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Abstract: Very high resolution (VHR) remote sensing imagery has been used for land cover
classification, and it tends to a transition from land-use classification to pixel-level semantic
segmentation. Inspired by the recent success of deep learning and the filter method in computer
vision, this work provides a segmentation model, which designs an image segmentation neural
network based on the deep residual networks and uses a guided filter to extract buildings in remote
sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery
is preprocessed and some hand-crafted features are calculated. Second, a designed deep network
architecture is trained with the urban district remote sensing image to extract buildings at the
pixel level. Third, a guided filter is employed to optimize the classification map produced by deep
learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the
Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks
and guided filtering, achieves a higher overall accuracy when compared with other machine learning
and deep learning methods. The method proposed shows outstanding performance in terms of the
building extraction from diversified objects in the urban district.
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1. Introduction

Remote sensing images with very high resolution (VHR) are widely used in many applications
including land cover mapping and monitoring [1], multi-angle urban classification analysis [2],
automatic road detection [3], as well as the identification of tree species in forest management [4].
Several of the practical applications are based on VHR remote sensing imagery classification at the
pixel level [5–8], also defined as semantic segmentation. Semantic segmentation of remote sensing
imagery aims to classify every pixel into a given category, and it is an important task for understanding
and inferring objects [9,10] and the relationships between spatial objects in a scene [11].

Automatic semantic annotation of urban areas plays an important role in many photogrammetry
and remote sensing applications, such as building and updating a geographical database, land cover
change, and extracting thematic information. In recent years, the development of computing hardware
and sensor technologies has made high resolution sampling available with a ground sampling distance
(GSD) of 5–30 cm [12] so that objects such as roof tiles, cars, buildings, and individual branches of trees,
are distinguishable, which has increased the interest to perform semantic segmentation in urban areas.

In the past several years, spatial and spectral features have been used to improve the performance
of VHR semantic segmentation based on pixel-wise analysis. Spatial contextual information like the
grey level co-occurrence matrix (GLCM) has been employed to obtain a more accurate classification
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map [13]. A novel mean shift (MS)-based multiscale method was used in urban mapping [14].
Morphological profiles (MP) were utilized into the spatial-spectral classification [15]. Conditional
random fields and machine learning, such as SVM and random forest, were also introduced to solve the
classification of remote sensing images [6,16]. In addition, encouraged by deep neural network features
that have been shown to have an outstanding capacity in visual recognition [17], object detection [18]
and semantic segmentation [19–21], deep learning was introduced to resolve the old problems in
remote sensing [22]. Deep neural networks have been successfully used to class and densely label high
resolution remote imagery [23]. It can be used in various remote sensing tasks: Detection, classification,
or data fusion [24]. A deep learning framework was proposed to detect buildings in high-resolution
multispectral imageries (RGB and near-infrared) [25]. Multi-scale convolutional neural networks
(CNNs) combined with the conditional random fields (CRFs) were used for dense classification in
street scenes [26]. An end-to-end trainable deep convolutional neural network (DCNN) was built to
improve semantic image segmentation with boundary detection [12].

Studies have shown that remote sensing image classification results cannot be conclusive [27].
The reason for this is that although the resolution of remote sensing images have improved, which has
been helpful to detect and distinguish various objects on the ground, these improvements have made
it more difficult to separate some objects, especially spectrally similar classes, due to the increase of
the intra-class variance of objects, such as building, streets, shades and cars, and with decrease of the
inter-class variance [5,28,29]. In other words, different objects may present the same spectral values
within the remote sensing imagery, which make it more difficult to extract reasonable spatial features
to resolve the classification of pixels in extracting the buildings.

In the last years, fully convolutional networks (FCNs) have shown a good performance of semantic
segmentation [30–32]. Indeed, FCNs can not only learn how to classify pixels and determine what
it is, but they can also predict the structures of the spatial objects [33]. The model is able to detect
different classes of objects on the ground and predict their shapes, such as buildings, the curves of the
roads, trees, and so on. However, it is a little short of being capable of detecting small objects or objects
with many boundaries, because the boundaries of the objects are blurred and the results are visually
degraded during classing when using FCNs [12].

There has been some research that tries to improve the performance of semantic segmentation
and develop a deep neural network structure either by adding skip connections so as to reintroduce
the high-frequency detailed information of an imagery after upsampling [34,35] or by using dilated
convolution combined with CRFs [36]. The improved FCN model, which is designed as a multi-scale
network architecture by adding a skip-layer structure, was trained to perform state-of-the-art natural
image semantic segmentation [31]. A deep FCN with no downsampling was introduced to boost the
effective training sample size and improve the classification accuracy [37].

