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Abstract: In recent years, China has developed and launched several satellites with high spatial
resolutions, such as the resources satellite No. 3 (ZY-3) with a multi-spectral camera (MUX) and 5.8 m
spatial resolution, the satellite GaoFen No. 1 (GF-1) with a wide field of view (WFV) camera and
16 m spatial resolution, and the environment satellite (HJ-1A/B) with a charge-coupled device (CCD)
sensor and 30 m spatial resolution. First, to analyze the potential application of ZY-3 MUX, GF-1
WFV, and HJ-1 CCD to extract the leaf area index (LAI) at the regional scale, this study estimated
LAI from the relationships between physical model-based spectral vegetation indices (SVIs) and
LAI values that were generated from look-up tables (LUTs), simulated from the combination of the
PROSPECT-5B leaf model and the scattering by arbitrarily inclined leaves with the hot-spot effect
(SAILH) canopy reflectance model. Second, to assess the surface reflectance quality of these sensors
after data preprocessing, the well-processed surface reflectance products of the Landsat-8 operational
land imager (OLI) sensor with a convincing data quality were used to compare the performances
of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD sensors both in theory and reality. Apart from several
reflectance fluctuations, the reflectance trends were coincident, and the reflectance values of the
red and near-infrared (NIR) bands were comparable among these sensors. Finally, to analyze the
accuracy of the LAI estimated from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, the LAI estimations from
these sensors were validated based on LAI field measurements in Huailai, Hebei Province, China.
The results showed that the performance of the LAI that was inversed from ZY-3 MUX was better
than that from GF-1 WFV, and HJ-1 CCD, both of which tended to be systematically underestimated.
In addition, the value ranges and accuracies of the LAI inversions both decreased with decreasing
spatial resolution.

Keywords: LAI; ZY-3 MUX; GF-1 WFV; HJ-1 CCD; maize; PROSPECT-5B+SAILH (PROSAIL) model

1. Introduction

Leaf area index (LAI) is defined as one-half the total foliage area per unit ground surface area [1],
and it is an important parameter for monitoring vegetation growth conditions [2,3]. LAI is a common
variable that is used for regional and global climate, ecological, and hydrological models [4,5].
LAI has been widely used in global primary productivity measurements [6], agricultural yield
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estimations [7,8], and ecological and environmental assessments [9]. High-spatial-resolution LAI
products play important roles in monitoring regional vegetation changes and evaluating the accuracy
of low- resolution LAI products [10–12].

From the Landsat-5 satellite launched in 1984 to the present, there are many moderate- to
high-resolution satellite sensors that are available in the world, such as the Landsat thematic
mapper (TM)/enhanced thematic mapper plus (ETM+)/operational land imager (OLI), Terra
advanced spaceborne thermal emission and reflection radiometer (ASTER), SPOT high resolution
geometrical (HRG), IKONOS multi-spectral (MS), Sentinel-2 multispectral imager (MSI), and the
Chinese environment satellite (HJ-1) charge coupled device (CCD), etc. Generally, LAI extracted
from this moderate- to high-resolution imagery largely depends on the empirical relationships.
Empirical expressions were established between LAI field measurements and the spectral vegetation
indices (SVIs) from isolated dates [13–19]. The most commonly used SVIs include the normalized
difference vegetation index (NDVI), the simple ratio index (SR), and the enhanced vegetation index
(EVI) [14,15,20–23]. In addition, the reduced simple ratio (RSR), the soil-adjusted vegetation index
(SAVI), and the perpendicular vegetation index (PVI) are widely used for LAI extraction [21,24–26].
When compared with LAI field measurements, the accuracies of satellite LAI estimates based on
linear and non-linear regressions of the SVI-LAI relationships have coefficient of determination (R2)
values from approximately 0.37 to 0.98 and root mean square error (RMSE) values from approximately
0.17 m2/m2 to 1.14 m2/m2 for both crops (e.g., winter wheat, maize, and soybean) and forests
(e.g., coniferous and deciduous) [16,21,23,27,28]. In addition, the SVI-LAI relationships are stronger for
crop canopies than for coniferous forests, and are weakest for deciduous forests [15,22,29]. Empirical
methods are computationally efficient when using remote sensing datasets at regional or large scales.
However, empirical relationships that typically depend on unique vegetation types and regions are
often constructed and used locally.

The physical model method, which is suitable for a variety of vegetation types, is also used
to extract LAI from moderate- to high-resolution imagery [30–37]. Canopy reflectance models
simulate the physical relationship between the canopy reflectance and the LAI in the forward
direction. The scattering by arbitrarily inclined leaves with the hot-spot effect (SAILH) model [30,32,38],
the Markov chain reflectance model (MCRM) [31], and the Li-Strahler geometric-optical model [34]
have been used to extract LAI from moderate- to high-resolution imagery. LAI has also been estimated
by indirect methods based on the inversion of canopy reflectance models, such as look-up tables (LUTs)
and hybrid methods. The hybrid methods include decision tree learning, artificial neural networks,
kernel methods, and Bayesian networks [39]. Additionally, the currently used indirect methods of
the radiative transfer model (RTM) for Landsat ETM+ and Sentinel-2 MSI data are the LUT and
neural networks [31,32,35,36]. The accuracy of satellite LAI inversions is better than SVI-LAI empirical
relationships, with R2 values from 0.54 to 0.82 and RMSE values from 0.17 m2/m2 to 0.71 m2/m2 for
crops (e.g., maize and soybean), shrubs, and planted forests [30,31,33,34].

