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Abstract: This paper proposes a novel approach to detect road intersections from GNSS traces.
Different from the existing methods of detecting intersections directly from the road users’ turning
behaviors, the proposed method detects intersections indirectly from common sub-tracks shared
by different traces. We first compute the local distance matrix for each pair of traces. Second, we apply
image processing techniques to find all “sub-paths” in the matrix, which represents good alignment
between local common sub-tracks. Lastly, we identify the intersections from the endpoints of the
common sub-tracks through Kernel Density Estimation (KDE). Experimental results show that the
proposed method outperforms the traditional turning point-based methods in terms of the F-score,
and our previous connecting point-based method in terms of computational efficiency.
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1. Introduction

Automatic road map generation plays an important role in vehicle navigation systems [1–5],
intelligent traffic control [6–10], urban planning [11,12], etc. In particular, the intersections in the
road network provide very useful information, such as connectivity, topology and allowable moving
direction [13–15]. Detecting intersections before road map generation benefits building the topology
of the road network.

With the advancement of Global Navigation Satellite System (GNSS) technology in the last few
decades, it has been used ubiquitously, such as in mobile phones, wearables, watches, navigation
systems, etc. This generates enormous GNSS-derived trace data from a variety of road users. A GNSS
trace is a sequence of points with geographic coordinates (latitude, longitude) and timestamps,
collected along the route the traveler traverses. Figure 1a shows two GNSS traces on the map.
Automatic road map generation aims to infer the road network utilizing these GNSS traces and other
information obtained from them, such as moving speed and heading direction.

In literature, most researchers define an intersection as a location or an area where road users
may change their moving directions, and detect the intersections by analyzing the road users’ turning
behaviors. Karagiorgou and Pfoser used a speed threshold in combination with a change in direction
to detect the turn samples from GNSS traces [7]. An agglomerative hierarchical clustering method and
a distance threshold were applied to cluster the turn samples into intersection nodes. Wu et al. started
with finding the turning points from coarse-gained GNSS traces [16]. The intersecting points were
gathered to improve the concentration of the turning points. They then applied the X-means algorithm
to cluster the converging points into intersections [17]. Wang et al. detected conflict points, which were
defined as locations where two or more traces cross, diverge or converge, and computed the spatial
position and boundary circle of each road intersection from the conflict points [18]. In our previous
work [19], we also collected and clustered the turning points into intersections. However, we checked
the turn types at the turning points to remove mis-detected bends.
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Figure 1. An example of two GNSS traces sharing two road segments. (a) two GNSS traces, which
diverge at the star intersection from one common road segment onto two different road segments,
then converge to another common road segment at the triangle intersection; (b) the length and direction
matrices used in the Longest Common SubSequence (LCSS) procedure to find the common sub-tracks.

Although these researchers applied different algorithms to cluster the turning points into
intersections, all of them detected the turning points through thresholding the road users’ moving
direction. However, it is difficult to determine an appropriate threshold, especially considering the
fluctuations of moving direction.

Different from the methods mentioned above, Fathi and Krumm designed a localized shape
descriptor to represent the distribution of GNSS traces around a point [20]. A classifier was trained
over the shape descriptors on ground truth data, and later used to discriminate intersection points
from non-intersection points. This supervised method requests ground truth training samples and
high-sampling-rate traces, which is not suitable for automatic intersection identification.

In our previous work [21], we defined an intersection by its own property as a location connecting
three or more road segments in different directions. Based on this definition, we applied the Longest
Common SubSequence (LCSS) algorithm to find the common sub-tracks between pairwise GNSS traces,
which represent the shared road segment. We collected the endpoints of the common sub-tracks and
identified the intersections from the endpoints through Kernel Density Estimation (KDE). Using this
method, we achieved higher detection accuracy than the traditional turning point-based method.
However, LCSS could only find common sub-tracks in the same moving direction. We had to reverse
one of the traces and repeat the whole procedure to identify the common sub-tracks in opposite
directions, which increased the computational cost.