The application of research into urban district classification using VHR remote sensing imagery
ranges from urban management to flow monitoring. Recent research makes an effort to improve
the accuracy in areas such as encoding of images, extraction of features from raw images [38,39],
and the use of deep neural networks such as CNNs, FCNs, and so on, to label pixels, especially for
the VHR remote sensing imagery [40,41]. However, pixel labelling of the VHR imagery in urban
districts offers challenges relating to the varied semantic classes and geometry shapes. Because
buildings and the other imperviousness objects in urban areas are very complicated with respect to
both their spectral and spatial characteristics, it is inefficient and difficult to extract them. The VHR
imagery is usually limited to three or four broad bands, and these spectral features alone may lack the
ability to distinguish the objects because different objects have similar spectral values, for example,
roads and roofs. Additionally, the same objects may have different spectral values, for example
a roof that is divided into two parts by exposure to the sun and the shade. Therefore, discriminative
appearance-based features are needed to improve the performance. Fortunately, most of the VHR
remote sensing imageries usually have the corresponding overlapping image (or combined camera +
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LiDAR systems) [12], and the digital surface model (DSM) is available, which can be regarded as an
additional depth channel.

Previous researchers have provided useful insights into the various methods that can be used in
pixel labelling. However, these methods cannot clearly detect the boundary of the objects, and lack the
ability to remove the salt-and-pepper class noise; some pixels with similar spectral values are usually
misclassify. To resolve these problems, this work attempts to take semantic labelling methods from
computer vision and apply them to building extraction from VHR remote sensing imageries.

In this paper, we try to improve the classification accuracy by a new model based on deep
residual networks (ResNet) [42]. At the same time, we introduce an object-oriented guided filter
to improve the performance of classification. This method, on paper, involves three steps. First,
imagery pre-processing is needed to prepare the dataset for deep learning. Second, a deep network is
trained to segment VHR remote sensing imagery into two classes: buildings and clutter/unknown.
Third, a guided filter is employed to optimize the extraction buildings and an ultimate spectral-spatial
classification map of the urban district is achieved by fusing the object-oriented optimized results.
All the challenges have resulted in improving the classification accuracy of complex urban area remote
sensing imagery. The major contribution of this work is proposing a new model based on ResNet
that we defined as Res-U-Net, and exploring a novel framework to perform classification of VHR
remote sensing imagery. The experimental results show that the novel framework is more effective at
extracting buildings.

The remainder of this paper is organized as follows: Section 2 presents the building extraction
using VHR imagery in urban areas based on deep learning and guided filters; Section 3 describes
the experimental results and how to set the parameters; Section 4 is a discussion of our method and
Section 5 presents our concluding remarks.

2. Methods for Classification in Very High Resolution Remote Sensing Imagery

In this work a pixel classification method to extract buildings from urban districts within VHR
remote sensing imageries based on deep learning and guided filters is proposed. First, the imageries
are pre-processed and edge enhancing is used to emphasize the pixels which exist at the edges of the
buildings. Some hand-crafted features including the normalized differential vegetation index (NDVI),
the normalized digital surface model (NDSM), and the first component of the principal component
analysis (PCA1) are extracted based on the color infrared (CIR) imagery, red green blue (RGB) satellite
imagery as well as the corresponding digital surface model (DSM). Then, the proposed deep neural
network Res-U-Net is introduced for pixel classification, where the hand-crafted features, the original
bands, and the ground truth (labeled artificially) are treated as inputs to train the network. The output
of the deep neural network is the segmentation map that represents the pixel labeling results. Finally,
we briefly introduce the concept of a guided filter to fine-tune the pixel labeling results because the
convolutional network tends to blur object boundaries and visually degrade the result when it is applied
to remote sensing data [12]. An overview of the proposed pixel classification framework is illustrated
in Figure 1.
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2.1. Deep Learning for Remote Sensing Imagery Classification