LAI field measurements were acquired via direct and indirect methods [40]. Direct LAI
measurements, including leaf collection from deciduous forests and the destructive sampling of
crops or low shrubs, are time consuming and difficult to collect at larger areas [40]. Indirect
LAI measurement, including optical sensor-based method (such as those using the Licor LAI-2200
Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA) [41], Tracing Radiation and Architecture of
Canopies (TRAC) (3rd Wave, Nepean, ON, Canada) [42], AccuPar (Decagon Devices, Inc., Pullman,
WA, USA) [43]), digital hemispherical photography (DHP), and new smartphone camera sensor
technology (such as LAISmart [44,45] and PocketLAI [46]). These indirect methods are generally
convenient, especially those that allow for LAI estimation using a smartphone, and generally efficient
over larger spatial scales.

In recent years, China has developed and launched several satellites, such as the HJ-1A/B with
a CCD sensor, the GaoFen No. 1 satellite (GF-1) with a wide field of view (WFV) camera and the
resources satellite No. 3 (ZY-3) with a multi-spectral camera (MUX). Currently, the satellite data of
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ZY-3 MUX, GF-1 WFV, and HJ-1 CCD have been applied for vegetation monitoring. HJ-1 CCD data
have been widely used for LAI extraction at the regional scale based on SVI-LAI relationships or
physical models [21,30,33,34,47]. In addition, GF-1 WFV data have been used to extract the fractional
vegetation cover (FVC) [48,49] and estimate LAI from the NDVI-LAI empirical relationship [21,50,51]
at the regional scale. However, there have not been any studies that have reported the extraction of
LAI from ZY-3 MUX data. One of the objectives of this study is to analyze the potential use of three
Chinese satellites, especially ZY-3 MUX, to extract LAI at the regional scale.

The study area was selected in the Huailai experiment station, Hebei Province, China. The satellite
data from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD for the study area were collected close to the date of
LAI field measurements. The LAI extraction method was a physical model-based SVI- LAI relationship
that was generated from the LUT based on the PROSPECT-5B + SAILH (PROSAIL) model with specific
input parameters for each sensor (Section 2). In order to assess the surface reflectance quality of ZY-3
MUX, GF-1 WFV, and HJ-1 CCD after data preprocessing, the well- processed surface reflectance
products of Landsat-8 OLI with a convincing data quality are used to compare the performances of
these sensors, both in theory and reality. Furthermore, the accuracy of the LAI estimation results
from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD was validated based on LAI field measurements from the
Huailai experiment station (Section 3). The up-scaled LAI inversions for ZY-3 MUX and GF-1 WFV
were also compared with the HJ-1 CCD data at the same spatial resolutions for pure and mixed pixels
(Section 3). The discussion and conclusions are presented in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Study Area and Field Measurements

The study area was at the Huailai experimental field (40◦20′55.093′ ′N, 115◦46′59.569′ ′E, altitude
488 m) in Hebei Province, China. This field is affiliated with the Chinese Academy of Sciences (CAS)
(Figure 1). The study area is in a temperate and semi-arid region with four distinct seasons, abundant
sunshine, simultaneous heat and moisture, and large temperature differences. The annual average
temperature and average precipitation are approximately 9.5 ◦C and 392 mm, respectively. The primary
vegetation type around the Huailai experimental field is farmland, and other land cover types are
water, wetland beach, and residential. Maize is the dominant crop type in this study area. The soil
type of the study area is brown soil.

Several vegetation structure parameters (e.g., leaf reflectance and transmittance, average leaf
angle, canopy spectral measurements, and LAI) and biophysical and biochemical parameters (e.g., leaf
chlorophyll-a and -b content (Cab), leaf water content (Cw), and leaf dry matter content (Cm)) were
acquired at the Huailai experimental field. The leaf reflectance and transmittance from 400 nm to
2500 nm were measured using a UV molecular spectroscopy (Lambda 900, PerkinElmer Inc., Waltham,
MA, USA). The leaf inclination angle was the angle between a leaf and its normal direction, and was
measured using a protractor. The average leaf angle is the mean leaf inclination angle for an entire
plant. The canopy and soil spectra were measured using a spectroradiometer (Analytical Spectral
Devices, ASD, Longmont, CO, USA) covering wavelengths from 400 nm to 1100 nm with a 5◦ field
of view at noon on sunny days. Cab was based on an average of six points on each leaf three times
using the SPAD 502DL plus Chlorophyll meter (Spectrum technologies, Inc., Bridgend, UK). The fresh
leaves were weighed and placed into an envelope bag. The envelope bag was then put in the oven at
105 ◦C for 30 min and then at 85 ◦C for 24 h. Cm is the weight of leaves after oven drying, and Cw is
the proportion of leaf water (fresh weight minus dry weight) to the dry weight.

In this study, LAI field measurements from maize sample plots were acquired on 31 July 2014
(yellow dots in Figure 1b). The sample plots were selected based on NDVI values from Landsat-8 OLI
according to Zeng et al. [52]. Then, the sample plots were selected in the field with a single plant type
and uniform growth base on the coordinates from global positioning system (GPS). Finally, 17 sample
plots were acquired in the study area. LAI field measurements were acquired using an LAI-2200 Plant
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Canopy Analyzer (LI-COR, Inc., Lincoln, NE, USA). The LAI of each sample plot was measured from
one above-canopy reading and nine below-canopy readings with a 45◦ view cup. The measurements
were obtained from 06:30 to 10:00 and from 16:30 to 19:30 to avoid measurement errors caused by the
direct sunlight, and the LAI value was measured twice at each site. To reduce the observer effects
and other sources of error during LAI field measurements, except for the records of the fifth view
angle (centered at 68◦) acquired from the LAI-2200 instrument, all of the LAI field measurements were
calculated based on a standard error LAI (SEL) of less than 0.5.
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Figure 1. The geographic location of the study area of ZY-3 MUX based on the false color composite
(NIR-red-green) (a), and the subset study area with leaf area index (LAI) field measurements for maize
(yellow dots) (b).

