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Abstract: The aging of electrical insulation material or a system is a main issue for designers of
high-voltage (HV) machines. Precise determination of the life cycle of electrical insulation is one
way of improving the efficiency of electrical machines involved in the production and transmission
of electrical energy. Much effort has been devoted to preparing statistical or physical methods of
Electrical Insulating System (EIS) life time estimation in the real operation of electrical machinery. The
main aim of this paper is to introduce a new physical-statistical model of thermal aging respecting the
threshold value. This model is based on thermal aging model and the main difference between this
model and previously published models is taking into account the threshold value of degradation
factor. The complete design of this model is presented in this paper, including functions defining
the threshold value of the effect of the degradation factor depending on the temperature. Proposed
model was verified by accelerated thermal aging test at selected temperatures (160, 170, 180 ◦C) and
time intervals (0, 120, 240 h) on a commonly used transformer board. The breakdown voltage was set
as an indicating parameter of the level of thermal aging and was measured according to standard
IEC 60243-1. Collected data from these measurements were used for threshold value determination
(431.23 K) and verification of proposed physical-statistical model of thermal aging respecting the
threshold value.
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1. Introduction

Aging models are commonly used to describe the degradation processes inside the electric
insulating system (EIS) [1–6]. The degradation of the insulation system is dependent on the
understanding of the physicochemical processes and on the mathematical description of the aging
macroscopic parameters or empirical constants commonly used in aging models. Sometimes,
statistics [7–9] are used to estimate the mean time to failure (MTTF), etc. However, a more concrete
model of aging can be designed when all degradation processes are fully understood. Certain
degradation factors acting in a concrete EIS can be identified, such as electric field intensity [10–13],
temperature [14–17], mechanical stress [18], radiation [19], moisture [20], dust [21], chemical stress [22],
etc. and including these degradation mechanisms into a single model would be impossible. For
this reason, it is difficult to design aging models that are well correlated with the actual condition
and include the factors that contribute most to degradation. Models of aging can be divided into
various groups as seen in Figure 1. This paper extends, complements and partially corrects the theories
presented in Reference [23].
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Figure 1. Different mathematical approaches to aging modeling [1–9,24–42]. 

The main aim of this paper is to include a threshold for calculations based on mathematical-
physical presumptions. The proposed model would provide information on the probability of failure 
during the variable degradation factor. Verification of presented model was performed on samples 
of thermally aged electrical insulation (EI) by breakdown voltage (BDV) measurement. The constants 
and variables used in this paper are described in detail in Appendix A. 

1.1. Example of Statistical Access 

In terms of the operation, design, and production of an electrical device, it is necessary to 
understand not only the physical principles of degradation and the behavior of its individual 
elements, but also the lifetime model of these elements using probabilistic expressions and the 
statistical behavior of its parameters. To ensure the proper function of electrical devices, it is 
necessary to guarantee trouble-free operation. Using reliability theory, the reliability of an observed 
system can be predicted by mathematical models, and the critical points of the system can be found. 
Currently, statistical and mathematical models based on statistical distributions are used for the 
analysis of reliability. The distributions primarily used for this purpose are the Weibull [43], 
Exponential [44], or Normal distribution [45]. The Weibull distribution is used in cases where the 
investigated object cannot accept the assumption of a constant failure rate. The Weibull distribution 
is used to describe the reliability of electrical devices where the reliability of these systems and their 
subsystems depends on the number of operational hours, age, or a number of cycles performed. The 
probability density of the two-parameter Weibull distribution is given by Equation (1). 
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where β is the shape parameter and η (h) is the scale parameter, which determines the scale on the 
timeline. 

The parameter β affects the shape of the resulting distribution. If β < 1, then the instantaneous 
failure rate decreases; if β > 1, then the instantaneous failure rate increases. A special case is β = 1, 
where the Weibull distribution is equivalent to the exponential distribution and the instantaneous 
failure rate becomes constant. These limit values of the parameter β are characteristic for the 
construction of the bathtub curve [43]. 

The cumulative distribution function (CDF) [46–48] is introduced for further calculations. The 
numerical expression uses the probability of a fault condition, which is defined as the area under the 
curve of probability density function and the probability that the investigated object fails in time t, 
see Equation (2). 
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Figure 1. Different mathematical approaches to aging modeling [1–9,24–42].

The main aim of this paper is to include a threshold for calculations based on
mathematical-physical presumptions. The proposed model would provide information on the
probability of failure during the variable degradation factor. Verification of presented model was
performed on samples of thermally aged electrical insulation (EI) by breakdown voltage (BDV)
measurement. The constants and variables used in this paper are described in detail in Appendix A.

1.1. Example of Statistical Access

In terms of the operation, design, and production of an electrical device, it is necessary to
understand not only the physical principles of degradation and the behavior of its individual elements,
but also the lifetime model of these elements using probabilistic expressions and the statistical behavior
of its parameters. To ensure the proper function of electrical devices, it is necessary to guarantee
trouble-free operation. Using reliability theory, the reliability of an observed system can be predicted
by mathematical models, and the critical points of the system can be found. Currently, statistical
and mathematical models based on statistical distributions are used for the analysis of reliability.
The distributions primarily used for this purpose are the Weibull [43], Exponential [44], or Normal
distribution [45]. The Weibull distribution is used in cases where the investigated object cannot accept
the assumption of a constant failure rate. The Weibull distribution is used to describe the reliability of
electrical devices where the reliability of these systems and their subsystems depends on the number of
operational hours, age, or a number of cycles performed. The probability density of the two-parameter
Weibull distribution is given by Equation (1).

f (t) =
β

η
·
(

t
η

)β−1
·e−(

t
η )

β

, for t ≥ 0 (1)

where β is the shape parameter and η (h) is the scale parameter, which determines the scale on
the timeline.

