
sensors

Article

Adaptive Correlation Model for Visual Tracking
Using Keypoints Matching and Deep
Convolutional Feature

Yuankun Li 1, Tingfa Xu 1,2,*, Honggao Deng1,3, Guokai Shi 1 and Jie Guo 1 ID

1 School of Optics and Photonics, Image Engineering & Video Technology Lab, Beijing Institute of Technology,
Beijing 100081, China; liyuankunbixian@gmail.com (Y.L.); dhg007@sina.com (H.D.);
shi_guokai_123@126.com (G.S.); jieguo_2013@163.com (J.G.)

2 Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China,
Beijing 100081, China

3 School of Information and Communication, Guangxi Key Laboratory of Wireless Wideband Communication
and Signal Processing, Guilin University of Electronic Technology, Guilin 541004, China

* Correspondence: ciom_xtf1@bit.edu.cn; Tel.: +86-10-6891-2567

Received: 7 November 2017; Accepted: 7 February 2018; Published: 23 February 2018

Abstract: Although correlation filter (CF)-based visual tracking algorithms have achieved appealing
results, there are still some problems to be solved. When the target object goes through long-term
occlusions or scale variation, the correlation model used in existing CF-based algorithms will
inevitably learn some non-target information or partial-target information. In order to avoid model
contamination and enhance the adaptability of model updating, we introduce the keypoints matching
strategy and adjust the model learning rate dynamically according to the matching score. Moreover,
the proposed approach extracts convolutional features from a deep convolutional neural network
(DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate
that the proposed tracker has achieved satisfactory performance in a wide range of challenging
tracking scenarios.

Keywords: correlation filter-based visual tracking; deep convolutional neural network;
deep convolutional feature; keypoints matching; adaptive model updating

1. Introduction

As one of the fundamental research topics in military, security, and human–computer interaction,
visual tracking plays an important role in many applications. Given the initial motion state of the target
object in the first frame, a visual tracking algorithm aims to estimate the motion state of the target
object in each subsequent frame. Despite the massive work done in recent years, visual tracking is still
challenging due to the appearance of variations caused by occlusion, target rotation, scale variation,
and so on.

The correlation filter (CF) was originally designed to generate correlation peak output for an input
signal. According to the convolution theorem, correlation operations can be significantly accelerated
using fast Fourier transformation. In general, CF-based visual trackers use correlation filters to
model the appearance of the target and update correlation filters at each frame using a fixed learning
rate. However, due to the unreliable tracking caused by occlusion, background clutter, and other
perturbations, correlation models may be contaminated during the updating process. In order to
alleviate model contamination, dynamic adjustment of learning rate will be necessary and constructive.

To account for the target appearance changes over time, man kinds of feature descriptors have
been used in visual tracking, such as Haar-like features [1], Color Names [2], FAST [3], and HOG [4].
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Recently, features learned from deep convolutional neural networks (DCNNs) have been used in a
variety of visual tasks. However, the outstanding performance of DCNNs relies heavily on training on
large-scale datasets. Thus, the application of DCNNs in visual tracking is severely restricted by the
very limited information in the first frame. Several tracking approaches [5,6] use pre-trained DCNNs
as feature extractors. However, these approaches use only a few convolutional layers and cannot
provide a comprehensive description of the target state.

Based on the discussion above, we propose a visual tracking framework that utilizes DCNN and
CF synthetically. The main contributions of this paper are as follows:

1. We propose a novel model updating method. Firstly, we establish a keypoints library to restore
the reliable historical data, and then we obtain the pixel-level correspondence between the current
frame and the previous frame using dense matching. Finally, the similarity score is calculated by
comparing matched pairs of keypoints and is used to adjust the learning rate in model updating.

2. We propose a method to fully exploit the hierarchical features generated of the DCNN, which can
make full use of spatial detail information and semantic information.

3. Based on the observation of different layers’ output, we propose a scale estimation method using
deep convolutional features.

The rest of the paper is organized as follows: In Section 2, we review research work related to ours.
In Section 3, we present the proposed visual tracking framework in detail. Numerous experimental
results and analysis are shown in Section 4. In Section 5, we reach the conclusions of our work.

2. Related Work

In this section, we list some works closely related to ours.