2.2. Remote Sensing Data and Preprocessing

The HJ-1 satellite was launched on 6 September 2008, and the ZY-3 satellite was launched on
9 January 2012. Both the HJ-1 satellite and the ZY-3 satellite were launched from the Taiyuan Satellite
Launch Center, Shanxi Province, China. The GF-1 satellite was launched on 26 April 2013 from the
Jiuquan Satellite Launch Center, Gansu Province, China. The HJ-1, GF-1 and ZY-3 satellites are in sun
synchronous orbits at altitudes of 649 km, 645 km, and 505 km, respectively. The technical specifications
for the ZY-3 MUX, GF-1 WFV, and HJ-1 CCD sensors are shown in Table 1. Four spectral channels
that are distributed in the visible and near-infrared (NIR) spectral domain ranging from 450 nm to
900 nm are identical in these three sensors. The radiometric resolutions of the GF-1 WFV and ZY-3
MUX sensors are higher than that of HJ-1 CCD by 2 bits, which improves the detectability of changes
in the feature characteristics. The HJ-1 CCD data have a spatial resolution of 30 m, and the revisit time
is approximately four days over China due to the combination of two satellites (HJ-1A and HJ-1B)
with two cameras (CCD1 and CCD2) on each satellite. The GF-1 WFV data have a spatial resolution of
16 m and a revisit time of four days among the four combined cameras. The ZY-3 MUX data have the
highest spatial resolution of 5.8 m, but the 51 km swath width is much narrower than that of the other
two cameras.
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Table 1. Technical specification of the ZY-3 MUX, GF-1 WFV, and HJ-1 CCD cameras.

Sensor ZY-3 MUX GF-1 WFV HJ-1 CCD

Spectral characteristics

Bands Wavelength
(µm) Bands Wavelength

(µm) Bands Wavelength
(µm)

1 0.45–0.52 1 0.45–0.52 1 0.43–0.52
2 0.52–0.59 2 0.52–0.59 2 0.52–0.60
3 0.63–0.69 3 0.63–0.69 3 0.63–0.69
4 0.77–0.89 4 0.77–0.89 4 0.76–0.90

Spatial resolution (m) 5.8 16 30
Radiometric resolution (Bit) 10 10 8

Swath width (km) 51 200 (single); 800 (4 cameras) 360 (single); 700 (two)
Revisit time (days) 5 4 4

2.2.1. Remote Sensing Data Acquisition

The ZY-3 MUX data were acquired from the Satellite Surveying and Mapping Application Center
(SASMAC) of the National Administration of Surveying, Mapping and Geo-information of China
(NASG) [53]. The GF-1 WFV data were acquired from the Gaofen satellite data and information service
system (GFDIS) [54], and the HJ-1 CCD data were acquired from the China Centre for Resources
Satellite Data and Application (CRESDA) [55]. The surface reflectance data of Landsat-8 OLI for the
study area was acquired from the United States Geological Survey (USGS) [56]. The Landsat-8 OLI
data was used to evaluate the data stability of different sensors among ZY-3 MUX, GF-1 WFV and
HJ-1 CCD. The acquisition information for these satellite data sources is provided in Table 2. All of the
images over the study area were cloudless.

Table 2. Satellite data acquisition information for ZY-3 MUX, GF-1 WFV, HJ-1 CCD and Landsat-8 OLI.

Sensor Date Local
Time

Solar Zenith
Angle

Solar Azimuth
Angle

View Zenith
Angle (Mean)

View Azimuth
Angle (Mean)

ZY-3 MUX 20140727 11:15:23 25.28◦ 216.38◦ 0◦ 216.38◦

GF-1 WFV 20140727 11:50:19 22.08◦ 201.62◦ 29.97◦ 74.57◦

HJ-1 CCD 20140728 10:00:09 34.97◦ 295.49◦ 25◦ 53.59◦

Landsat-8 OLI 20140725 10:59:34 27.67◦ 131.88◦ 0◦ 95.31◦

2.2.2. Remote Sensing Data Preprocessing

Preprocessing of the remote sensing data included radiometric calibration, geometric correction,
and atmospheric correction. First, radiometric calibration converted the digital number value of the
raw image to radiance based on Equation (1) [55].

Le(λe) = Gain · DN + O f f set (1)

where Le(λe) is the radiance, and Gain and Offset are the calibration coefficients. The unit is
W ×m−2 × sr−1 ×µm−1 The Gain and Offset values for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were
obtained from the CRESDA and are shown in Table 3 [55].

However, due to the unstable radiation performance of HJ-1 CCD data, a cross-radiometric
calibration was conducted using a method that considers the characteristics of the surface bidirectional
reflectance distribution function (BRDF) [47,57]. The calibration accuracy of the four spectral bands
of the HJ-1 CCD sensor was 5%, which meets the requirements for absolute radiometric calibration
accuracy [58].

The radiance was then converted to top of atmosphere (TOA) reflectance based on Equation (2) [16].

ρ =
π · L · d2

ESUNλ · cos θs
(2)
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where ρ is TOA reflectance, π is 3.1415, L is the sensor spectral radiance, d is the earth-sun distance
in astronomical units, ESUNλ is the extraterrestrial solar irradiance, and θs is the solar zenith angle.
The ESUNλ values for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD are shown in Table 3 [55].