The parameter β affects the shape of the resulting distribution. If β < 1, then the instantaneous
failure rate decreases; if β > 1, then the instantaneous failure rate increases. A special case is β = 1, where
the Weibull distribution is equivalent to the exponential distribution and the instantaneous failure rate
becomes constant. These limit values of the parameter β are characteristic for the construction of the
bathtub curve [43].

The cumulative distribution function (CDF) [46–48] is introduced for further calculations. The
numerical expression uses the probability of a fault condition, which is defined as the area under the
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curve of probability density function and the probability that the investigated object fails in time t, see
Equation (2).

F(t) =
t∫

0

f (τ)dτ = 1− e−(
t
η )

β

(2)

where F(t) is the cumulative distribution function.
The next important statistical variable is the MTTF. The MTTF is a statistical variable used to

assess the reliability of electrical devices and is calculated using Equation (3) [43]

MTTF = η·Γ
(

1 +
1
β

)
(3)

where Γ(z) is calculated by Equation (4). Each value of the function Γ(z) is given in standard IEC
61649 [43], which involves Weibull analysis.

Γ(z) =
∞∫

0

tz−1e−tdt (4)

For proper use of this distribution, it is necessary to make an accurate estimation of the parameters.
Most commonly, estimation of the parameters of the Weibull distribution involves the maximum
likelihood (MLE) method and the probability chart, which is used for visual inspection.

The Weibull distribution is commonly used on electric insulation data [1,7,8], e.g., times to failure
in the case of the electrical aging test. The limitation of the statistical approach is that it provides
the probability of object failure only when sufficient statistical data is available and is of the same
degradation in the case of the test. These results give no information about the state of a certain object,
which can be important in electrical engineering (e.g., the probability of failure of a large transformer
vs. real state/condition of that transformer).

1.2. Use of Physical and Mathematical Models

The physical models of material aging can be divided into empirical and phenomenological
models. These models can be further divided based on the number of active degradation factors to
single-factor and multi-factor models.

Only one degradation factor is included in single-factor models of EIS aging. The most important
single-factor models can be further divided into:

• Electrical aging models [26–28],
• Thermal aging models [29–33],
• Mechanical aging models [34].

Multifactor models are objects of research, as seen in References [35–42]. In cases where the
insulation system is exposed to more than one degradation mechanism simultaneously, a substantial
reduction of lifetime occurs, compared to when it is exposed to these degradation mechanisms
in insulation. The resulting model will not necessarily be the algebraic sum of these degradation
effects. Two basic types of interactions are known: direct and indirect [36]. These interactions
must be considered for the multifactor model. Currently, there are many multifactorial models that
are based on the simultaneous action of electrical, thermal, or mechanical stress as discussed in
References [37,38]. These models are mostly empirical in character; however, there are also models
that have a physical character [36]. In the following, the effort has been made to develop a model that
will employ both statistical and physical factors and will respect the phenomenon of the threshold for
the degradation factor.
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1.3. Thermal Aging Models

Temperature is one of the most significant degradation factors [29–33]. Irreversible
physicochemical processes occur in the insulation system due to thermal stress, which may
subsequently degrade the dielectric properties of these systems by increasing the electrical conductivity
or dissipation factor. For this reason, materials with approximately identical thermal properties are
categorized in thermal classes given in standard EN 60085 [49].

Montsinger see Reference [32], first attempted to provide a mathematical formulation of thermal
aging and found that the experimental results may be expressed by an exponential function, which
indicates the dependence of the lifetime on the temperature (Equation (5)).

τ(T) = A·e−BT (5)

where A (h) and B (K−1) are material constants; T is the temperature (◦C); and τ is the lifetime (h).
The disadvantage of this model is that it is empirical and does not describe the insulation system

in terms of physicochemical processes. Dakin [33], attempted to address this disadvantage and set the
mechanism of thermal aging using the Arrhenius equation (see Equation (6))

k = A∗·e−
Ea
RT (6)

where k is the reaction rate (s−1); A* is the pre-exponential factor or frequency factor (s−1); T is the
absolute temperature (K); Ea is the activation energy (J·mol−1); and R is the universal gas constant,
which has a value of 8.3144598 J·K−1·mol−1.

This equation describes the dependence of the reaction rate of the material on the temperature
and shows that an increase of temperature must inevitably increase the reaction rate, which is caused
by applying additional energy via heating of the material [50,51].

Assuming that increasing the temperature will decrease the lifetime of the insulation system, the
model of thermal aging can be written as follows, Equation (7) [33,50].

τ(T) = a·e
Ea
RT = a·e

b
T (7)

where τ is the lifetime of the insulation system (h); and a and b are material constants. The value of
a is given as the reciprocal value of the pre-exponential factor A*, which represents the frequency of
clashing molecules.

1.4. Electrical Aging Models

The intensity of an electric field is another major degradation factor that significantly affects
insulation systems [26–28]. The mechanism of action of the electric field on the insulation structure
is yet to be fully understood. Currently, only empirical models based on experimental observations
are used, of which the power and exponential models are the most commonly used electrical aging
models [35,36].

The power model is one of the most commonly used models for the description of electrical aging
and is given by Equation (8) [9].

τ(E) = k·E−N

ln τ = ln k− N ln E
(8)

where τ is the lifetime of the insulation system (h) (this value is usually equal to η parameter from
Weibull distribution); E is the intensity of the electric field (kV·mm−1); and k (kV−1·mm·h) and N
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are material constants, which must be determined empirically. The exponential model is another
often-used model of electrical aging, which is given by Equation (9) [9].