2.1. Trackers with Convolutional Neural Network

In recent years, convolutional neural networks (CNNs) have made significant progress on a wide
range of computer vision issues, including visual tracking. Based on the combination of off-line
pre-training and on-line fine-tuning, Wang et al. proposed the deep learning tracker (DLT)[7] and the
structured output deep learning tracker (SO-DLT) [8] in the framework of particle filters. To avoid the
issues caused by offline training, trackers in [9,10] incrementally learn target-specific CNNs without
pre-training. The trackers mentioned above simply treat the CNN as a black-box classifier where
only the outputs of the last layer are used to represent the target object. However, the goal of visual
tracking is to estimate the target state precisely rather than to infer their semantic classes. Ma et al. [5]
extract the hierarchical convolutional features (HCF) from three layers of CNN to learn multiple
correlation filters for visual tracking. Danelljan et al. [11] proposed a tracker by learning continuous
convolution operators (CCOT) to interpolate discrete features and train spatial continuous convolution
filters, which enables efficient integration of multi-resolution deep feature maps. To alleviate the
low computational efficiency caused by CNN operation, Danelljan et al.[12] designed an efficient
convolution operators (ECO) for visual tracking using a factorized convolution operation. Although
CCOT and ECO trackers use convolutional features for translation estimation, neither of them takes
full advantage of the entire CNN and thus lack a complete description of the motion state of the target.
Besides, compared with HCF tracker, CCOT and ECO trackers focus on the improvements to the CF
model and ignore the problems during the model updating process.

2.2. Trackers with Correlation Filters

Since Bolme et al. [13] introduced correlation filters into visual tracking by minimizing the output
sum of squared error (MOSSE), CF-based visual tracking algorithms have attracted considerable
attention due to their high speed. Based on the raw pixel data, the MOSSE tracker performs high-speed
CF training and tracking. The circulant structure and kernelized operator (CSK) [14] introduced
in CF-based visual tracking algorithm significantly improves the capacity of the training set and
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thus improves the tracking accuracy. CSK was then extended to [2] and [4] by leveraging the HOG
feature and the Color Names feature, respectively. Danelljan et al. [15] designed a scale estimation
correlation filter to predict the spatial size of the target. In order to alleviate the boundary effect
caused by circulant structure, Danelljan et al. [16] introduced spatial regularization in the cost function
of correlation filters. By introducing mask matrix and sample cropping, Galoogahi et al. [16] alleviated
the boundary effect in a different way. Based on the similarity between correlation and convolution
operations, Valmadre et al. [17] construct a CNN where the correlation filter is part of the network and
achieve end-to-end representation learning.

2.3. Trackers with Keypoints and Matching

Part-based visual tracking methods have exhibited outstanding performance against occlusion.
While some trackers [18,19] choose rectangular parts as matching parts, the size and number of
rectangular parts limit the speed of tracking. Instead, matching with feature point descriptors (such as
SIFT [20] and BRISK [21]) is rather computationally convenient, which makes keypoints an ideal
representation for modeling local part. In [22], Grabner et al. employed a boost classifier to obtain
keypoints matching. Hare et al. [23] attached weights on different keypoints and update the weights
in a unified framework. Tracker in [3] jointly uses optical flow tracking and keypoint matching to
provide an estimate of both target position and target rotation.

3. Proposed Approach

Figure 1 shows an overall flow of the proposed ACMD (Adaptive Correlation model for visual
tracking using keypoints Matching and Deep convolutional feature) tracker. An input image of the
t-th frame is first pre-processed to fit the network input. Then, the conv2-2, conv3-4, conv4-4, and
conv5-4 layers of VGG-19 [24] are used as feature extractors. These features are then convolved with
two learned CF models to provide translation estimation and scale estimation. Final estimation of
the t-th frame is achieved by the combination of two CF models’ output. A dense matching is then
employed between current frame and previous frame and the matching score is used to update the
keypoints set and discount the learning rate.

Figure 1. Flow chart of the proposed framework. CF: correlation filter.
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3.1. Deep Convolutional Features

It should be noted that research [25] suggests that CNN’s improved performance is obtained
using convolutional layers rather than fully-connected layers. Hence, we use convolutional layers to
extract features. Recent studies [5,11,25] and our experimental results illustrate that:

1. CNN feature maps are high-dimensional features and contain information highly related to the
target state.

2. Different layers of CNN encode different types of information. Feature maps of higher layers
encode semantic information. As shown in Figure 2, although the appearance of the targets
undergoes different variation (non-rigid deformation in Bird1, in-plane-rotation in MotorRolling,
illumination variation in David), the region around the target is always bright yellow in
feature maps of conv5-4 layer. This character is quite useful when the target undergoes severe
appearance variation.