Because of the high quality of the raw ZY-3 MUX and GF-1 WFV data on clear days,
the atmospheric correction of these images was conducted using FLAASH in Environment and
Visualizing Images (ENVI) software. However, due to the unstable data quality of HJ-1 CCD,
the cross-radiometric calibration and atmospheric correction were accomplished simultaneous using
the method proposed by Zhong et al. [57,59]. The atmospheric correction for the HJ-1 CCD image was
conducted using a space-based aerosol optical depth (AOD) retrieval method [59]. The differences
between the AOD retrieved from the HJ-1 CCD data and that from the Aerosol Robotic Network
(AERONET) measurements ranged from –0.14 to 0.31. Approximately 50% of the derived AOD values
correlated with AERONET AOD values with low discrepancy (less than 0.15), and the RMSE values
for Xianghe and Beijing were 0.18 and 0.21, respectively.

Table 3. The calibration coefficients and extraterrestrial solar irradiance values for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD.

Sensor
HJ-1 CCD GF-1 WFV ZY-3 MUX

Gain Offset ESUN˘ Gain Offset ESUN˘ Gain Offset ESUN˘

Band 1 1.1451 4.6344 1929.81 0.1713 0.0000 1968.12 0.2509 0.0000 1958.30
Band 2 1.1660 4.0982 1831.14 0.1600 0.0000 1841.69 0.2338 0.0000 1855.71
Band 3 0.7647 3.7360 1549.82 0.1497 0.0000 1540.30 0.1885 0.0000 1548.72
Band 4 0.7558 0.7385 1078.32 0.1435 0.0000 1069.53 0.2035 0.0000 1085.60

The ZY-3 MUX image was corrected by its own coordinate file (*.rpc) that was acquired from
NASG [53]. The geometric corrections of the HJ-1 CCD and GF-1 WFV images were conducted in
ENVI software using the geometric correction image of ZY-3 MUX as the reference, and a second-order
polynomial transformation with bilinear interpolation was used in the resampling. There were
approximately 20 control points that were manually selected from the images, and the geometric
registration error was less than one pixel of the images. The remote sensing data for the selected study
area were projected to the World Geodetic System of 84 (WGS-84).

2.3. Generating the Forward Simulations

The widely used turbid medium model, i.e., SAILH, which is corrected by the hot-spot parameter,
was selected due to its ease of use and consistent performance in validation practices [60,61]. The input
parameters in the SAILH model included LAI, average leaf inclination angle (ALA), hot-spot, soil
reflectance, leaf reflectance, leaf transmittance, diffuse fraction, solar zenith angle (SZA), view zenith
angle (VZA), and relative azimuth angle (RAA). The leaf reflectance and transmittance values
were simulated by the PROSPECT-5B model using several biochemical and biophysical parameters,
including leaf mesophyll structure (N), Cab, Cm, Cw, carotenoid content (Car), and brown pigment
content (Cbrown) [62]. The PROSPECT-5B+SAILH (PROSAIL) model has been used for more than
twenty years for the retrieval of vegetation biophysical properties [63,64]. Previous studies have
demonstrated that LAI, ALA, and Cab have significant influences on canopy reflectance in the visible
and NIR bands. However, other parameters, e.g., N, Cm, and Cw, are less sensitive to the canopy
reflectance corresponding to the satellite bands [63,65]. Therefore, the parameters, e.g., N, Cm, Cw Car,
and Cbrown, in the PROSAIL model were fixed during the simulation to reduce the complexity and
improve the efficiency of the LAI inversion. In this study, the soil reflectance for the PROSAIL model
was acquired from field measurements. The parameters for maize, e.g., N, Cm, Cw Car, and Cbrown,
were fixed according to LOPEX’93. ALA varied from 40◦ to 70◦ at intervals of 10◦; Cab varied from
40 to 60 at intervals of 10; SZA varied from 0◦ to 85◦ at intervals of 1◦; VZA varied from 0◦ to 35◦ at
intervals of 1◦; and, LAI varied from 0 to 8 at intervals of 0.1 (Table 4).
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Table 4. The input variables for the PROSAIL model used to generate the forward simulation.

Parameters Abbreviations Units Value Range Interval

Leaf mesophyll structure N - 1.518 -
Leaf chlorophyll-a and -b content Cab µg/cm 40–60 10

Leaf dry matter content Cm g/cm 0.003662 -
Leaf water content Cw cm 0.0131 -
Carotenoid content Car µg/cm 10 -

Brown pigment content Cbrown - 0.05 -
Average leaf inclination angle ALA ◦ 40–70 10

Hot-spot Hot-spot - 0.1 -
Leaf area index LAI m2/m2 0–8 0.1

Solar zenith angle SZA ◦ 0–85 1
View zenith angle VZA ◦ 0–35 1

The PROSAIL model was then run to simulate the actual satellite observations of canopy
reflectance based on the spectral response curves of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, which were
acquired from CRESDA [55], and of Landsat-8 OLI, which was acquired from USGS [56] (Figure 2).
The reflectance simulations of each band based on each satellite spectral response can be calculated
from Equation (3) [16].

ρs(λ) =

∫ λmax
λmin

ρs(λi)ϕ(λi)dλ∫ λmax
λmin

ϕ(λi)dλ
(3)

where ρs(λ) is the simulated band reflectance of the satellite sensor, λmin and λmax are the lower and
upper band wavelength limits, ρs(λi) is the simulated hyperspectral reflectance for the ith wavelength,
and ϕ(λi) is the spectral response coefficient of the different sensors for the ith wavelength.
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2.4. LAI Inversion Procedures

Before implementing the LAI inversion, the NDVI was used to separate the vegetation and
non-vegetation pixels, and the non-vegetation pixels were removed. Generally, the NDVI values
were less than 0.05 for bare soil [66,67]. Therefore, the pixels with NDVI values of less than 0.05 were
identified as non-vegetation and were set to a filled value (marked as 0).