In this work, we propose detecting intersections under the same definition of connecting three
or more road segments, but employing image processing techniques to find all common sub-tracks
without reversing any of the traces. First, we compute and binarize the local distance matrix of pairwise
traces. Second, we skeletonize the binary matrix and detect the local “sub-paths”, which represent
good alignment between local common sub-tracks. Finally, we identify the intersections from the
endpoints of the common sub-tracks through KDE, the same as in our previous method [21].

The remainder of this paper is organized as follows. In the next section, we introduce the
problem of detecting intersections through common sub-tracks. Section 3 describes how we detect the
common sub-tracks between pairwise traces using image processing techniques, and how we detect
the intersections from the endpoints of the common sub-tracks. We show our experimental results in
Section 4 and present conclusions in the final section.
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2. Problem Statement

An intersection connects three or more road segments in different directions. At the intersection,
road users may merge to the same road segment from other different road segments, or split to other
different road segments from the same one. In both scenarios, the road users share one road segment
during their journeys, resulting in two GNSS track pieces on this road segment. One end of each track
piece is located at this intersection. Therefore, road intersections can be detected through finding the
common sub-tracks of the GNSS traces generated in different journeys. Figure 1a shows an example
of two GNSS traces with common sub-tracks. The traces are shown in different colors separately with
the arrows indicating the moving direction of the road users in their journeys. They first diverge at one
intersection indicated using a black star, then converge at another intersection indicated using a black
triangle, resulting in two pairs of common sub-tracks: one with five points before the star intersection,
and the other one with four points after the triangle intersection.

In our previous work, we applied a dynamic programming technique to find the longest common
subsequences [21]. A two-dimensional (2D) length matrix and a direction matrix were first created
based on the distance of the points in the GNSS traces. The longest common subsequences were
deduced by following the arrows backward through the matrices, i.e., the minimal local distance
between the points. Figure 1b shows the LCSS procedure for the two traces in Figure 1a. The optimal
path was found by following the arrows directionally from the top-right corner (the ending points of
two traces) to the bottom-left corner (the starting points of two traces).

Because of the directional path finding, our previous method could only detect the common
sub-tracks in the same moving direction; however, the sub-tracks in opposite directions were ignored.
An example is shown in Figure 2a. In the red trace r1, the road user moves from a higher-longitude
region (right on the figure) to a lower-longitude region (left on the figure). In the blue trace r2,
the road user travels through the same road segment in the opposite direction from left to right on
the figure. The local distance matrix between the points in the two traces is shown in Figure 2b. By
following the minimal local distance from the top-right corner to the left-bottom corner in the matrix,
no common sub-tracks will be detected. In our previous work, we reversed one of the GNSS traces
and implemented the same dynamic programming again, so as to find these common sub-tracks in
opposite directions. This doubled the computational cost.
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Figure 2. Cont.
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Figure 2. Examples of GNSS traces fail to find common sub-tracks using the LCSS method. (a) example
2 of two GNSS traces moving in opposite directions on the same road; (b) the local distance matrix
for Example 2; (c) example 3 of two GNSS traces sharing multiple common sub-tracks; (d) the local
distance matrix for Example 3.

Another drawback of applying dynamic programming in the finding LCSSs is that the optimal
path is deduced through the matrix directionally from one corner to its opposite (or diagonal) corner,
which may ignore some local correspondences represented by sub-paths at the other two corners.
An example is shown in Figure 2c. In the red trace r1, the road user simply moves to the right and
then down on the figure. In the blue trace r2, the road user starts at around (41.8674–87.656), moves
down to the bottom of the figure, turns to the left of the figure, moves up then right, moves down then
diverges to another road, and eventually moves down back to the same road where he or she started.
The two traces overlapped three times: the beginning of the blue trace with the ending of the red trace;
the beginning of the red trace with the middle of the blue trace; and the ending of the blue trace with
the middle of the red traces.

Figure 2d shows three sub-paths for these three pairs of common sub-tracks individually.
However, only two of them are detected using an LCSS approach by following the optimal path
from the top-right corner to the bottom-left corner in the matrix. The sub-path, which is locates at the
top-left corner, fails to be part of the optimal path. These missing local sub-tracks may lead to some of
the road intersections undetected.

In this paper, we aim to detect the common sub-tracks through finding all sub-paths in the local
distance matrix, instead of only the sub-paths close to the antidiagonal of the matrix as described
in our previous method [21].