Convolutional networks have been widely utilized in applications ranging from whole-image
classification [43–45] to pixel classification as semantic segmentation in computer vision. Pixel
classification includes automatically building maps of geo-localized semantic classes (for example:
buildings, impervious surfer, vegetation, and so on) from the earth-observation data [46]. In recent
years, deep learning has become a state-of-the-art tool for pixel classification in remote sensing, as well
as other fields. Fully convolutional networks are adapted as effective tools for the semantic labelling of
high-resolution remote sensing data. This paper uses the modified and extended architecture ResNet,
named Res-U-Net (Figure 2).
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In this paper, we trained the Res-U-Net by adopting the approach of reference [47], which is
famous for having the ability to work with very little training data but still obtain precise segmentation.
The Res-U-Net network consists of two paths: contracting (left) and expansive (right). The left part
is the ResNet, which is used to extract the features of input data, and we modified the input layer
to adapt the seven elements of the input data. The input layer is followed by a normalization layer
and a max pooling layer. The activation layer in the network contains a rectified linear unit (ReLU)
and a 2 × 2 max-pooling operation for the subsampling, both of them improve the robustness of
the network against distortions and small translations [44]. During the features extraction, there are
four stages and every stage includes several residual blocks. The feature maps in the same block
have the same size, and the feature maps in the following blocks are half that of the previous ones.
The feature maps in different blocks have different scale features. The expansive part aims to extract
the buildings using the feature maps. The number of stages in contracting and expansive is the same.
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Inspired by the feature pyramid networks [48], to obtain the features in multiple scales, a concatenation
with the corresponding stage from the contracting part is designed in the deep neural network.
Every stage in the expansive part includes the upsampling of the feature map, a concatenation block
and a convolution block, which consists of a 3 × 3 convolution layer, a normalization layer and
a rectified linear unit. At the end of the network, a 1 × 1 convolutional layer is added to map the
feature vectors to the two classes of buildings and clutter, the outputs of this layer indicate the class
scores for the pixel. A softmax layer, used to calculate the classification results, is added at the end
of the network. In this work, the deep convolutional network uses the ResNet as a feature extractor,
which solves the degradation problem during the layer increases, and it is useful to extract the features
in contracting. The concatenation in the expansive part is able to learn multiple scales and different
level features, which increases the robustness of the network and improves the accuracy of the building
extraction. The output of the softmax layer is a probability map with two channels. It presents the
result of the classification between buildings and clutter in every pixel.

Within the remote sensing imagery and their corresponding normalized digital surface model,
hand-crafted features such as NDVI, PCA1 as well as the classified segmentation maps are regarded as
the inputs to train the network. The Res-U-Net builds higher level features by the grouping of mapping
features of lower level features, and therefore, the results are located more accurately. It transmits the
error from a high level to a low level and speeds up the training [47]. The size of the output of the
network is the same as the input and it usesnd-to-end processing. At the beginning of the network,
max-polling and convolution layers produce more abstract feature maps, which are beneficial for the
up-convolution in order to calculate an accurate pixel classification result.

The building extraction problem can be regarded as a binary classification problem. During the
training of the parameters, it can be solved by a logistic regression using the optimization of the energy
function. As with other training methods [47], we train the network using the gradient descent to
minimize the energy function. The energy function is calculated by the softmax as well as the cross
entropy loss function. The softmax is used to calculate the probability map, defined as:
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(
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where k ∈ {1, 2} which corresponds to the buildings and the clutter, and K represents the number
of classes as two. pk

(
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defined as follows:
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where
{(

xi, yi)}m
i=1 is assumed to be the training data, xi represents the vectored features, and yi

is the labeled data, m represents the number of samples, and w is a weight map in the network to
be optimized.

2.2. Guided Filtering

To fine-tune the buildings extracted by deep learning, the guided filter, which was firstly proposed
by He [49], is introduced in this work. Like the bilateral filter, it is an edge-preserving smoothing
technique. Thanks to the guiding of the input image (guidance image), the filtering result is more
structured and less smoothed. The guided filter is better than the bilateral filter in terms of detail
and it is more effective [49], which makes it widely applicable in computer vision and graphics [50].
The guided filter assumes that the local linear model exists between the guidance image and the
filtering result, so that it will benefit to optimize object classification like buildings.
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The guided filter involves two input images including a guidance image Ic and a filtering image
Iin. The filtering output O is assumed to be a linear transform of Ic in a window wk:

O(i) = ak Ic(i) + bk (3)

where ak and bk are the coefficients of the linear transform between the guidance image Ic and the
filtering image O within window wk (the size of window is w × w). They can be calculated as follows:

ak =

1
w2 ∑

i∈wk

Ic(i)Iin(i)− uk pk

σ2
k + ε

(4)

bk = pk − akuk (5)

where, uk and σk are the mean and variance of the guidance image Ic within the window wk, and pk is
the mean of the filtering image Iin within the window wk, and ε controls the blur degree of the guided
filter. Because pixel i has a relationship with all the windows that cover it, the output of filtering O (i)
is calculated as:

O(i) = ai Ic(i) + bi (6)

where ai and bi are the mean of coefficients of all the windows that cover the pixel i. For simplicity,
the equation can be rewritten as:

O = G(Iin, Ic, w, ε) (7)

The original imageries are treated as guiders to optimize the boundaries in order to remove
the salt-and-pepper class noise. The result, directly fine-tuned by the guided filter, will result in the
over-smoothness of the extracted buildings in the output. However, the building maps should be
binary and the pixels in the boundaries change gradient in reality. Therefore, we set a threshold during
filtering. If the value is larger than the threshold it will be set to 255, which represents buildings,
otherwise, it is equal to 0, which represents the clutter.

3. Results

3.1. Datasets

The ISPRS 2D semantic labelling VHR remote sensing imageries of urban districts are used in the
experiments, including the Vaihingen (Germany) and Potsdam (Germany) datasets, as these are open
asset datasets provided online. Both of them consist of the near infra-red, red, and green ortho-rectified
imagery (or color infra-red, CIR). The corresponding digital surface models (DSMs) generated by
dense image matching and ground truth labels are annotated manually. Additionally, the Potsdam
dataset has a blue channel, containing 38 ortho-rectified aerial IRRGB images of≈ 6000× 6000 (in total,
over 1,368,000,000 pixels) at 5 cm spatial resolution, where 24 tiles are labelled with pixel-level ground
truth. The Vaihingen dataset comprised of 33 large image patches of ≈ 2500× 2500, extracted from
a larger orthophoto imagery captured over Vaihingen. Overall, there are about 168,287,871 pixels,
and the imageries have a ground sample distance (GSD) of 9 cm, where 16 tiles are labelled with
pixel-level ground truth. Each of the ground truth labels are made up of building and unknown
(clutter). The DSM is a value array which has the same size as the input image and the labelled ground
truth. At the same time, the normalized DSMs [51] are available for us, where the height is computed
using the off-ground pixels. The imageries with ground truth are divided into two parts, where 80%
are used to train the Res-U-Net and 20% are used to validate the trained model.

3.2. Preprocessing the Data for Deep Learning

Although the urban remote sensing imagery used in this work is in high resolution, some object
edges are still fuzzy, which result in the object being unrecognizable from the background. Therefore,
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this work introduces the edge enhancement effect to the remote sensing imagery processing. The edge
enhancement is an image-filter that reduces the effect of noise. It can also decrease the complexity of
the image computation. Edge enhancement is widely used in fields such as pattern recognition, image
semantic segmentation, and so on. This work enhances the edge of the imageries using the python
imaging library (PIL). It is a kind of convolutional filter, where a n× n matrix is defined to operate
with the digital imagery. Every pixel of the edge enhancement result is a sum-weighted value of the
convolution region. The size of the convolution kernel used in the experiment is 5× 5.

The size of the total from dataset is approximately 6000× 6000. If the whole dataset is used as an
input for the deep network, millions of paragraphs must be learned, which would lead to a lack of
memory. Therefore, we processed the imageries using a 256× 256 sliding window with a stride of
64 px to produce the samples. Every eight samples were regarded as a batch to train the network.

3.3. Experimental Setup and Results

To improve the accuracy of the vegetation in this experiment, we computed the NDVI
from the near-infrared and the red channels, and it was used as an indicator for the vegetation
(NDVI = (NIR − R)/(NIR + R)). A PCA transformation was introduced to extract the first component
comprising of brightness, which will be beneficial to classify some special building roofs. The bands
of R, G, B (there is no blue band in the Vaihingen data), and CIR, as well as the hand-crafted features
including NDVI, NDSM, the first component of PCA, and the corresponding ground truth (Figure 1)
are used as inputs to train the Res-U-Net. The architecture, as well as the parameters used in this work,
is shown in Figure 3.
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For an individual network, we trained the network with a learning rate of 0.001. To ensure an
outstanding learning result, we divided the learning rate by ten every ten epochs. There are 100 epochs
during the training and each epoch has 2048 samples. We use the Adam as the optimizer to optimize
the network when adjusting parameters like weights, biases, and so on. In case most of the evaluation
data have targets, we set the size of evaluation data as 2000 × 2000.
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The provided metrics of F1 score and the global pixel-wise accuracy of each class are used to
assess the quantitative performance. F1 score is a representation of the harmonic mean of precision
and recall, and it can be calculated as follows:

F1
i = 2× precisioni × recalli

precisioni + recalli
(8)

where
precisioni =

TPi
TPi + FPi

, recalli =
TPi

TPi + FNi
(9)

Here, TPi is the number of true positives for class i, FPi and FNi represent false positive and false
negative, respectively. These metrics are computed using the pixel-based confusion matrices per tile or
by an accumulated confusion matrix. At the same time, the overall accuracy (OA) can be obtained by
normalizing the trace from the confusion matrix [52].