The LAI inversion method was chosen from the SVI-LAI empirical relationship based on the
PROSAIL physical model to reduce the influences from the differences between the various sensors
and spectral response curves and the residual errors from data preprocessing. The selected SVIs of
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this study include the NDVI and an NDVI combined with the NIR reflectance of vegetation (NIRv).
The NDVI is a key parameter that is used to improve the accuracy of yield prediction for sugar
beets, spring wheat, corn, and sunflower based on the NDVI relationships with optical signals under
different nitrogen (N) and sulfur (S) contents [68–76]. Notably, the NDVI has been widely used for LAI
extraction from high spatial resolution imagery [21,22,24,25,29,77]. NIRv is a new index that directly
reflects the proportion of photons intercepted by chlorophyll, and it has a stronger linear relationship
with LAI than does the NDVI [78].

Based on the simulation input parameters in Table 4, there are 2,972,160 records in the LUTs
for each sensor. During the process of LAI inversion, the specific relationship between SVI and LAI
was established according to the values of VZA and SZA for each sensor. Under the illumination
and observation conditions of each sensor in the study area, the specific NDVI-LAI and NIRv-LAI
exponential relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were established from the PROSAIL
LUT simulations for each sensor (details shown in Table 5). The NDVI and NIRv both had strong
relationships with the LAI, and the R2 values for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were all higher
than 0.91. Moreover, all of the R2 values for the NIRv-LAI exponential relationship were higher than
those of the NDVI-LAI exponential relationship. LAI estimated from the specific NDVI-LAI and
NIRv-LAI exponential relationships based on the image NDVI and NIRv calculations for ZY-3 MUX,
GF-1 WFV, and HJ-1 CCD. The flowchart of the LAI inversion method based on ZY-3 MUX, GF-1 WFV,
and HJ-1 CCD imagery is shown in Figure 3.

Table 5. The SVI-LAI exponential relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD.

SVIs
NDVI-LAI Relationship NIRv-LAI Relationship

Expression R2 Expression R2

ZY-3 MUX LAI = 0.0484 exp(5.2397 * NDVI) 0.91 LAI = 0.1725 exp(6.4087 * NIRv) 0.98
GF-1 WFV LAI = 0.0385 exp(5.4728 * NDVI) 0.92 LAI = 0.1578 exp(5.6711 * NIRv) 0.98
HJ-1 CCD LAI = 0.0380 exp(5.4241 * NDVI) 0.91 LAI = 0.1543 exp(5.6960 * NIRv) 0.98
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2.5. Assessment of LAI Inversions for a Heterogeneous Surface

The performances of the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD data were
evaluated using the LAI field measurements. Three indices, R2, RMSE, and bias (BIAS), were used
to evaluate the absolute discrepancies between the LAI inversions and LAI field measurements.
R2 describes the entire correlation between the LAI inversions and LAI field measurements. RMSE
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represents the standard deviation between the LAI inversions and LAI field measurements. Bias is
a systematic variation that results from a random sampling or estimation process that does not give
accurate results on average.

The heterogeneity of the surface vegetation has a strong effect on the LAI inversions at different
spatial resolutions. Therefore, the spatial representativeness of the LAI field measurements was
assessed based on the LAI inversions from the NDVI-LAI relationships for ZY-3 MUX data within a
30 × 30 m subpixel region. The spatial representativeness was evaluated using the relative absolute
error (RAE) and the coefficient of sill (CS), according to Xu et al. [79]. In this study, the thresholds
of RAE and CS were 10% for the representativeness evaluation based on LAI. Values of RAE and
CS that were higher than 10% represented significant heterogeneity of the surface and lower spatial
representativeness of the LAI field measurements. Then, the LAI inversions for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD were evaluated based on the high and low spatial representativeness of the LAI
field measurements.

Finally, a 3 × 3 km2 range of LAI inversions was extracted from the NDVI-LAI relationships to
further compare the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD at a consistent spatial
resolution. After inversion of LAI from the remote sensing data, the LAI result from ZY-3 MUX was
resampled to 16 and 30 m spatial resolutions, and the LAI result from GF-1 WFV was resampled to
a 30 m spatial resolution using an upscaling method that considered the surface heterogeneity that
described the variance of NDVI. Then, we compared the LAI inversions at the corresponding spatial
resolutions. The LAI upscaling function is expressed in Equation (4) [80].

LAIupscaling = LAImean −
1
2

σNDVI × g′′ (mNDVI) (4)

where LAIupscaling is the LAI value after upscaling from the high spatial resolution to the low spatial
resolution, LAImean is the mean LAI value at the high spatial resolution within a pixel of low spatial
resolution, and σNDVI and g′′ (mNDVI) are the variance and the second order differential of the mean
NDVI value at the high spatial resolution within a pixel with low spatial resolution that was calculated
from the NDVI-LAI exponential function, respectively.

3. Results and Analysis

The LAI in the study area was inversed based on the proposed LAI method for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD, and the accuracy of the LAI inversions was validated based on the LAI field
measurements of maize crops. The degree of the influence of the spatial resolution on the LAI inversion
was analyzed using an upscaling method to determine the LAI differences among different sensors
with varied spatial resolutions. The reflectance in the red and NIR bands was compared between ZY-3
MUX, GF-1 WFV, HJ-1 CCD, and Landsat-8 OLI to illustrate the feasibility of using LAI inversion with
three Chinese satellite sensors.

3.1. LAI Validation for ZY-3 MUX, GF-1 WFV and HJ-1 CCD

The LAI inversions for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD based on the proposed LAI method
are shown in Figure 4. The LAI inversions from (a) to (c) were inversed from the NDVI-LAI exponential
relationships in Table 5, and the LAI inversions from (d) to (f) were inversed from the NIRv-LAI
exponential relationships in Table 5. The high LAI values were in the forest and cropland regions
around the reservoir, whereas the low LAI values were in the wetland beach and grassland regions in
the right corner and bottom of the images. Overall, the spatial variations in these three LAI inversions
were similar. However, the values of the LAI inversions for the GF-1 WFV and HJ-1 CCD images were
much lower, as is especially apparent in Figure 4c,e,f.