3. Proposed Method

Figure 3 presents an overview of our approach. We first find the common sub-tracks using
image processing techniques on the local distance matrix. The starting and ending points of the
common sub-tracks are examined and collected as connecting points. We then apply Kernel Density
Estimation (KDE) on the connecting points to detect the road intersections, and remove intersections
with low reliability.
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Figure 3. Overview of the proposed approach.

3.1. Find Common Sub-Tracks

The proposed method to find the common sub-tracks is presented in dotted box in Figure 3: firstly,
compute and binarize the local distance matrix, secondly, skeletonize the binary matrix; finally, detect
edges from the skeletons. Only 1-pixel wide edges satisfying the following constraints, which are
called “sub-paths” in this paper, represent good alignment between common sub-tracks:

• Length: The edge should not be too short. This prevents point matching between noises in the
GNSS data, which deviate from the true path. These noises could originate from various sources,
such as vehicle ignition system, motor, atmospheric disturbance, building reflection, etc.

• Monotonicity: The edge may not be straight; but should not bend back on itself. This prevents
the temporally distant points in one track from matching the same point in the other track.

• Continuity: The edge should be consecutive. This guarantees that the alignment does not omit
any point of either sub-track.

• Slope: The edge should not be too steep or too shallow. This prevents short sub-tracks from
matching sub-tracks that are too long.

3.1.1. Binarize the Local Distance Matrix

We first create the local distance matrix for each pair of GNSS traces. Suppose we have two
GNSS traces r1(t1) = (ϕ1(t1), λ1(t1)) with T1 data points and r2(t2) = (ϕ2(t2), λ2(t2)) with T2, where
ϕ and λ are geographical coordinates in latitude and longitude, and t1 and t2 are real local time
in DateTime format of “YYYY-MM-DD-HH-MM-SS”. The numbers of samples T1 and T2 need not be
the same. The two-dimensional T1 × T2 local distance matrix DT1×T2 is computed using the spherical
law of cosines formula. The value at each cell, D(t1, t2), is the geographical distance between point
r1(t1) in the first trace and point r2(t2) in the second trace:

D(t1, t2) = arccos (sin ϕ1(t1) sin ϕ2(t2) + cos ϕ1(t1) cos ϕ2(t2) cos (λ1(t1)− λ2(t2))R, (1)

where R is The Earth’s radius.
We then apply a thresholding method on the local distance matrix to create a two-dimensional

T1 × T2 binary matrix BT1×T2 . If the geographical distance between point r1(t1) and point r2(t2),
D(t1, t2), is less than predefined threshold dthre, B(t1, t2) is set to 1; otherwise, it is set to 0. The distance
threshold dthre should be chosen based on the road width and the expected GNSS error:

B(t1, t2)
4
=

{
1, if D(t1, t2) < dthre,

0, if D(t1, t2) ≥ dthre.
(2)
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Figure 4 shows the binarized distance matrix for Examples 2 and 3, respectively. Every edge,
shown in black connected pixels, represents a pair of common sub-tracks. The width of the
edge is unfixed, depending on the number of the cells with local distance less than dthree.
Therefore, these edges can only establish rough point associations between the common sub-tracks.
To get temporally linear alignment between the sub-tracks, we will extract the skeletons of the binarized
distance matrix at the next step.
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Figure 4. Examples of binarized distance matrix. (a) example 2; (b) example 3.

3.1.2. Skeletonize the Local Distance Matrix

We first apply the Zhang–Suen thinning algorithm on the binarized distance matrix to obtain the
skeletons [22]. This is an iterative procedure, and each iteration undergoes two sub-iterations:

• Sub-iteration 1. The black pixel B1 is set to white if it satisfies all the following conditions:

(1) The number of 0–1 patterns in the ordered set B2, B3, . . . , B9 is 1, where B2, B3, . . . , B9 are
the eight adjacent pixels of B1 in a 3× 3 window, as shown in Table 1.

(2) It has at least two and not more than six nonzero neighbors.
(3) At least one of the three pixels B2, B4, B6 is 0 (white), i.e., B2× B4× B6 = 0.
(4) At least one of the three pixels B4, B6, B8 is 0 (white), i.e., B4× B6× B8 = 0.