τ(E) = c∗·e−bE

ln τ = ln c∗ − bE
(9)

where τ is the lifetime of the insulation system (h); E is the intensity of the electric field (kV·mm−1); and
b (kV−1·mm) and c* (h) are constants, which must be determined empirically from experimental data.

The above-mentioned models describe the aging of any material exposed to the electric field.
For these models, it is not necessary to understand all the electric-field related processes affecting the
material, or other circumstances such as the presence of partial discharges. Furthermore, these models
are not dependent on the structure or configuration of the electrode, and electric field distribution.
Equations (8) and (9) are the only empirically derived models that describe the influence of electric
field strength on the aging of an insulation system. Despite this fact, these models provide relatively
good results and the calculated lifetime corresponds with reality. These models, however, fail when
the aging mechanism is changed e.g., at lower levels of electric field intensity. This discrepancy is
explained by the theory that there is a threshold intensity below the electric field that does not affect
material aging.

It is necessary to validate this model by plotting of the measured data into a semi-logarithmic plot
(Figure 2). If the measured data lie on one line, as seen in Figure 2 as a dashed line, then the predicted
use of the exponential model of electric aging is correct [35].
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Figure 2. Exponential function of electrical aging plotted in semi-logarithmic scale (Redraw and
adapted figure from [35]).

Problems with both models can occur due to extrapolating the measured data in actual operating
conditions. By assuming that an electric field will not cause aging at low levels of stress (e.g., nominal
voltage) [10,11], the service life extrapolated from the measured aging curves will be significantly
lower than reality. This fact can be removed by introducing a threshold value, as shown in Figure 2,
and various models of electric aging are therefore adjusted. Modified equations of the power model [9]
and the exponential model [13] are shown in Equations (10) and (11), respectively.

τ(E) = τ0·
(

E
E0

)−N
(10)

τ(E) =
X2

E− E0
·e[−X1(E−E0)] (11)
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where E is the intensity of electric field (kV·mm−1); τ0 (h)is the lifetime of the insulation system for
threshold value E0 (kV·mm−1); X1 (kV·mm−1) and X2 (kV·mm−1·h) are constants, which must be
determined empirically from experiments.

Numerous models have been introduced in the past including Montanari [24], Dissado [27],
Crine [34], Simoni [37], Fallou [40] and Grzybowski [42]. Some of these models are empirical, and
some are more physical. The presented models include single factor and multifactor models. These
models can be used for the description of aging of EIS by electrical (DC, AC or pulse), thermal, or
mechanical stress, but within certain limits.

2. Physical-Statistical Model of Thermal Aging Respecting Threshold Value (Thermal Aging
Model Respecting the Threshold (TAMRT))

Currently, there are efforts to create an endurance model of an electrical insulation system for
selected degradation mechanisms that would entirely correspond with the real situation. This model
should be simple and applicable in practice for on-line monitoring of the residual life of electrical
insulation systems and electrical equipment. In the event that this model should correspond to reality,
it must include the threshold value of the effect of the degradation factor. In the model of thermal aging,
a temperature TT (K) is introduced. Before the attainment of TT takes place, different degradation
mechanisms other than the described provisional models. The proposed model assumes that at low
levels, the effects of degradation mechanisms aging in the insulation system almost do not occur.
However, other degradation mechanisms can occur and a description of the degradation of electrical
insulation systems is dependent on the best possible understanding of the physicochemical processes.
The better the understanding of these processes is, a more specific aging model can be built.

2.1. Model Suggestion

The proposed model assumes an infinite number of limit states. When this “state” is exceeded,
other degradation mechanisms operate differently than described by Equation (7). Limit states are
consequently characterized by temperature limits TT1 up to TTn and partial activation energies Ea1 to
Ean. Activation energy Ea1 up to Ean therefore define partial degradation mechanisms and characterize
aging electrical insulating system at intervals of extreme temperatures TT1 up to TTn. The graphical
representation of this assumption in logarithmic axes is shown in Figure 3.
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With this assumption, the model of thermal aging can be written with respect to the threshold
value as a prescription of a function of the lifetime, see Equation (12).

τ(T) = τ1 = K1·a·τT1, T ∈ 〈TT1, ∞)

τ(T) = τ2 = K2·a·τT2, T ∈ 〈TT2, TT1)
...

τ(T) = τn = Kn·a·τTn, T ∈ (0, TT(n−1))

(12)

where τi (h), for i = (1 to n), is the life of an electrical insulating system within the temperature
range, based on Equation (7) (see Equation (13)); and Ki is a correction parameter for the preservation
conditions, see Equation (14).

τi = Ki·a·τTi = Ki·a·e
Eai
RT , T ∈ 〈TTi, TT(i−1)) (13)

where a (h) is the reciprocal value of pre-exponential factor; T is the temperature (K); Eai is the activation
energy of the partial degradation mechanism (J·mol−1), see Table 1.

Ki =
τT(i−1)(TT(i−1))

τTi(TT(i−1))
(14)

where K1 is determined by Equation (15)

K1 =
τT0(TT0)

τT1(TT0)
=

1
1
= 1 for TT0 → ∞ (15)

Table 1. Parameter values characterizing the designed thermal aging model for partial
degradation mechanisms.

i Interval of Ti (K) TTi (K) øi (h) Eai (J·mol−1) Ki

1 T ∈ 〈TT1, ∞) ∞ τ1 = K1·a·τT1 = K1·a·e
Ea1
RT Ea1 K1 = τT0(TT0)

τT1(TT0)
= 1

2 T ∈ 〈TT2, TT1) TT1 τ2 = K2·a·τT2 = K2·a·e
Ea2
RT Ea2 K2 = τT1(TT1)

τT2(TT1)

3 T ∈ 〈TT3, TT2) TT2 τ3 = K3·a·τT3 = K3·a·e
Ea3
RT Ea3 K3 = τT2(TT2)

τT3(TT2)

...

n T ∈ (0, TT(n−1)) TT(n−1) τn = Kn·a·τTn = Kn·a·e
Ean
RT Ean Kn =

τT(n−1)(TT(n−1))

τTn(TT(n−1))

It is, therefore, clear that the equation passes in classical Büssing’s relationship, see Equation (7).
It is clear that the results of partial degradation mechanisms in a logarithmic scale, before reaching the
limits of the influence of the degradation factor, are exponential in nature. The resulting trend of the
thermal aging model with respect to the limit value is shown in Figure 4.