The performances of the proposed LAI estimation method for the ZY-3 MUX, GF-1 WFV,
and HJ-1 CCD data were validated based on the LAI field measurements from 17 maize samples
(Figure 5). Although the R2 values of the field measurements, compared with the NDVI-LAI inversions
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from GF-1 WFV (R2 = 0.66) and HJ-1 CCD (R2 = 0.74), were higher than that of ZY-3 MUX (R2 = 0.53),
the NDVI-LAI inversions from GF-1 WFV and HJ-1 CCD tended to be systematically underestimated,
especially for the higher LAI values. The RMSE and BIAS of the NDVI-LAI inversions from ZY-3 MUX
(RMSE = 0.94 and BIAS =−0.73) were lower than those from GF-1 WFV (RMSE = 1.30 and BIAS =−1.19)
and HJ-1 CCD (RMSE = 1.35 and BIAS =−1.22). Overall, the performance of the LAI inversed from the
NDVI-LAI relationship for ZY-3 MUX was better than that from GF-1 WFV and HJ-1 CCD (Figure 5a–c).
In addition, the performance of the method for LAI inversed from the NIRv-LAI relationships for
GF-1 WFV and HJ-1 CCD was not sufficient, because the NIRv-LAI relationships largely depended on
the reflectance of the NIR band, which was significantly underestimated in the NDVI-LAI inversions
(Figure 5e,f). The performance of the method for LAI inversed from the NIRv-LAI relationships was
better for ZY-3 MUX (R2 = 0.62, RMSE = 0.54 and BIAS = −0.02) than for GF-1 WFV and HJ-1 CCD
(Figure 5d). Because the LAI field measurements were all observed on the same day (31 July 2014),
apart from one LAI value of 1.8, the other LAI values varied from 2.5 to 4.5. The concentrated LAI
measurements led to small R2 values between the LAI inversions and field measurements, as shown in
Figure 5. Moreover, the RMSE and BIAS reflected the systematical underestimation of LAI estimations
from GF-1 WFV and HJ-1 CCD.Remote Sens. 2018, 10, 68  10 of 20 
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3.2. Influence of Spatial Resolution on LAI Inversion

Spatial resolution influenced the LAI inversions from all the different sensors: the value ranges and
accuracies of the LAI inversions both decreased with decreasing spatial resolution (Figures 4 and 5).
The spatial representativeness of the LAI field measurements was first assessed by the RAE and CS,
according to the methods in Section 3.3 to determine the differences between the LAI inversions from
the NDVI-LAI relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD with different spatial resolutions.
The LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were compared with the different spatial
representativeness of LAI field measurements, and the results are shown in Figure 6. The performance
of the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD using the LAI field measurements
with high spatial representativeness was higher than that obtained using measurements with low
spatial representativeness. The LAI inversions using measurements of low spatial resolution exhibited
various degrees of underestimation. However, although the performance of the LAI inversions using
the LAI field measurements with high spatial representativeness appears to be better in Figure 6a,
the LAI inversions for GF-1 WFV and HJ-1 CCD were systematically more underestimated than were
those for ZY-3 MUX. It is possible that the size of the pixels of the ZY-3 MUX data was closer to the
actual surface. However, the lower spatial resolution of the GF-1 WFV and HJ-1 CCD data recorded
more comprehensive information about the surface objects; thus, the vegetation signal was weakened.
Therefore, the accuracies of the LAI inversions from the lower-spatial-resolution data were generally
lower than those of the higher- spatial-resolution data.
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Figure 6. Validation of the LAI inversions from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD using field data
with high spatial representativeness (a) and low spatial representativeness (b).

In addition, this study extracted a 3 × 3 km2 range of LAI inversions from the NDVI-LAI
relationships to compare the accuracy of LAI inversions among ZY-3 MUX, GF-1 WFV, and HJ-1
CCD at a consistent spatial resolution. The LAI result of ZY-3 MUX was up-scaled to 16 m and 30 m
spatial resolution, and the LAI result of GF-1 WFV was up-scaled to 30 m spatial resolution using the
upscaling method described in Section 3.3. The up-scaled LAI inversions with 30 m spatial resolution
from ZY-3 MUX and GF-1 WFV were compared with the LAI inversion from HJ-1 CCD (Figure 7).
The results indicated that the distribution patterns of the LAI inversions were consistent, and that there
were higher LAI values in the top left corner of the image near cropland and lower LAI values near
roads and in residential areas. However, the LAI inversions that were up-scaled from higher spatial
resolution (e.g., ZY-3 MUX and GF-1 WFV) reflected more detail than did the HJ-1 CCD inversion at
the same 30 m spatial resolution.Remote Sens. 2018, 10, 68  12 of 20 
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The pixels that were extracted from the LAI inversions in the 3 × 3 km2 area were used to further
analyze the differences among the three LAI inversions at the same spatial resolution. The pixels in the
subregion were separated into pure pixels with uniform surface types and mixed pixels with different
surface types, including different vegetation types, roads, or residential areas. The relationships
between the LAI inversions from ZY-3 MUX data that were up-scaled to 16 m spatial resolution and
those from GF-1 WFV data and the relationships between the LAI inversions from the ZY-3 MUX or
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GF-1 WFV data that were up-scaled to 30 m spatial resolution and the LAI inversions from HJ-1 CCD
data are shown in Figure 8, for both the pure (blue dots) and mixed (red dots) pixels. Generally, the
performances of the LAI inversions between the HJ-1 CCD data and the up-scaled results of the ZY-3
MUX or GF-1 WFV data were preferable for both pure and mixed pixels. The accuracies of the LAI
inversions for pure pixels are shown in Figure 8b,c, and these results presented a better agreement
between the up-scaled LAI inversions from ZY-3 MUX (R2 = 0.87, RMSE = 0.42 and BIAS = 0.12) or
GF-1 WFV (R2 = 0.89, RMSE = 0.66 and BIAS = −0.30) and HJ-1 CCD. In contrast, the up-scaled LAI
inversions from ZY-3 MUX and GF-1 WFV, as shown in Figure 8a, did not perform as well for the pure
(R2 = 0.58, RMSE = 0.67 and BIAS = −0.45) or the mixed (R2 = 0.69, RMSE = 0.66 and BIAS = −0.48)
pixels. The up-scaled LAI inversions for mixed pixels from ZY-3 MUX (R2 = 0.52, RMSE = 0.52 and
BIAS = 0.06) and GF-1 WFV (R2 = 0.63, RMSE = 0.58 and BIAS = −0.24) at 30 m spatial resolution were
both substantially different from the HJ-1 CCD inversion (Figure 8b,c). In particular, the ZY-3 MUX
sensor had much higher performance than the HJ-1 CCD, which demonstrated that the differences
between the LAI inversions increased with the increasing spatial resolution between the two sensors.
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3.3. Comparison of Reflectance among Different Sensors