• Sub-iteration 2 is the same as Sub-iteration 1, but with conditions (3) and (4) changed:

(3’) At least one of the three pixels B2, B4, B8 is 0 (white), i.e., B2× B4× B8 = 0.
(4’) At least one of the three pixels B2, B6, B6 is 0 (white), i.e., B2× B6× B8 = 0.

Table 1. Designations of the nine pixels in a 3× 3 window.

B7
(t1 + 1, t2 − 1)

B6
(t1 + 1, t2)

B5
(t1 + 1, t2 + 1)

B8
(t1, t2 − 1)

B1
(t1, t2)

B4
(t1, t2 + 1)

B9
(t1 − 1, t2 − 1)

B2
(t1 − 1, t2)

B3
(t1 − 1, t2 + 1)

The iteration stops if no pixel is set to white during either sub-iteration. The output of this step
is a skeletonized distance matrix ST1×T2 with black pixels representing the skeletons. The skeletons
of Examples 2 and 3 are shown in Figure 5.
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Figure 5. Examples of skeletonized distance matrix. (a) example 2; (b) example 3.

Connected-component labeling techniques could be used to extract the consecutive edges [23].
However, these consecutive edges cannot be used to represent the point associations between the
sub-tracks for the following reasons: (a) the Zhang–Suen thinning algorithm itself does not guarantee
that the skeleton edge is 1-pixel wide; (b) small spurious branches are detected at the ends of skeleton
edges, as shown in red circles in Figure 5. This violates the “Monotonicity” constraint; (c) whether
the edges satisfy the “Slope” constraint is still unknown. In the next step, we will propose a new
algorithm to extract the “sub-paths” from the skeletons, which can represent good alignment between
local sub-tracks.

3.1.3. Detect “Sub-Paths” from the Skeletonized Matrix

The “sub-paths” can be deduced as followed, given the local distance matrix DT1×T2 and the
skeletonized distance matrix ST1×T2. At first, we search the skeletonized distance matrix ST1×T2

and get a nonzero element S(t′1, t′2). This search is conducted in the order of first by the row t1 then
by the column t2 . This guarantees no nonzero element with smaller row index t1. Therefore, the
“sub-path” pi, which starts at the pixel (t′1, t′2), i.e., pi(1) = (t′1, t′2), will have to go increasingly along
t1. In other words, only five of eight neighbor pixels with gray background as shown in Table 1, are
considered as as candidate pixels for the next element of the “sub-path”, pi(2). Secondly, we narrow
the candidate pixels from these five pixels down to skeleton pixels, whose value is 1 in the skeletonized
distance matrix ST1×T2. We then choose the candidate pixel with the smalled local distance as the
second element of the “sub-path”, pi(2). Once one pixel in ST1×T2 is added to the “sub-path”, its value
is set to 0.

The “sub-path” pi continues to advance until none of the candidate pixels for the next element
are skeleton pixels. Subject to the “Monotonicity” constraint, the “sub-path” should not roll back
to itself; therefore, only three of the five neighbor pixels, {B4, B5, B6} or {B6, B7, B8} will be used
as candidate pixels from the first iteration, once the advance direction is confirmed in the first instance.

Finally, we examine whether this “sub-path” pi satisfies the “Length” and “Slope” constraint
through the number of steps in t1 and t2 direction individually, and their ratio as well. In this paper,
we choose lthre = 20 as the length threshold, and 30◦ as the slope threshold, i.e., sthre = tan(30).

We then find a new nonzero element in the keletonized distance matrix ST1×T2, and repeat the
whole procedure elaborated above to detect more “sub-paths”, until all pixels in the skeletonized
distance matrix ST1×T2 are set to 0, i.e., ST1×T2 = 0T1×T2 .