Modified thermal aging model τM(T), for T ∈ (0, TT1) is then characterized by Equation (16)

τM(T) = KM·a·τTM = KM·a·ee(
D
T )

, T ∈ (0, TT1) (16)
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where τM (h) is a modified model of thermal aging; D (K) is a material constant, which is characterized
by synergistic effect of partial degradation mechanisms; a (h) is the reciprocal value of pre-exponential
factor; KM is a correction parameter for the preservation conditions and it is given by Equation (17).

KM =
τT1(TT1)

τTM(TT1)
=

e(
Ea1

RTT1
)

e(e
( D

TT1
)
)

= e[(
Ea1

RTT1
)−e

( D
TT1

)
] (17)
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τ(T) = τ1 = K1·a·τT1 = K1·a·e
Ea1
RT = a·e

Ea1
RT , T ∈ 〈TT1, ∞)

τ(T) = τM = KM·a·τTM = KM·a·ee(
D
T )

= e[(
Ea1

RTT1
)−e

( D
TT1

)
]·a·ee(

D
T )

, T ∈ (0, TT1)
(18)

Model (Equation (16)) can be further simplified by introducing a function B(T) and C(T) defining
the threshold value of the effect of the degradation factor TT1 depending on the temperature T. The
resulting model (Equation (16)) is then entered as Equation (19):

τ(T) = a·KM
B(T)·e

Ea1 ·C(T)
RT ·eB(T)·e(

D
T )

= a·KM
B(T)·e[(

Ea1 ·C(T)
RT )+B(T)·e(

D
T ) ] =

a·e[(
Ea1 ·B(T)

RTT1
)−B(T)·e

( D
TT1

)
]·e[(

Ea1 ·C(T)
RT )+B(T)·e(

D
T ) ] =

a·e[(
Ea1 ·C(T)

RT )+(
Ea1 ·B(T)

RTT1
)+B(T)·[e(

D
T )−e

( D
TT1

)
]]
= a·e[(

Ea1 ·(C(T)·TT1+B(T)·T)
R·T·TT1

)+B(T)·[e(
D
T )−e

( D
TT1

)
]]

(19)

where B(T) and C(T) are functions defining the threshold value of the effect of the degradation factor
TT1 depending on the temperature T, for which you apply B(T) = 0; C(T) = 1 for T ∈ 〈TT1, ∞) and
B(T) = 1; C(T) = 0 for T ∈ (0, TT1).

2.2. Determining the Threshold Value TT Using a Probabilistic Model

For a description of times to failure of an electrical insulating system, a distribution function is
used (Equation (20)). The parameter η = η(T) is then characterized by the proposed model of thermal
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aging with respect to the threshold of the effect of the degradation factor (Equation (21)). A more
detailed derivation of the statistical model is described in Reference [24].

F(t, T) =
t∫

0

f (t)dt = 1− e−(
t

η(T) )
β(T)

(20)

η(T) = a·KM
B(T)·e

Ea1 ·C(T)
RT ·eB(T)·e(

D
T )

=

a·e[(
Ea1 ·(C(T)·TT1+B(T)·T)

R·T·TT1
)+B(T)·[e(

D
T )−e

( D
TT1

)
]]

(21)

where KM is a correction parameter for the preservation conditions τ1(TT1) = τM(TT1); β(T) is a function
of the shape parameter of the Weibull distribution depending on the temperature T (K) and t (h) is
the time to failure of the electro-insulation system. Substituting Equation (21) into Equation (20), the
proposed probabilistic model can be written as Equation (22).

F(t, T) =
t∫

0
f (t)dt = 1− e−(

t
η(T) )

β(T)

=

1− e−(
t
a ·e
−[( Ea1 ·(C(T)·TT1+B(T)·T)

R·T·TT1
)+B(T)·[e(

D
T )−e

( D
TT1

)
]]
)

β(T) (22)

The probability density of the proposed probabilistic model is then defined as the first derivative
of the distribution function (Equation (20)) based on time and is given in Equation (23).

f (t, T) = d(F(t,T))
dt = β(T)

η(T) ·
(

t
η(T)

)β(T)−1
·e−(

t
η(T) )

β(T)

=

β(T)·e
−[( Ea1 ·(C(T)·TT1+B(T)·T)

R·T·TT1
)+B(T)·[e(

D
T )−e

( D
TT1

)
]]

a ·

 t·e
−[( Ea1 ·(C(T)·TT1+B(T)·T)

R·T·TT1
)+B(T)·[e(

D
T )−e

( D
TT1

)
]]

a

β(T)−1

·e−( t
a ·e
−[( Ea1 ·(C(T)·TT1+B(T)·T)

R·T·TT1
)+B(T)·[e(

D
T )−e

( D
TT1

)
]]
)

β(T)

(23)

Determination of the threshold value of the effect of the degradation factor TT1 is based on the
above proposed probabilistic model (Equation (22)). For further considerations, variable λ(t, T), which
characterizes the intensity of failures depending on the temperature T and time t is introduced and is
given by Equation (24).