3. Feature maps of lower layers retain more spatial details of the target, such as borders, corners,
and curves. Taking David as an example, it is obvious that the texture of the face such as
edges and contours are well preserved, including the corner of the ear, the boundary of the
face, etc., which could be used to determine the boundary of the target and thus to make
scale estimation.

(a)

(b)

(c)
Figure 2. Visualization of input and outputs of different layers. From left to right are the input frame,
feature maps of conv2-2, feature maps of conv3-4, feature maps of conv4-4, and feature maps of conv5-4.
(a) Bird1; (b) MotorRolling; (c) David.

The net we employed is the VGG-19 [24] network, which was pre-trained offline using the
ImageNet [26] dataset for classification tasks. It should be noted that the VGG-19 network takes
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224 × 224 RGB images as input, so the input frame must be resized first. Additionally, on account
of the pooling method, the spatial resolution decreases gradually as the net propagates forward,
so an upsampling process is necessary after we extract raw convolutional features. We apply bilinear
interpolation for both resizing and upsampling processes.

Let x denote the input RGB image patch and fc denote the feature map generated by the c-th
convolutional layer. After the feature extraction procedure, fc shares the same spatial resolution with
x, while the dimensionality of fc is determined by the value of c.

3.2. Correlation Filter

Traditionally, the goal of training is to find a correlation filter template h that minimizes the output
of Equation (1) :

min
h

∥∥∥hT f − g
∥∥∥2

+ λ ‖h‖2 . (1)

Equation (1) is the form of the cost function of ridge regression, in which f is the training sample,
g is the desired output, and λ ≥ 0 is the regularization parameter. The superscript T denotes matrix
transpose operation.

3.2.1. Correlation Filters for Translation Estimation

It should be noted that only one training sample in one dimensionality is taken into
consideration in Equation (1). A circulant structure is used to generate a set of training samples
{ fm,n (m, n) ∈ {0, 1 . . . , M} × {0, 1 . . . , N}}. Equation (1) can be transformed into the following form:

min
h

∑
m,n

∣∣∣∣∣
∣∣∣∣∣ L

∑
l=1

(
hl

m,n

)T
f l
m,n − g (m, n)

∣∣∣∣∣
∣∣∣∣∣
2

+ λ
L

∑
l=1

∥∥∥hl
∥∥∥2

, (2)

where superscript l denotes the l-th dimensionality of a matrix and g(m,n) is the GAUSSIAN
shaped label:

g (m, n) = exp

[
− (m−M/2)2 + (n− N/2)2

2σ2

]
. (3)

According to [4], the solution to Equation (2) is:

Hl =
G ? Fl

∑L
i=1 Fi ? Fi + λ

, (4)

where capital letters denote the Fourier transformation form, the overbar notation denotes complex
conjugation form, and the ? operator performs an element-wise multiplication of the two matrices.

Given a sample patch fc, the correlation response output yc is calculated by Equation (5):

yc = F−1

(
L

∑
l=1

Hl ? fc
l

)
, (5)

where F−1 denotes the inverse Fourier transform operator. The final response output for translation
estimation is obtained by a weighted average of all yc:

ytrans =
∑c (µcyc)

∑c µc
. (6)

The new target center is estimated to be at the position of maximum value of ytrans.



Sensors 2018, 18, 653 6 of 15

3.2.2. Correlation Filters for Scale Estimation

The correlation filter for scale estimation can also be obtained by the minimization Equation (1).
Note that in scale space, samples expand in one dimension, so the set of training samples is generated
like { fs (s) ∈ {0, 1 . . . , S}}, and label in GAUSSIAN shaped g (s) is as follows:

g (s) = exp

[
− (s− S/2)2

2σ2

]
. (7)

Equation (1) can be can be rewritten as follows:

min
h

∑
s

∣∣∣∣∣
∣∣∣∣∣ L

∑
l=1

(
hl

s

)T
f l
s − g (s)

∣∣∣∣∣
∣∣∣∣∣
2

+ λ
L

∑
l=1

∥∥∥hl
s

∥∥∥2
. (8)

The solution to Equation (8) is same as Equation (4), and the correlation response output can be
calculated by:

yscale = F−1

(
L

∑
l=1

Hl ? fs
l

)
. (9)

The current scale shares the same coordinate index with the maximum value of yscale.