The outputs of this step are “sub-paths” representing good alignment between common sub-tracks,
pi, i = 1, . . . , I, and the common sub-tracks warped along the “sub-paths” r(i)

1 (pi(ki)) and r(i)
2 (pi(ki)),

ki = 1, . . . , Ki, i = 1, . . . , I with points associated at the same time index ki.
As shown in Figure 6, one “sub-path” is deduced for Example 2, indicating one pair of common

sub-tracks found in the GNSS traces shown in Figure 2a; three “sub-paths” are deduced for Example 3,
representing three pairs of common sub-tracks in the GNSS traces shown in Figure 2c. The proposed
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method successfully detects all common sub-tracks in both scenarios and removes the splitting
branches at the ends of the “sub-paths” shown in Figure 5.
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Figure 6. Examples of “sub-paths”. (a) example 2; (b) example 3.

3.2. Extract Intersections

Given a dataset of N GNSS traces, we first find the common sub-tracks between each pair of GNSS
traces. We then collect the starting and ending points of the common sub-tracks as connecting points,
if they are not the starting and ending points of these two GNSS traces. We then detect the intersections
from these connecting points through estimating the density of the connecting points over the area
covered by the GNSS traces:

(1) Discretize the area into a 2D grid of cells.
(2) Count the number of the points in each cell to produce a 2D histogram [1,24].
(3) Convolve the histogram with a Gaussian smoothing function to approximate the Kernel Density

Estimation (KDE).
(4) Find the local maximums on the density map as intersection candidates.

Finally, we examine the patterns of the GNSS traces converging or diverging at each intersection
candidate. Suppose there are M GNSS traces involved to produce N connecting points for one
intersection candidate. If all of the N connecting points are detected from aligning one trace with each
of the other M− 1 traces, the inferred intersection candidate will be removed because the existence
of the road segment represented by this single trace needs to be confirmed with more traces. As shown
in Figure 7, one single blue trace splits into a different direction from all other black traces at the
same location, producing a large amount of connecting points. An intersection is detected from these
connecting points. However, this single trace may be an abnormal trace that deviates from the roads to
construction areas because of GNSS errors. Therefore, this intersection may not exist physically.
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Figure 7. A false positive intersection. One intersection candidate in the red circle is detected from the
connecting points in green dots. It is a false positive because all of the connecting points are produced
from 152 traces interconnecting with one single trace.
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4. Experimental Results

We applied our proposed method on a dataset of campus shuttle traces from the University
of Illinois at Chicago (UIC) [25]. This dataset was recorded using the UIC shuttle tracking system,
which has an online tracking application that delivers real-time GNSS location information to the server
through an iPhone application over the cellular network. This dataset consists of 889 GNSS traces
and covers an area of 7× 4.5 km2. The tracking system is designed to send the location at a frequency
of every second. However, the actual sampling interval of the recorded traces varies from 1 s to
29 s (average: 3.61 s and standard deviation: 3.67 s) because sometimes the server fails to receive
the location information. This dataset has a geographic coordinate system, which uses latitude and
longitude to describe locations on Earth’s surface. The raw GNSS traces are depicted in black lines in
Figure 8. The dots indicate the point locations. To calculate the accuracy of the intersections detected
from the shuttle traces, we use OpenStreetMap as the ground truth map. Figure 8 shows 33 ground
truth intersections using blue circles, only on the streets that were actually traversed by the shuttles.

41.88

41.875

41.87

41.865

-87.68 -87.67 -87.66 -87.65 -87.64

Longitude( )
o

L
a
ti
tu

d
e
( 

)
o

N

GPS trace Ground-truth intersection

Figure 8. GNSS traces and the ground truth intersections. A total of 889 GNSS traces are shown by the
black lines with dots indicating the point locations, and the 33 ground truth intersections are depicted
with blue circles.

4.1. Results of the Proposed Method

Figure 9 shows the connecting points with green dots, and the intersection candidates with red
circles. Most of the connecting points are located at the road intersections, while some of them are on
the road segments because of GNSS errors. In total, 37 intersection candidates are extracted from the
connecting points through KDE.
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Figure 9. Intersection candidates. The connecting points are depicted using green dots, and
37 intersection candidates using red circles.