The proposed deep learning of the Res-U-Net is implemented using Tensorflow and Keras in the
Linux platform with a TITAN GPU (12 GB RAM). After 204,800 iterations, our best model achieves
state-of-the-art results on the datasets (Table 1). The changing accuracies and losses of the Potsdam
and Vaihingen datasets with the increasing epochs are shown in Figure 4.
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by normalizing the trace from the confusion matrix [52].  

The proposed deep learning of the Res-U-Net is implemented using Tensorflow and Keras in 
the Linux platform with a TITAN GPU (12 GB RAM). After 204,800 iterations, our best model 
achieves state-of-the-art results on the datasets (Table 1). The changing accuracies and losses of the 
Potsdam and Vaihingen datasets with the increasing epochs are shown in Figure 4.  

 

Figure 4. Plots showing the accuracy and loss of the Res-U-Net network for training the datasets. The 
training accuracy (a) and the loss (b) change with the epochs increasing in Potsdam. The training 
accuracy (c) and the loss (d) change with the epochs in Vaihingen. 

Figure 4. Plots showing the accuracy and loss of the Res-U-Net network for training the datasets.
The training accuracy (a) and the loss (b) change with the epochs increasing in Potsdam. The training
accuracy (c) and the loss (d) change with the epochs in Vaihingen.
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The architecture reaches 96.91% overall accuracy over the Potsdam and 97.71% overall accuracy
over Vaihingen, respectively. The deep learning frame performs particularly well on impervious
ground and the buildings (Figure 5).
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Figure 5. Results of the buildings extraction of the Vaihingen dataset using deep learning, the imagery
(a) as well as the corresponding ground truth (b) and the prediction (c).

Although the accuracy of the pixel labelling improved by using edge enhancement and deep
neural networks, the boundaries of the buildings were still blurry and some pixels belonging to the
buildings were misclassified (Figure 6b,e). To improve the performance, a guided filter was introduced.
During the optimization by the guided filter, we set values larger than the threshold (t = 90) to 255,
which is mentioned in Section 2.2. Otherwise, the values are set to 0. The original imageries as well as
the prediction results produced by deep learning are used as the input for the guided filter. From the
results (Figure 6), it is clear that the performance in both of the datasets improved.
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Figure 6. Results of the guided filter. (a) represent the original imageries in the Potsdam and Vaihingen
datasets, respectively. (b) represent the corresponding prediction from deep learning. (c) represent the
results of guided filter. (d–f) are the original imageries, prediction from deep learning and the results
of guided filter in Vaihingen, respectively.
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Table 1. Measures the average accuracy for the classification, precision, recall as well as F1 score for
buildings and clutter in Potsdam and Vaihingen, respectively.

Dataset OA Precision (B) F1 (B) Recall (B) Precision (C) F1 (C) Recall (C)

Postdam 0.9691 0.9634 0.9390 0.9158 0.9709 0.9793 0.9878
Vaihingen 0.9771 0.9621 0.9515 0.9412 0.9816 0.9850 0.9883

Where B stand for buildings, and C represent clutter, and OA represents overall accuracy.

4. Discussion

4.1. Some Effects to the Result of Deep Learning

Although VHR remote sensing imagery is easily applied to distinguish objects on the ground,
some edges are not obvious between objects with similar spectral values, so it is difficult to classify
the pixels, especially in the urban districts. This work introduces edge enhancing to increase the
differences among objects which leads to better performance during classification. We compared the
overall accuracy for buildings and clutter classification, as well as precision, recall and F1 (mentioned
above) by both using and not using the preprocessing (Figure 7), respectively.
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Remote Sens. 2018, 10, 144 11 of 18

As we can see, the overall accuracy of Potsdam has improved by 0.43% and the overall accuracy
of Vaihingen has improved by 2.94%. At the same time, the precision and recall for buildings
has improved compared to the results computed using the inputs without edge enhancing. Edge
enhancement is able to emphasize the indistinct pixels at the edges of the buildings so that they can be
classified more precisely, as shown in Figure 8. It can be easily observed that the performance is poor
in some parts like A, B without the edge enhancing preprocessing.
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Figure 8. Results of the building extraction in the urban district of the Potsdam dataset with and
without edge enhancing preprocessing. (a) The original imagery of this urban district. (b) The ground
truth of this region. (c) The prediction results using the Res-U-Net without enhanced preprocessing.
(d) The prediction results with enhanced preprocessing.