3.3. Adaptive Model Updating

The correlation model learned at the t-th frame Hl
t can be expressed in fractional form.

Conventionally, the numerator Al
t and denominator Bt of the correlation filter are updated using

fixed learning rate η:

Al
t = (1− ηt) Al

t−1 + ηt

(
Gt ? Fl

t

)
, (10)

Bl
t = (1− ηt) Bl

t−1 + ηt

(
L

∑
i=1

Fi ? Fi

)
. (11)

It is not difficult to conclude that when the T-th frame arrives, the contribution rate of the t-th
frame (1 < t < T) to the model is: (1− η)T−t η. This can lead to two problems. First, the unreliable
tracking data of the t-th frame will affect the tracking results of all subsequent frames. Second,
when long-term occlusion occurs, continuous learning of corrupt data will force the correlation model
to fit the occlusion information and thus reduce the discrimination of the model. To alleviate these two
problems, we propose an adaptive model updating method.

Let Kt−1 denote the keypoints set established in the 1st ~(t− 1)-th frames and Dt−1 denote the
corresponding set of descriptors of Kt−1. We initialize K1 and D1 at the first frame using the FAST [27]
detector and the BRISK [21] descriptor. Firstly, the pixel-level correspondence between current t-th
frames and the t− 1-th frame is obtained using dense matching; that is, finding the matched point
kcurr in the current frame for kt−1 ∈ Kt−1.

kcurr =M (kt−1) , (12)

dcurr = D (kcurr) . (13)

where M is the dense matching process and D is the descriptor calculation process. We use the
Hamming distance to define the similarity between kcurr and kt−1:

V (kt−1, kcurr) = 1− ∑i kt−1 [i]⊕ dcurr [i]
vmax

. (14)
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where i is the index of sub-element in the descriptor and vmax is the maximum Hamming distance.
⊕ denotes the exclusive-OR operation. In our case, vmax is equal to 512. Let Ksub

t−1 denote the set of
points in the Kt−1 that participate in the dense matching process, Ksub

t−1 ⊂ Kt−1. Additionally, let Kcurr

denote the set of points matched in the t-th frame. Then, the matching similarity score is calculated
as follows:

ρt =
1
N ∑ V (Kt−1, Kcurr) . (15)

where V (Kt−1, Kcurr) denotes the similarities of each element in set Kt−1 and the corresponding
element in set Kcurr.

The learning rate ηt consists of two parts: the basic learning rate η0 and the discounting factor ρt :

ηt = η0ρt. (16)

Since both Equation (14) and Equation (15) are normalized, the matching similarity score in
Equation (15) can be used as the discount factor directly.

The the feature point library can be updated as follows: for kcurr, if the similarity V (kt−1, kcurr)

between kcurr and kt−1 is larger than a threshold, use ucurr as ut; otherwise, use ut−1 as ut.

{kt, dt} =
{
{kcurr,D (kcurr)} ,V (kt−1, kcurr) ≥ vthresh

{kt−1, dt−1} ,V (kt−1, kcurr) < vthresh
(17)

The overall tracking algorithm is described in Algorithm 1.

Algorithm 1: Proposed tracking algorithm.

Input : Image I; initial target position p0 and scale s0; previous target position pt−1 and scale st−1.
Output : Estimated object position pt and scale st.

Initialize correlation filters Htrans
1 , Hscale

1 and set K1, D1
Foreach It

Extract multiple fc generated by VGG-Net;
Compute the translation correlation ytrans using Equation (5) and Equation (6)
Set pt to at the maximum of ytrans
Compute the translation correlation ytrans using Equation (9)
Set st to at the maximum of yscale
Compute discounting factor ρt using Equation (12) to Equation (15)
Update Atrans, Btrans, Ascale, Bscale, K, D

End

4. Experiments

We evaluated the performance of our approach on the OTB-2013 [28] dataset and the OTB-2015 [29]
dataset and compared our approach with 10 state-of-the-art trackers, including HCF [5], SRDCFad [30],
SCT [31], MEEM [32], SAMF [33], DSST [15], KCF [4], STRUCT [34], TLD [35], SCM [36], and DLT [7].
Among those trackers, HCF and DLT use DCNN; HCF, SRDCFad, SCT, SAMF, DSST, and KCF are
CF-based trackers and SRDCFad proposes an adaptive model updating method.