Figure 10 shows the true intersections after checking the patterns of GNSS traces diverging
or converging at the intersection candidates. In total, 7 of the 37 candidates are removed, leaving 29
true intersections depicted using red circles and one spurious intersection using a red cross.
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Figure 10. Intersections. In total, 30 intersections are detected, including 29 true intersections shown
with red circles and 1 spurious intersection with a red cross. Four ground truth intersections, indicated
using blue circles, are detected unsuccessfully.
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This “spurious” intersection is actually a true intersection, but is missing on the ground truth map.
This dataset was recorded in April 2011, when all the road segments meeting at this intersection were
traversable. However, we downloaded the ground truth map in August 2014, when one of the road
segments was blocked because of road construction. Therefore, this location was a “bend” connecting
only two road segments on the ground truth map. In order to directly compare with our previous
methods [19,21], we did not correct this on the ground truth map, but kept it as a bend instead
of an intersection.

4.2. Comparison

In this section, we compare our proposed method with our two previous methods: one is based on
the classical turning points detection [19], and the other is based on connecting points detection using
LCSS [21]. Figures 11 and 12 depict the intersections detected using these two methods, respectively.

As shown in Figure 11, thirty-six intersections are detected from the turning points after the bend
removal. Twenty-eight of them are true intersections, and eight are spurious intersections that do
not exist on the ground truth map. Five of the ground truth intersections are detected unsuccessfully.
The true, spurious and missing intersections are indicated using red circles, red crosses and blue
circles separately. The average distance between these 28 correctly detected true intersections and
their ground truth is 22.69 m. Figure 8 shows the intersections detected from the connecting points
using LCSS. In total, 28 intersections are detected, including 27 true intersections and one spurious
intersection. Six of the ground truth intersections are undetected. The average distance between the
true intersections and their ground truth is 14.90 m.

Compared to Figures 11 and 12, our proposed method detects more true intersections and less
spurious intersections, as shown in Figure 10. The average distance between the true intersections and
their ground truth calculated using our proposed method is 15.20 m, which is close to that using the
previous connecting point-based method (14.90 m), but much smaller than the one using the turning
point-based method (22.69 m).
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Figure 11. Intersections detected using the turning points-based method.
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Figure 12. Intersections detected our previous LCSS method.

Figure 13 shows the accuracy of the intersections using the well-known F-score [26,27].
The matching threshold is defined as the allowable distance between the geographical location
of the detected intersections and their ground truth location on OpenStreetMap. With a matching
threshold of 30 m, both of the connecting point-based methods reach an F-score of approximately 0.8,
outperforming the turning point-based method whose F-score value is only around 0.6.
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Figure 13. Accuracy comparison.

In general, the turning point-based methods are more efficient than the connecting point-based
methods because turning point-based methods process each of the GNSS traces in the dataset
individually, while connecting point-based methods deal with each pair of the GNSS traces.

Compared to our previous connecting point-based method using LCSS, our proposed method
in this paper is almost two times faster because it is unnecessary to reverse one of the pairwise traces
to find the common sub-tracks in the opposite direction. For this dataset with 889 GNSS traces, it
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takes around 50 min to find the connecting points between all ∏889
k=1 k pairs of GNSS traces using

the LCSS algorithm, and close to 30 min using the proposed method. The computational cost of
dealing with all possible pairs of GNSS traces in a data set is enormous, and increases rapidly as the
dataset gets bigger. In practice, we randomly pick up a fixed amount of traces with reasonable costs
for intersection detection. However, our proposed method outperforms our previous method using
LCSS in computational efficiency in either way.

5. Conclusions

We have presented a novel approach to detect intersections through analyzing pairwise GNSS
traces. We apply image processing techniques first on the local distance matrix of pairwise traces
to find all common sub-tracks between them, which represent the shared road segments traversed
in these traces. The starting and ending points of the common sub-tracks are collected as connecting
points for intersection identification through KDE. Finally, we confirm the existence of each intersection
through examining the connecting points and GNSS traces involved. The main advantage of our
proposed method is the intersection accuracy. We detect more true intersections and less spurious
intersections compared to the turning point-based method. We also improve the computational
efficiency compared to our previous connecting point-based method using LCSS. However, the
proposed method is still not efficient enough for huge data sets.

This paper is a good example of applying and merging techniques from different fields,
Geographic Information Systems (GIS) and image processing in this case. The proposed method
could also be applied to other types of sequence data, such as DNA sequences and financial data.
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