:

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = (k− 2dm−4
6 e) + f (xj

1xj
2) + k

=


3k− 2m− 6dm−4

6 e − 1 + 2j, m ≡ 0 (mod 6),

3k− 2m− 6dm−4
6 e − 3 + 2j, m ≡ 1, 2 (mod 6),

3k− 2m− 6dm−4
6 e − 7 + 2j, m ≡ 3 (mod 6),

3k− 2m− 6dm−4
6 e − 9 + 2j, m ≡ 4 (mod 6).

Furthermore, the weights of edges xj
3xj

4 for j = 1, 2, . . . , m− 2dm−4
6 e are:

wt f (xj
3xj

4) = f (xj
3) + f (xj

3xj
4) + f (xj

4) = k + (k + 1− 2j) + 0 = 2k + 1− 2j,

and for j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m, the weights are:

wt f (xj
3xj

4) = f (xj
3) + f (xj

3xj
4) + f (xj

4) = k + f (xj
3xj

4) + (k− 2dm−4
6 e)

=


3k− 2m− 6dm−4

6 e+ 2j, m ≡ 0 (mod 6),

3k− 2m− 6dm−4
6 e − 2 + 2j, m ≡ 1, 2 (mod 6),

3k− 2m− 6dm−4
6 e − 6 + 2j, m ≡ 3 (mod 6),

3k− 2m− 6dm−4
6 e − 8 + 2j, m ≡ 4 (mod 6).

Additionally, for j = 1, 2, . . . , m, we get:

wt f (xj
2xj

3) = f (xj
2) + f (xj

2xj
3) + f (xj

3) = k + f (xj
2xj

3) + k

=



3k + 1− j, m ≡ 0 (mod 6),

3k− j, m ≡ 1 (mod 6),

3k− 1− j, m ≡ 2 (mod 6),

3k− 2− j, m ≡ 3 (mod 6),

3k− 3− j, m ≡ 4 (mod 6).

Its is not difficult to see that the edge weights are distinct numbers from the set {1, 2, . . . , 5m}.
Case 2. When m ≡ 5 (mod 6), that is when k = d 5m

3 e is odd, then we define a k-labelling f of f5,m
such that:

f (x) = 0

f (xj
i) = 0 j = 1, 2, . . . , m− 2dm−4

6 e, i = 1, 4,

f (xj
i) = k− 1− 2dm−4

6 e j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m, i = 1, 4,

f (xj
i) = k− 1 j = 1, 2, . . . , m, i = 2, 3,



Mathematics 2017, 5, 67 10 of 11

f (xxj
1) = 2j− 1 j = 1, 2, . . . , m− 2dm−4

6 e,

f (xxj
1) = 2m + 2− 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

f (xxj
4) = 2j j = 1, 2, . . . , m− 2dm−4

6 e,

f (xxj
4) = 2m + 1− 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

f (xj
1xj

2) = k + 1− 2j j = 1, 2, . . . , m− 2dm−4
6 e,

f (xj
1xj

2) = k− 2m− 4dm−4
6 e+ 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

f (xj
3xj

4) = k− 2j j = 1, 2, . . . , m− 2dm−4
6 e,

f (xj
3xj

4) = k− 2m− 4dm−4
6 e+ 1 + 2j j = m− 2dm−4

6 e+ 1, m− 2dm−4
6 e+ 2, . . . , m,

f (xj
2xj

3) = k + 1− j j = 1, 2, . . . , m.

The edge weights are:

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = 0 + (2j− 1) + 0 = 2j− 1

for j = 1, 2, . . . , m− 2dm−4
6 e,

wt f (xxj
1) = f (x) + f (xxj

1) + f (xj
1) = 0 + (2m + 2− 2j) + (k− 1− 2dm−4

6 e)

=2m + k− 2dm−4
6 e+ 1− 2j

for j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m,

wt f (xxj
4) = f (x) + f (xxj

4) + f (xj
4) = 0 + 2j + 0 = 2j

for j = 1, 2, . . . , m− 2dm−4
6 e,

wt f (xxj
4) = f (x) + f (xxj

4) + f (xj
4) = 0 + (2m + 1− 2j) + (k− 1− 2dm−4

6 e)

=2m + k− 2dm−4
6 e − 2j

for j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = 0 + (k + 1− 2j) + (k− 1) = 2k− 2j

for j = 1, 2, . . . , m− 2dm−4
6 e,

wt f (xj
1xj

2) = f (xj
1) + f (xj

1xj
2) + f (xj

2) = (k− 1− 2dm−4
6 e) + (k− 2m− 4dm−4

6 e+ 2j) + (k− 1)

=3k− 2m− 6dm−4
6 e − 2 + 2j

for j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m,

wt f (xj
3xj

4) = f (xj
3) + f (xj

3xj
4) + f (xj

4) = (k− 1) + (k− 2j) + 0 = 2k− 1− 2j

for j = 1, 2, . . . , m− 2dm−4
6 e,

wt f (xj
3xj

4) = f (xj
3) + f (xj

3xj
4) + f (xj

4) = k + (k− 2m− 4dm−4
6 e+ 1 + 2j) + (k− 2dm−4

6 e)

=3k− 2m− 6dm−4
6 e − 1 + 2j

for j = m− 2dm−4
6 e+ 1, m− 2dm−4

6 e+ 2, . . . , m,

wt f (xj
2xj

3) = f (xj
2) + f (xj

2xj
3) + f (xj

3) = (k− 1) + (k + 1− j) + (k− 1) = 3k− 1− j

for j = 1, 2, . . . , m.

Also in this case, the edge weights are from the set {1, 2, . . . , 5m}.
Thus, we constructed an edge irregular reflexive labelling of f5,m for m ≥ 1.

3. Conclusions

In this paper, we proved the precise values of the reflexive edge strength for the generalized
friendship graphs fn,m for n = 3, 4, 5, m ≥ 1. According to Theorems 2–4, we conclude the paper with
the following conjecture:
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Conjecture 3. For every positive integers m ≥ 1 and n ≥ 6:

res( fn,m) =

{
dmn

3 e if mn 6≡ 2, 3 (mod 6),

dmn
3 e+ 1 if mn ≡ 2, 3 (mod 6).
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