λ(t, T) = f (t,T)
R(t,T) =

f (t,T)
1−F(t,T) =

β(T)
η(T) ·

(
t

η(T)

)β(T)−1
·e
−( t

η(T) )
β(T)

e
−( t

η(T) )
β(T) =

β(T)
η(T) ·

tβ(T)−1

η(T)β(T)−1 = β(T)·tβ(T)−1

η(T)β(T) =

β(T)·tβ(T)−1

aβ(T) ·e−[(
Ea1 ·(C(T)·TT1+B(T)·T)

R·T·TT1
)+B(T)·[e(

D
T )−e

( D
TT1

)
]]

β(T)

, t > 0

(24)

where F(t, T) is the distribution function of the Weibull distribution depending on the temperature T;
R(t, T) is the probability of a faultless state depending on the temperature T; f (t, T)) is the probability
density of Weibull distribution depending on the temperature T and t (h) is the time to failure of
electro-insulation system.

From the resulting Equation (24), the intensity of failures λ(t, T) is variable depending on time
t (h) and on the temperature T (K), which further characterizes the function parameter of shape of
the Weibull distribution β(T). These variables can be used for the bathtub curve (Figure 5), which
characterizes the failure rates of the electrical insulating system at time t and temperature T.
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The first period I was not considered in this case. Period II was characterized by a normal
operational life where electrical insulation materials age very slowly. Only random failures, such as
a lightning strike or overstressing, for determining the threshold values were considered. Period III
indicated failures associated with the wear of electrical insulating materials, i.e., there was a significant
aging process at that part of the curve.

It is, therefore, assumed that the passage between period II and III took place at the threshold of
the effect of the degradation factor. This can be illustrated in Figure 6.
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The resultant of parameter β(T) can be approximated by a linear function, which limits the impact
of the degradation factor TT1 and takes the value equal to one in the experimental measurements and
the normal operating temperature of the electrical equipment. There is an assumption only of random
failures. This relationship is described by Equation (25).

β(T) =
(
−x· 1

T
+ y
)C(T)

(25)

where x (K) is the directive function of the parameter shape of the Weibull distribution; β(T) depending
on the temperature T in operating temperature electrical insulation systems; y is the absolute term and
C(T) is the function defining the threshold value of the effect of the degradation factor TT1 depending
on the temperature T (see Appendix A).

Expression of temperature T and substituting the value of β(T) = 1 (see previous reasoning
(Equation (25)), the effect of the threshold value can be estimated from Equation (26).

∧
TT1 =

x
y− 1

(26)

where
∧
TT1 is the estimation of the threshold value of the effect of the degradation factor.

3. Experimental Verification of Proposed Model

The previously mentioned assumption was verified by a simple experimental measurement. Four
sets of fifty samples of transformer board were subjected to thermal degradation at 160, 170 and
180 ◦C for 240 h, wherein the experimental measurements were performed in intervals of 120 and
240 h, including measurement in initial conditions. Higher than recommended temperatures (standard
EN 60085) were selected in order to observe a threshold in the aging data during the experiment.
The dielectric strength was selected for model verification given that other aging parameters have a
problematic end of life criteria. The experiment was carried out per standard IEC 60243-1 [52], when
the breakdown occurred between 10 and 20 s due to increasing voltage at 400 V·s−1. A BDV test
was carried out after 24 h of conditioning. The samples were naturally cooled down in the oven to
ambient temperature and after this, the samples were placed in the climatic chamber for 24 h. The
ambient temperature and relative humidity 45% were set in the chamber. The samples were measured
one-by-one. The procedure for establishing the probabilistic model using the thermal model with
respect to the threshold value of the effect of the degradation factor for the experimental data is
presented below.

Procedure for Establishing the Probabilistic Model for Validation of Experimental Data

Fifty samples in each set were used for the most accurate estimation and evaluation of the
parameters of the Weibull distribution. The behavior of the dielectric strength in different degradation
temperatures is shown in Figure 7. The graphs are interpreted as boxplots in software for statistical
analysis called “Minitab 17” for better illustration. The values of time to failure were deduced for
the resultant graphs, which were characterized by exceeding the selected criterion dielectric strength
(Ep = 12 kV·mm−1). The criterion set the resultant time scale but did not characterize the shape of
the resistance curve against the degradation factor. This criterion was set as 85% of the arithmetic
mean value of the dielectric strength of the transformer board at a supplied state and is presented as a
horizontal red line in the boxplots. The time to failure was deduced as an intersection of individual
values of dielectric strength with the criterion.
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Figure 7. Dependence of dielectric strength (Ep) on degradation temperature: (a) 160 ◦C; (b) 170 ◦C;
and (c) 180 ◦C.

The maximum likelihood estimation (MLE) method was used for the most accurate estimation of
the individual parameters of the Weibull distribution. The parameters of the Weibull distribution were
estimated using a software Minitab 17 (Table 2). The estimation from the censored data was performed
for the degradation temperature of 160 ◦C, as the criterion was exceeded only in 25 cases out of 50.
The histograms of time to failure for the individual degradation temperatures are shown in Figure 8.
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Table 2. Estimation of individual parameters of the Weibull distribution for different temperature.

Temperature (◦C) MLE
∧
β MLE

∧
η (h) Confidence Interval Median Me (h) MTTF (h)

160 1.612 1184.643 0.95 944 1061.412
170 4.181 351.152 0.95 310 327.013
180 7.020 152.119 0.95 141 144.751
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There is a presumption in experimental measurement and normal temperatures that the resultant
of parameter β(T) can be approximated by a linear function which takes a value equal to one from the
threshold value TT1 (Equation (26)). Similarly, a linear trend of parameter η(T) in logarithmic scale can
be assumed, i.e., the model assumes only Büssing’s degradation mechanisms. This presumption is
shown in Figure 5. Figure 5 also clearly shows that the second part of the model, which characterizes
the different degradation factors, is neglected in the resultant probabilistic model. The equation of
distribution functions of the Weibull distribution (Equation (22)) of the proposed probabilistic model
can be rewritten as Equation (27) and equation density of the probability of the Weibull distribution
(Equation (23)) can be rewritten as Equation (28).