We implemented the proposed tracker in MATLAB 2015b. All of the experiments were performed
on a PC with an Intel i7-4790 CPU. The speed of all trackers is shown in Table 1.

Table 1. Speed of the trackers.

Ours SRDCFad HCF SCT MEEM SAMF DSST KCF STRUCT TLD SCM DLT

Average FPS 3 3 6 44 11 12 56 192 10 22 0.4 0.6
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The parameters, which are fixed for each sequence, are summarized as follows. The net employed
for feature extraction was a pretrained version of VGG-19 [24]. We extracted the feature maps from
the conv2-2, conv3-4, conv4-4, and conv5-4 layers. The basic learning rate η0 in Equation (16) was
set to 0.025. To make scale estimation, we set S = 15 and set the scale stride to 1.04. The weight
in Equation (6) was set to µ5_4 = 0.44, µ4_4 = 0.33, µ3_4 = 0.23. The dimensionality of keypoints
descriptor was set to 512, and the threshold in Equation (17) was set to 300.

4.1. Quantitative Evaluation

We used the precision and success rate as the evaluation criteria of quantitative analysis.
The precision criteria measure Euclidean distance between the center of tracker’s output and the
ground truth. Precision plots show the percentage of frames whose precision is greater than a
threshold. According to Reference [28], we used a threshold of 20 pixels. Another criteria—success
rate—measures the coverage between tracker’s output and the ground truth. Assuming that the region
of the tracker’s output is γt and the region of ground truth is γa, the success rate is defined as:

SuccessRate =
|γt ∩ γa|
|γt ∪ γa|

, (18)

where ∩ and ∪ denote the intersection and union of two regions, respectively, and |·| denotes the
number of pixels in the region. The success plot illustrates the percentage of frames whose success
rates are greater than a certain value. According to [28], we ranked all trackers using area under the
curve (AUC) for the success rate.

Figures 3 and 4 illustrate the overall performance of all trackers in terms of the mentioned criteria.
The proposed approach ranks first over both OTB-2013 and OTB-2015.

(a) (b)
Figure 3. Precision and success plots over the OTB-2013 dataset. (a) Precision plot; (b) Success plots.

(a) (b)
Figure 4. Precision and success plots over the OTB-2015 dataset. (a) Precision plot; (b) Success plots.



Sensors 2018, 18, 653 9 of 15

Attribute-based experimental results are shown in Figure 5. From Figure 5, we have the following
observations. Firstly, our approach handled occlusion efficiently, which can be explained by the
proposed adaptive model updating method. This method also helped to improve the performance
in sequences with attribute of background cluster. Secondly, our approach performed well in the
sequences with attributes of rotation and deformation, as the higher layers of CNN retain rich semantic
information of the target object. Thirdly, our approach performs favorably against other approaches
in sequences with the attribute of scale variation due to the rich texture information encoded in
lower layers.

(a) (b)

(c) (d)

(e) (f)
Figure 5. Success plots over six tracking challenges of (a) occlusion; (b) background clutter; (c) in-plane
rotation; (d) out-of-plane; (e) deformation; and (f) motion blur.
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4.2. Qualitative Evaluation

To better analyze the effectiveness and robustness of the proposed tracker, this section is divided
into two subsections to conduct a qualitative analysis.

4.2.1. Performance against Background Information Variation

In this section, we focus on the trackers’ performance against background information variation,
including occlusion and background cluster. Figure 6 shows the situation in which the target undergoes
severe occlusion and background cluster. In the sequence box and Bird1, the occlusion takes up to
35 frames and 50 frames, respectively. In the sequence Human3, the target is occluded by two different
objects. In the sequence Soccer, spatial context information of the target changes dramatically and
the target is nearly fully occluded. Due to the proposed updating method, the discounting factor
decreases to near zero when the target undergoes occlusion, which prevents the correlation filter from
learning occlusion information and losing the ability to discriminate the target. It should be noted that
in the sequence Human3, only our tracker and SRDCFad succeeded in tracking the target at the first
1400 frames, which means that an adaptive model updating method is significant when the occlusion
situation is complex. Besides, semantic information encoded in higher layers ensures that the tracker
is not sensitive to background cluster.

