Figure S1. HPLC chromatograms and absorption spectra of the purified MAAs. (a) The crude water-soluble extract of *N. commune* (genotype D) was separated by an HPLC system equipped with a preparative column (IRICA C18, 20 × 250 mm) as shown in Figure 1. The mobile phase changed in a stepwise fashion from distilled water for the initial 40 min, to 0.1% acetic acid 10% methanol for the next 20 min and to 100% methanol for the final 20 min. The flow rate was constant at 4 mL·min⁻¹, and the A₃₃₀ was monitored. The purified 508-Da MAA (b), 450-Da MAA (c) and 612-Da MAA (d) were analyzed by HPLC with an analytical reverse-phase column (Inertsil ODS-3, 4.6 mm × 250 mm; GL Sciences Inc., Tokyo, Japan) using 0.2% acetic acid at a flow rate of 1 mL·min⁻¹ as the mobile phase and were detected by the A₃₃₀. The purified 508-Da MAA (e), 450-Da MAA (f) and 612-Da MAA (g) showed absorption maximum at 334 nm, 322 nm and 322 nm, respectively.
1. NMR Spectra for the Determination of Chemical Structures of the 508-Da MAA (Figures S2–S7) and the 612-Da MAA (Figures S8–S15)

1.1. NMR Data for the 508-Da MAA

Figure S2. 1H NMR spectra of the 508-Da MAA in D$_2$O.
Figure S2. Cont.

![Diagram](image)
Figure S3. 13C NMR spectrum of the 508-Da MAA in D$_2$O.

Figure S4. DEPT spectra of the 508-Da MAA in D$_2$O (DEPT135: upper, DEPT90: middle, 13C lower).
Figure S4. Cont.

Figure S5. COSY spectra of the 508-Da MAA in D₂O.
Figure S5. Cont.

Figure S6. HMQC spectra of the 508-Da MAA in D$_2$O.

X: parts per Million : 1H

Y: parts per Million : 13C

Abundance

0 1.0 2.0 3.0

(thousandths)

0 10.0

abundance

0 1.0 2.0 3.0
Figure S6. Cont.

Figure S7. HMBC spectra of the 508-Da MAA in D$_2$O.
Figure S7. Cont.
2.2. NMR Data for the 612-Da MAA

Figure S8. 1H NMR spectra of the 612-Da MAA in D$_2$O.
Figure S9. 13C NMR spectra of the 612-Da MAA in D2O.
Figure S9. Cont.

Figure S10. High resolution 13C NMR spectrum of the 612-Da MAA in D$_2$O at around 160 ppm. Focusing on the narrow X-range at around 160 ppm, 13C NMR spectrum was recorded with a high resolution to separate the two signals from C1 and C3. Because these chemical shift values were not adjusted by referring internal standard at 0 ppm, the chemical shift values recorded here were different from those in the 13C NMR spectrum shown in Figure S9.
Figure S11. DEPT90 (upper) and 13C (lower) NMR spectra of the 612-Da MAA in D$_2$O.
Figure S12. DEPT135 (upper) and 13C (lower) NMR spectra of the 612-Da MAA in D$_2$O.
Figure S13. COSY spectra of the 612-Da MAA in D₂O.
Figure S13. Cont.

Figure S14. HMQC spectra of the 612-Da MAA in D$_2$O.
Figure S15. HMBC spectra of the 612-Da MAA in D$_2$O.
Figure S15. Cont.

File name: peak3_pfg-2011-2.jdf
Author: ai
Date: 2011
Sample_id: S703297
Spectrometer: 7-T NMR
Dimensions: X Y
Data format: 2D REAL REAL
Comment: in D2O

Field_strength: 9.4 Tesla (400 MHz)

Initial_wait = 1 [s]
Grad_3_amp = 90.54325956 [mT/m]
Grad_3 = 1 [ms]
Grad_2 = 1 [ms]
Grad_1_amp = 0.18 [T/m]
Delta = 62.5 [ms]
Dante_presat = FALSE
Tri_mode = Off
Y_pulse = 8.6 [us]
Y_acq_time = 10.17856 [ms]
X_acq_time = 0.27312128 [s]
Total_scans = 8192
Scans = 32
Mod_return = 1
Clipped = FALSE
Tri_offset = 5 [ppm]
Tri_freq = 399.78219838 [MHz]
Tri_domain = 1H
Y_sweep = 25.15090543 [kHz]
Y_resolution = 98.24572435 [Hz]
Y_prescans = 0
Y_offset = 100 [ppm]
Y_freq = 100.52530333 [MHz]
X_sweep = 7.4985003 [kHz]
X_offset = 5 [ppm]
X_freq = 399.78219838 [MHz]
X_domain = 1H
Field_strength = 9.4 Tesla (400 MHz)

Recvr_gain = 84
Long_range_j = 8 [Hz]
Recvr_gain = 84
Long_range_j = 8 [Hz]

Initial_wait = 1 [s]
Grad_3_amp = 90.54325956 [mT/m]
Grad_3 = 1 [ms]
Grad_2 = 1 [ms]
Grad_1_amp = 0.18 [T/m]
Delta = 62.5 [ms]
Dante_presat = FALSE
Tri_mode = Off
Y_pulse = 8.6 [us]
Y_acq_time = 10.17856 [ms]
X_acq_time = 0.27312128 [s]
Total_scans = 8192
Scans = 32
Mod_return = 1
Clipped = FALSE
Tri_offset = 5 [ppm]
Tri_freq = 399.78219838 [MHz]
Tri_domain = 1H
Y_sweep = 25.15090543 [kHz]
Y_resolution = 98.24572435 [Hz]
Y_prescans = 0
Y_offset = 100 [ppm]
Y_freq = 100.52530333 [MHz]
X_sweep = 7.4985003 [kHz]
X_offset = 5 [ppm]
X_freq = 399.78219838 [MHz]
X_domain = 1H
Field_strength = 9.4 Tesla (400 MHz)

Recvr_gain = 84
Long_range_j = 8 [Hz]
Recvr_gain = 84
Long_range_j = 8 [Hz]

Initial_wait = 1 [s]
Grad_3_amp = 90.54325956 [mT/m]
Grad_3 = 1 [ms]
Grad_2 = 1 [ms]
Grad_1_amp = 0.18 [T/m]
Delta = 62.5 [ms]
Dante_presat = FALSE
Tri_mode = Off
Y_pulse = 8.6 [us]
Y_acq_time = 10.17856 [ms]
X_acq_time = 0.27312128 [s]
Total_scans = 8192
Scans = 32
Mod_return = 1
Clipped = FALSE
Tri_offset = 5 [ppm]
Tri_freq = 399.78219838 [MHz]
Tri_domain = 1H
Y_sweep = 25.15090543 [kHz]
Y_resolution = 98.24572435 [Hz]
Y_prescans = 0
Y_offset = 100 [ppm]
Y_freq = 100.52530333 [MHz]
X_sweep = 7.4985003 [kHz]
X_offset = 5 [ppm]
X_freq = 399.78219838 [MHz]
X_domain = 1H
Field_strength = 9.4 Tesla (400 MHz)
Figure S15. Cont.

![Figure S15](image-url)