F(t, T) = 1− e−(
t
a ·e
− Ea1

RT )
β(T)

(27)

f (t, T) =
β(T)

a
·e−

Ea1
RT

(
t
a
·e−

Ea1
RT

)β(T)−1
·e−(

t
a ·e
− Ea1

RT )
β(T)

(28)

The course of estimated parameters
∧
β and

∧
η —depending on the reciprocal temperature—was

set based on estimations of the individual parameters of the Weibull distributions (Table 2) by using
Equations (21) and (25). This course is shown in Figures 9 and 10 and was used to design the final
probabilistic model.

Energies 2017, 10, 1120 14 of 24 

 

There is a presumption in experimental measurement and normal temperatures that the 
resultant of parameter β(T) can be approximated by a linear function which takes a value equal to 
one from the threshold value TT1 (Equation (26)). Similarly, a linear trend of parameter η(T) in 
logarithmic scale can be assumed, i.e., the model assumes only Büssing’s degradation mechanisms. 
This presumption is shown in Figure 5. Figure 5 also clearly shows that the second part of the model, 
which characterizes the different degradation factors, is neglected in the resultant probabilistic 
model. The equation of distribution functions of the Weibull distribution (Equation (22)) of the 
proposed probabilistic model can be rewritten as Equation (27) and equation density of the 
probability of the Weibull distribution (Equation (23)) can be rewritten as Equation (28). 

)(
1

1),(

T

T
aE

e
a

t

eTtF

β














⋅−

−

−=
R

 
(27)

)(
1

11
1)(

)(
),(

T

T
aE

aa e
a

tT

T

E

T

E

ee
a

t
e

a

T
Ttf

β
β

β 












⋅−−

−−
−

⋅









⋅⋅=

R

RR  (28)

The course of estimated parameters β
∧

 and η
∧

 —depending on the reciprocal temperature—
was set based on estimations of the individual parameters of the Weibull distributions (Table 2) by 
using Equations (21) and (25). This course is shown in Figures 9 and 10 and was used to design the 
final probabilistic model. 

 

Figure 9. Parameter of the shape of the Weibull distribution depending on the reciprocal temperature. Figure 9. Parameter of the shape of the Weibull distribution depending on the reciprocal temperature.



Energies 2017, 10, 1120 15 of 24
Energies 2017, 10, 1120 15 of 24 

 

 
Figure 10. Parameter of the scale of the Weibull distribution depending on the reciprocal temperature. 

Parameter x (K), which characterizes the directive of function β(T) in normal process 
temperatures and absolution element y, were obtained by linear approximation of the function of the 
shape of the Weibull distribution depending on the reciprocal temperature. The final estimation of 

the threshold value 1TT
∧

 is calculated as per Equation (26) by substituting the mentioned parameters 
x and y. This estimation is illustrated by Equation (29). The next calculated parameters and estimated 
functions are shown in Table 3. 

K 431.23=
−

=
−

=
∧

101.124

53046

1
1

y

x
T T  (29)

Table 3. Calculated parameters and estimated functions of probabilistic model. 

Description Function/Value of Parameter 

Course estimation of )(T
∧
β  

)(

01.124
1

53046)(
TC

T
T 






 +⋅−=

∧
β  

Course estimation )(T
∧
η  TeT

1
2016818107)(

⋅−
∧

⋅×=η  

Threshold value 
∧

1TT  (K) 431.23 

Reciprocal value of pre-exponential factor α (h) 7 × 10−18 
Activation energy Ea1 (J∙mol−1) 167,686.27 

Function for defining the threshold value of 
degradation factor C(T) 

( ) ( )[ ]{ } 431.23arctg −⋅+⋅=
∞→

TsTC
s
lim2

2

1
)( π

π
 

The final model can be written as Equations (30) and (31) by substituting the universal gas 
constant R and parameters from Table 3 into Equation (27). 

)(
01.124

1
530461

20168

18

)(
1

107
11),(

TC

T
T

T

T
aE

e
t

e
a

t

eeTtF







 +⋅−

⋅−

−

∧

−














⋅

×
−













⋅−

−=−=

β

R

 
(30)

Figure 10. Parameter of the scale of the Weibull distribution depending on the reciprocal temperature.

Parameter x (K), which characterizes the directive of function β(T) in normal process temperatures
and absolution element y, were obtained by linear approximation of the function of the shape of the
Weibull distribution depending on the reciprocal temperature. The final estimation of the threshold

value
∧
TT1 is calculated as per Equation (26) by substituting the mentioned parameters x and y. This

estimation is illustrated by Equation (29). The next calculated parameters and estimated functions are
shown in Table 3.

∧
TT1 =

x
y− 1

=
53046

124.01− 1
= 431.23 K (29)

Table 3. Calculated parameters and estimated functions of probabilistic model.

Description Function/Value of Parameter

Course estimation of
∧
β(T)

∧
β(T) =

(
−53046· 1T + 124.01

)C(T)

Course estimation
∧
η(T)

∧
η(T) = 7× 10−18·e20168· 1

T

Threshold value
∧

TT1 (K) 431.23

Reciprocal value of pre-exponential factor α (h) 7 × 10−18

Activation energy Ea1 (J·mol−1) 167,686.27

Function for defining the threshold value of
degradation factor C(T)

C(T) = 1
2π ·
{

π + 2arctg
[(

lim
s→∞

s
)
·(T − 431.23)

]}

The final model can be written as Equations (30) and (31) by substituting the universal gas constant
R and parameters from Table 3 into Equation (27).