A correlation analysis was used to compare the accuracy of the reflectance among the three
different sensors at different LAI values. The reflectance values of ZY-3 MUX, GF-1 WFV, and HJ-1
CCD in the red and NIR bands were extracted, according to the coordinates of the LAI field
measurements. The relationships between the LAI field measurements and the corresponding
reflectance in the red and NIR bands are shown in Figure 9. The reflectance values of ZY-3
MUX, GF-1 WFV, and HJ-1 CCD decreased with increasing LAI, and the reflectance values were
much more scattered in the red band than in the NIR band (Figure 9a). The R2 values between
the reflectance and the LAI were 0.49, 0.50, and 0.59 for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD,
respectively. However, the reflectance of the red band for HJ-1 CCD easily reached saturation when
the LAI was greater than 3. The reflectance in the NIR band increased with LAI (Figure 9b) in all
sensors, and the R2 values between the reflectance and the LAI were higher than in the red band,
which were 0.66, 0.45, and 0.56 for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, respectively. The degree
of variation of the NIR reflectance was higher than the variation in the red reflectance. This was
especially true for ZY-3 MUX, which had the highest reflectance values. However, the trends of the
NIR reflectance variations were more coincident among ZY-3 MUX, GF-1 WFV, and HJ-1 CCD.
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Figure 9. Reflectance in the red band (a) and the NIR band (b) varied with LAI field measurements for
ZY-3 MUX, GF-1 WFV, and HJ-1 CCD.

To determine the influences of different sensor spectral response functions, the reflectance in the
red and NIR bands for Landsat-8 OLI and the three Chinese satellite sensors (i.e., ZY-3 MUX, GF-1
WFV, and HJ-1 CCD) were simulated from the PROSAIL model based on the same values of input
variables presented in Table 4, with SZA at 30◦, VZA at 0◦, and LAI varying from 0 to 8 at intervals
of 0.1. The theoretical differences in reflectance in the red or NIR band were compared between the
simulations of Landsat-8 OLI and those of ZY-3 MUX, GF-1 WFV, or HJ-1 CCD (Figure 10). The results
showed that the individual reflectances of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were higher than
those of Landsat-8 OLI in the red band (Figure 10b) and lower than those of Landsat-8 OLI in the NIR
band (Figure 10c). The reflectance in the red band for HJ-1 CCD and that in the NIR band for GF-1
WFV were each close to the corresponding bands of Landsat-8 OLI. The differences in reflectance in
the NIR band were larger than those in the red band. These differences occurred because the NIR
spectral response function of Landsat-8 OLI was much narrower than those of the Chinese satellite
sensors for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD, as shown in Figure 2. In addition, the difference in
reflectance between Landsat-8 OLI and each of the Chinese satellite sensors was greatly influenced by
the sensor’s spatial resolution. The reflectance that was theoretically closest to that of Landsat-8 OLI
was that of HJ-1 CCD with 30 m spatial resolution, followed by that of GF-1 WFV.
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between Landsat-8 OLI and each of ZY-3 MUX, GF-1 WFV, and HJ-1 CCD for maize simulations.

To analyze the stability of the different sensors, the actual differences of reflectance in the red
and NIR bands were compared between Landsat-8 OLI and each of ZY-3 MUX, GF-1 WFV, and HJ-1
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CCD. The reflectance data of the four sensors were compared at the same spatial resolution of 30 m;
thus, the mean values of reflectance for ZY-3 MUX and GF-1 WFV were compared with Landsat-8 OLI
reflectance values. Approximately 7000 pixels of uniform cropland were extracted from Landsat-8 OLI,
ZY-3 MUX, GF-1 WFV, and HJ-1 CCD images. The percentage density plots of reflectance differences
between Landsat-8 OLI and each of ZY-3 MUX, GF-1 WFV and HJ-1 CCD in the red and NIR bands
are shown in Figure 11. The majority of reflectance values of ZY-3 MUX and HJ-1 CCD were higher
than those of Landsat-8 OLI in both the red and NIR bands (Figure 11a,c). Most of the reflectance
values of GF-1 WFV were lower than those of Landsat-8 OLI in the red band and higher than those
of Landsat-8 OLI in the NIR band (Figure 11b). However, due to the similar observation geometry
conditions between ZY-3 MUX and Landsat-8 OLI, with near nadir observations of Landsat-8 OLI
and an SZA of 27.67◦, the reflectance differences between ZY-3 MUX and Landsat-8 OLI were lower
than those between GF-1 WFV or HJ-1 CCD and Landsat-8 OLI (Figure 11a). In addition, the sensor
stability in the NIR band was higher than that in the red band for all three Chinese satellite sensors,
with lower reflectance differences from Landsat-8 OLI.
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4. Discussion