(a)

(b)

(c)

(d)

Ours HCF MEEM SAMF SRDCFad
DSST KCF TLD DLT SCT

Figure 6. Tracking results on sequences with attributes of occlusion and background cluster. From top
to bottom, the name of the video is (a) Box; (b) Bird1; (c) Soccer; (d) Human3.
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4.2.2. Performance against Target Appearance Variation

In this section, we will discuss the trackers’ performance against the variation of target appearance.
In Figure 7a, the near-270-degree in-plane rotation of motorcyclists in the MotorRolling sequence is a
big challenge for visual tracking algorithms. Since the high layers of CNN retain rich semantics
information, our tracker performed well in this sequence. Although HCF and DLT also use
convolutional features, these trackers cannot fully exploit fine-grained information, so HCF failed
in scale estimation and DLT lost target totally. Similar results also appeared in the sequence Couple
with the attribute of out-of-plane rotation (Figure 7b). In the sequences Trellis (Figure 7c) and Car4
(Figure 7d), the targets undergo scale variation and illumination variation at the same time, making
it difficult to determine the precise boundary of the target. Since the fine-grained information in the
lower layers is used properly, our tracker provided accurate scale estimation in these two sequences.

(a)

(b)

(c)

(d)

Ours HCF MEEM SAMF SRDCFad
DSST KCF TLD DLT SCT

Figure 7. Tracking results on sequences with attributes of occlusion and background cluster. From top
to bottom, the name of the video is (a) MotorRolling; (b) Couple; (c) Trellis; (d) Car4.

4.3. Demonstrations

To evaluate the effect of updating method and scale estimation, we conducted additional
comparison experiments on the OTB-2015 dataset.

4.3.1. Evaluation of the Updating Method

We compared our method with the updating method using peak to sidelobe ratio (PSR) and
updating method using fixed learning rate. The calculation of PSR is described in [13]. Let PSRmean

denote the average value of the historical data of the PSR. The application of PSR can be can be
expressed by Equation (19):
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η =

{
0, PSR < PSRmean − 2

η, PSR ≥ PSRmean − 2
. (19)

Experimental results are shown in Figure 8. ACMD is our proposed method. PsrUpdate is the
same as ACMD, except it uses PSR as an update criterion. No update indicates that it uses a fixed
learning rate update method. As shown in Figure 8a, ACMD led to 6.7% performance improvements in
terms of success rate on OTB-2015 dataset. Besides, from Figure 8 we can find that the improvement of
using PSR is limited. Moreover, as we can easily see in Figure 8b, the ACMD had a greater advantage
over sequences with occlusion attribute, which illustrates the effectiveness of the proposed updating
method in handling occlusion issues.

(a) (b)

Figure 8. Tracking performance of different updating methods. (a) Success plots on OTB-2015;
(b) Success plots over sequences with occlusion attribute.

4.3.2. Evaluation of Scale Estimation

In order to evaluate the performance of convolutional features for scale estimation, we used the
HOG feature and the raw pixel feature as comparisons. The results are shown in Figure 9. The legend
in Figure 9 annotates the feature used in the corresponding curve. From Figure 9, we can see that scale
estimation using convolution feature works best in scale estimation. In the success rate evaluation
over all 100 sequences and 58 sequences with attribute of scale variation, convolutional feature-based
scale estimation led to 23.9% and 19.7% performance improvement, respectively.

(a) (b)

Figure 9. Scale estimation performance using different features. (a) Success plots on OTB-2015;
(b) Success plots over sequences with the attribute of scale variation.
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4.4. Failure Cases

We show a few failure cases in Figure 10. For the Biker and Matrix sequences, when the target
object undergoes fast motion, the proposed tracker fails to follow targets due to the boundary effect
introduced in the correlation model. For the Liquor and Walking2 sequences, the proposed method
fails to track the target as the target is occluded by a similar object and the the discounting factor
cannot decrease when occlusion occurs. Correlation filters with less boundary effect and strategies for
handling similar object interference will be considered in our future work.

(a) (b) (c) (d)

GroundTruth Ours
Figure 10. Failure cases on the following sequences: (a) Biker; (b) Matrix; (c) Liquor; (d) Walking2.

5. Conclusions

In this paper, we propose a visual tracking framework which synthesizes features from multiple
layers in a CNN and makes full use of the VGG network. The proposed tracker can make precise
position estimation in many challenging videos. The novel model updating method of the tracker
improves the tracking performance in occlusion scenarios. Moreover, the use of convolutional features
ensures the accuracy of scale estimation. Numerous experimental results demonstrate that the
proposed tracker outperforms the state-of-the-art trackers in both precision and success rate.
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