F(t, T) = 1− e−(
t
a ·e
− Ea1

RT )

∧
β(T)

= 1− e−(
t

7×10−18 ·e
−20168· 1

T )
(−53046· 1

T +124.01)
C(T)

(30)
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f (t, T) =
∧
β(T)

a ·e
− Ea1

RT

(
t
a ·e
− Ea1

RT

)∧β(T)−1
·e−( t

a ·e
− Ea1

RT )

∧
β(T)

=

(−53046· 1
T +124.01)

C(T)

7×10−18 ·e−20168· 1
T

·
(

t
7×10−18 ·e−20168· 1

T

)[(−53046· 1
T +124.01)

C(T)−1]
·e−(

t
7×10−18 ·e

−20168· 1
T )

(−53046· 1
T +124.01)

C(T)

.

(31)

If Equations (30) and (31) are known, the courses of the distribution function and density of
probability can be constructed as 3D plots depending on the temperature. These dependences are
shown in Figures 11 and 12.
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Three dimensional plots of estimation of the distribution function can be used as the resultant
probabilistic model with the usage of thermal aging. It is clearly visible that the distribution function
and density of probability of the Weibull distribution changed due to the variable value of the
degradation factor; in this case, temperature. Figure 11 shows that the density of probability had



Energies 2017, 10, 1120 17 of 24

an exponential shape distribution up to TT1; after this point, the density of probability looked like a
Weibull distribution.

Proposed theory of the determination of threshold value TT1 can be confirmed by theory [53].
In this case, the dissolved gasses in transformer oils in different transformers were studied for three
years. From reason is clearly visible that the estimations of parameter β were close to 1, it means that
transformer oil did not age and the operational temperature was below the value of degradation factor
TT1.

The next publication [54] shows that the proposed methodology is applicable for electrical aging as
well. In this case, the transformer windings were placed to transformer oil and time to breakdown were
measured at different voltages levels. From the results, it is clearly visible that the value of parameter
β of Weibull distribution decreases with the intensity of electric field until to the 1. The projection of
intensity of electric field and parameter β can be used as the threshold value of degradation factor TT1.

4. Conclusions

The proposed model of thermal aging with respect to the threshold value of the degradation factor
is based on the traditional model of thermal aging. This model tries to include the listed thresholds
to calculations through mathematical-physical presumptions. The model is based on presumptions
of the infinity of limit states and when these are exceeded, different degradation mechanisms occur.
One main advantage is that this model includes physical principles and corresponds better to the
real conditions of an insulation system. The disadvantage is that the relatively difficult experimental
determination of the threshold value TT1. It also corresponded to the inability to determine the synergy
constant D before the TT1 by experimental measurement.

The proposed model can provide information on the probability of failure during the variable
degradation factor. The next advantage is that this model can be used for threshold value TT1

determination by the linear approximation of the parameter of shape of function β(T) of the Weibull
distribution depending on temperature T. It was not necessary to achieve this value by experimental
measurement. However, this model only considers one degradation factor, and many experimental
samples must be used for its estimation.

This model was experimentally verified by the measurement of dielectric strength on four sets of
transformer board. Implementation of the thermal aging model to the Weibull distribution eliminated
the disadvantages of the unpredictability of probability of times to failure for the variable intensity
of the effect of the degradation factor and was presented in the experimental part of this paper. As
seen, an effort has been done to better estimate the service life of an insulation system. Since real
degradation is far from the stress applied during aging tests, this model—despite being difficult in
application—could save costs when one considers the over-dimensioning of insulation systems in
energy networks.
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Appendix

Appendix A.1 List of Variables and Constants

β shape parameter of Weibull distribution
η scale parameter of Weibull distribution
Γ(z) Gamma function
τ (h) lifetime
A (h), B (K−1) material constants
k (s−1) reaction rate
T (K) absolute temperature
A* (s−1) pre-exponential factor or frequency factor
Ea (J·mol−1) activation energy of thermal process
R (J·K−1·mol−1) universal gas constant, which has the value 8.3144598 J·K−1·mol−1

a (h) reciprocal value of the pre-exponential factor A*

E (kV·mm−1) intensity of the electric field
k (kV−1·mm·h), N material constants
b (kV−1·mm), c* (h) material constants
τ0 (h) lifetime of the insulation system for threshold value
E0 (kV·mm−1) threshold value of the intensity of the electric field
X1 (kV−1·mm), X2 (kV·mm−1·h) material constants

Ean (J·mol−1)
activation energies of thermal processes which define partial degradation
mechanisms and characterize aging electrical insulating system at intervals of
extreme temperatures TT1 up to TTn

TTn (K) extreme of the temperature intervals that define partial degradation mechanisms
τi (h) lifetime of the insulation system in the temperature range T ∈ 〈TTi, TT(i−1))

Ki
partial correction parameter of new model for preservation of condition

Ki =
τT(i−1)(TT(i−1))

τTi(TT(i−1))

τM (h) modified model of thermal aging in range of temperature T ∈ (0,TT1)

D (K)
material constant, which is characterized by synergistic effect of partial
degradation mechanisms

TT1 (K) threshold value of the degradation factor of the new model

KM
correction parameter of modified model for preservation of condition
τ1(TT1) = τM(TT1)

B(T) and C(T)
functions defining the threshold value of the effect of the degradation factor TT1
depending on the temperature T, for which you apply B(T) = 0; C(T) = 1 for T ∈
〈TT1,∞) and B(T = 0 for T ∈ (0,TT1).