The discrepancies for different instruments or platforms greatly influenced the accuracy of LAI
inversion. The factors that influenced LAI inversion included the sensor spectral response function,
sun-view geometry, and data preprocessing errors [16,51]. The maximal NDVI difference among ZY-3
MUX, GF-1 WFV, and HJ-1 CCD in theory reached 2.62% due to the different sensor spectral response
functions (Figure 10). Because of the similar satellite transit period in the study area, the SZA values
of these three sensors were approximately equal, but the VZA difference among these three sensors
was approximately 30◦. Based on the reflectance in the red and NIR bands in Figure 9, the maximum
NDVI difference between ZY-3 MUX, GF-1 WFV, and HJ-1 CCD was 9.74%. The error of geometric
correction was less than one pixel for each sensor image in this study. For different sensor resolutions,
the one pixel error of geometric correction was 5.8 m for ZY-3 MUX, 16 m for GF-1 WFV and 30 m for
HJ-1 CCD. In addition, because of the unstable data quality of HJ-1 CCD, cross-radiometric calibration
was performed. In this case, atmospheric correction was achieved based on the method proposed by
Zhong et al. [57,59]. After all of the data preprocessing steps, there is still a systematically discrepancies
of reflectance (with maximum value of 0.1), both in red and NIR bands when compared with those
of Landsat-8 OLI in Figure 11. Therefore, the accuracy of data preprocessing for multiple sensors
was the dominant factor that influence the LAI inversion difference among ZY-3 MUX, GF-1 WFV,
and HJ-1 CCD.

NIRv, which combined NIR reflectance with the NDVI, was proposed to accurately estimate the
global terrestrial gross primary production (GPP) [78]. NIRv is not easily saturated when compared
with the NDVI; therefore, it can be applied to improve the LAI estimation. In this study, NIRv was
used to estimate LAI from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD. The performance of LAI inversion
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based on the NIRv-LAI exponential relationship for ZY-3 MUX was best, as shown in Figure 5d.
Notably, NIRv depends largely on NIR reflectance. If the NIR reflectance contains noise, the NIRv
will deviate more than the NDVI from actual values. NDVI, as a normalized index that can eliminate
the fluctuations in the red and NIR bands, and the performance of LAI inversion from the NDVI-LAI
relationship was better than that from NIRv-LAI relationship (Figure 5b,c,e,f). In addition, because
of the low saturation of NIRv, the superiority of NIRv in LAI inversion will be more apparent when
applied for the inversion of high LAI values, such as those of the forests, but not for small values,
such as those of the crops as analyzed in this paper.

Currently, the LAI estimation methods at the regional scale are generally based on a single sensor.
The primary restriction for generating regional LAI products with moderate to high spatial resolution
is the limited number of sensor observations during a specific period. The multi-sensor data during
a specific period can greatly increase the number of observations and improve the accuracy of LAI
inversion. The sensors with similar spatial resolution, such as ZY-3 MUX, GF-1 WFV, HJ-1 CCD,
Landsat-8 OLI, and Sentinel-2, provide a combined multi-sensor dataset for generating LAI products
with moderate to high resolutions. The multi-sensor data have more VZA, and the multi-angular
observations from multiple sensors are helpful for improving the accuracy of LAI inversion. However,
due to the differences in sensor characteristics, geometric and radiometric normalization between
different sensors are necessary.

5. Conclusions

This study analyzed the application of LAI inversed from ZY-3 MUX, GF-1 WFV, and HJ-1 CCD
data. The method of LAI extraction was based on the SVI-LAI relationship for ZY-3 MUX, GF-1
WFV, and HJ-1 CCD, which was simulated from the PROSAIL model. The LAI inversions were
validated using LAI field measurements of maize in Huailai, Hebei Province, China. Regarding
the sensor band settings of three Chinese satellite sensors (ZY-3 MUX, GF-1 WFV, and HJ-1 CCD),
the performances of these satellite sensors were comparable to that of Landsat-8 OLI. However,
the reflectance of the ZY-3 MUX, GF-1 WFV, and HJ-1 CCD images, which was influenced by SZA,
VZA, and data processing methods, differed to varying degrees from the reflectance of the Landsat-8
OLI image. The ZY-3 MUX with similar observation geometry conditions as those of Landsat-8 OLI,
showed better performance than did GF-1 WFV and HJ-1 CCD in the study area. When compared
with the LAI field measurements, the results showed that the performances of the LAI that was
inversed from the NIRv-LAI exponential relationships for ZY-3 MUX (R2 = 0.62, RMSE = 0.54 and
BIAS = −0.02) were better than the others. However, the performances of the LAI that was inversed
from the NIRv-LAI relationships for GF-1 WFV and HJ-1 CCD did not perform as well because
of the larger variations in the NIR reflectance. In contrast, the LAI inversions from the NDVI-LAI
relationships for ZY-3 MUX, GF-1 WFV, and HJ-1 CCD were much more stable because the NDVI is
a normalized index that can eliminate the fluctuations in the reflectance in the red and NIR bands.
Overall, LAI inversions tended to be systematically underestimated, especially for the higher LAI
values. The scaling effects of the different spatial resolutions could not be ignored, which demonstrated
that the LAI inversion differences increased with larger variations in the spatial resolution between the
two sensors, especially between ZY-3 MUX and HJ-1 CCD, for mixed pixels. However, more vegetation
types and multi-temporal data at different spatial resolutions in LAI inversions need further study.
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