β(T)
function of the shape parameter of Weibull distribution depending on the
temperature T (K)

η(T) (h)
function of the scale parameter of Weibull distribution depending on the
temperature T (K)

t (h) time to failure of insulation system
F(t,T) distribution function which depend on time to failure t and temperature T (K)
f (t,T) probability density which depend on time to failure t (h) and temperature T (K)
λ(t,T) intensity of failures which depend on time to failure t (h) and temperature T (K)
∧
TT1 (K) estimation of threshold value of the effect of degradation factor

Ep (kV·mm−1) dielectric strength
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Appendix A.2 Functions B(T) a C(T)

The function B(T) is characterized as the cyclometric function -arctg offset by 1/2 on the B axis,
multiplied by the constant 1/π and shifted by the TT1 temperature multiplied by the infinity constant
s. This function is subsequently described by Equation (A1) and is shown in Figure A1.

B(T) = 1
π ·arctg

[(
lim
s→∞

s
)
·(TT1 − T)

]
+ 1

2 =

1
2π ·
{

π + 2arctg
[(

lim
s→∞

s
)
·(TT1 − T)

]}
,

(A1)

where s is the infinity constant; TT1 is the threshold value of the effect of the degradation mechanism
limiting the validity of the proposed model. The constant s has been introduced to maintain the
stepwise shape of the B(T) function.
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Appendix A.3 The D Constant Defining the Synergistic Effect of Partial Degradation Mechanisms

Due to the high time-consuming experiments, this constant cannot be experimentally determined.
For this reason, this constant will be estimated. Determining this constant is one future direction
of research.

Constant D is estimated by introducing an empirical rule. This rule assumes that when the
temperature drops by TK (K) from the threshold value TT1, the lifetime of the insulation system will
increase MK times compared to the life of the original thermal aging model τ1. This assumption
describes Equation (A3) and is shown in Figure A3.

MK·τ1(TT1 − TK) = τM(TT1 − TK) (A3)

where τ1 (h) is the lifetime of the electrical insulation system for T ∈ (TT1,∞); τM (h) is the lifetime
of the electrical insulation system for T ∈ (0,TT1); TT1 (K) is the threshold value of the influence of
the degradation factor; MK is the multiplicative constant; and TK (K) is the absolute value of the
temperature drop from TT1.
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Subsequently, the equation for estimating the constant
∧
D is obtained by Equation (A4).

MK·a·e
Ea1

R(TT1−TK ) = a·e[(
Ea1

RTT1
)−e

(
∧
D

TT1
)
]ee(

∧
D
T )

MK·e
Ea1

R(TT1−TK ) ·e−(
Ea1

RTT1
)·ee

(
∧
D

TT1
)

·e−e
(

∧
D

(TT1−TK )
)

= 1

(A4)

Equation (A4) also derives the final form of the equation estimating the constant
∧
D by defining

the synergic effect of partial degradation mechanisms (Equation (5)). By solving the equations, the

resulting estimation of the constant
∧
D is obtained.

A more detailed derivation of Equation (A5) is described by Equations (A6)–(A12).

TT1
√

e
∧
D −

(TT1−TK )
√

e
∧
D + ln

(
MK·e

[
Ea1 ·TK

R·TT1 ·(TT1−TK )
]
)
= 0 (A5)
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Appendix A.4 Deriving the Resulting Equation for Estimating the Constant D Defining the Synergistic Effect
of the Partial Degradation Mechanisms

The first part of the model for T ∈ 〈TT1,∞):

τ(T) = τ1 = K1·a·τT1 = K1·a·e
Ea1
RT = a·e

Ea1
RT (A6)

The second part of the model for T ∈ (0,TT1):

τM(T) = KM·a·τTM = KM·a·ee(
D
T )

= a·e[(
Ea1

RTT1
)−e

( D
TT1

)
]ee(

D
T )

(A7)

Introduction of an empirical rule:

MK·τ1(TT1 − TK) = τM(TT1 − TK) (A8)

Apply Equations (A6) and (A7) to Equation (A8):

MK·a·e
Ea1

R(TT1−TK ) = a·e[(
Ea1

RTT1
)−e

(
∧
D

TT1
)
]ee(

∧
D
T )

(A9)

MK·e
Ea1

R(TT1−TK ) ·e−(
Ea1

RTT1
)·ee

(
∧
D

TT1
)

·e−e
(

∧
D

(TT1−TK )
)

= 1 (A10)

Introduction of substitution SK:

SK = MK·e
Ea1

R(TT1−TK ) ·e−(
Ea1

RTT1
)
= MK·e

[
TT1 ·Ea1

R(TT1−TK )·TT1
− (TT1−TK )·Ea1

R(TT1−TK )·TT1
]
=

MK·e
[

Ea1 ·TK
R·TT1 ·(TT1−TK )

]
(A11)

Equation solution (A10) with substitution Equation (A11):

SK·ee
(
∧
D

TT1
)

·e−e
(

∧
D

(TT1−TK )
)

= 1 (A12)

e(
∧
D

TT1
) − e

(
∧
D

(TT1−TK )
)
+ ln(SK) = 0 (A13)

TT1
√

e
∧
D −

(TT1−TK )
√

e
∧
D + ln(SK) = 0 (A14)

Undo applied substitution SK (A11) and the resulting form of the equation for calculating the

estimation of the constant
∧
D by defining the synergistic effect of the partial degradation mechanisms:

TT1
√

e
∧
D −

(TT1−TK )
√

e
∧
D + ln

(
MK·e

[
Ea1 ·TK

R·TT1 ·(TT1−TK )
]
)
= 0 (A15)
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