Precision, recall and the F1 scores have significantly improved thanks to the discriminative power
of the digital surface model (DSM) and NDVI. To illustrate some differences between the results
achieved by the DSM and NDVI, the controlling variable method was adopted to analysis of the effects
of the elements. We compared the performance of deep learning whilst exclude either the DSM or the
NDVI and the performance of deep learning only treat the RBG images as input. Table 2 compares the
results on the Vaihingen and Potsdam datasets. It can be clearly observed that the results support the
idea that it is beneficial to use the DSM and the NDVI, and that they improve the overall accuracy by
1.64% and 0.39% for the Potsdam dataset and 1.45% and 2.19% for the Vaihingen dataset. They also
improve the F1 by 3.92% and 0.83% for Potsdam and 2.42% and 3.89% for Vaihingen. Compared with
the results, it is clear that the limitation of the input only with RBG images, the overall accuracy of
deep learning decreased by 2.66% and 2.7%, respectively; and F1 for building decreased by 5.71% and
4.13%, respectively, whilst exclude both the DSM and the NDVI.

Table 2. (a) Compared with the results whilst exclude either the DSM or the NDVI for Potsdam dataset.
(b) Compared with the results whilst exclude either the DSM or the NDVI for Vaihingen dataset.

Elements OA Precision (B) F1 (B) Recall (B) Precision (C) F1 (C) Recall (C)

all 0.9691 0.9634 0.9390 0.9158 0.9709 0.9793 0.9878
Without DSM 0.9527 0.9606 0.8998 0.8462 0.9483 0.9688 0.9901
Without NDVI 0.9652 0.9644 0.9307 0.8993 0.9655 0.9768 0.9883

Only RGB 0.9425 0.9471 0.8819 0.8251 0.9412 0.9621 0.9838

Elements OA Precision (B) F1 (B) Recall (B) Precision (C) F1 (C) Recall (C)

all 0.9771 0.9621 0.9515 0.9412 0.9816 0.9850 0.9883
Without DSM 0.9626 0.9341 0,9273 0.9207 0.9725 0.9749 0.9773
Without NDVI 0.9552 0.9228 0.9126 0.9026 0.9663 0.9699 0.9737

Only IRRG 0.9501 0.9181 0.9102 0.9025 0.9618 0.9677 0.9736

B stand for buildings and C represent clutter, and OA means overall accuracy.

By analysis, it is clear that the performance using the DSM as a channel of input has improved
when compared to the case without the DSM. The recall for buildings in the two datasets decreased
by 6.96% and 2.05%, respectively. That is to say, the nature of some pixels that are buildings are
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misclassified as clutter. Although the pixels that belong to a roof exposed to the sun and a roof out of
the sun are different, they have the same DSM value, so it will perform well when extracting all kinds
of building roofs. Some road pixels are very similar to the roof of the building in terms of spectral
characteristics, but they have a large difference in DSM. As a result, DSM improves the capability of
the model to extract buildings and the classification precision of OA, buildings and clutter. The results
can be observed in Figure 9.
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Figure 9. The results of the building extraction in the urban district of the Potsdam dataset with and
without the DSM as a channel of the input. (a) The original imagery of the urban district. (b) The DSM
of this district. (c) The ground of this region. (d) The prediction results using the Res-U-Net without
the DSM as a channel of input. (e) The prediction results corresponding to the input with the DSM.

The NDVI can show the impact of the underlying background of buildings and the vegetation
canopy structure to some degree. In urban areas, some low buildings are always covered with
tress, which make it difficult to classify, like part A and B in Figure 10. When training the network
without the NDVI, the overall accuracy and F1 for both buildings and clutter in both Potsdam and
Vaihingen datasets decreased. The recall for buildings in the two datasets decreased by 1.65% and
3.86%, respectively. The results (Figure 10) show that the NDVI as a channel of input to train the model
is beneficial to solve the problem.

Compared with other methods using the same datasets (that is, the training and validation
datasets), the results are reported in Table 3. The Res-U-Net proposed in this work shows improvements
on building extraction in both datasets. The network extracts features using the ResNet, which works
well in contracting, and it benefits a lot from solving the degradation problem during the increase of
layers. The expansive concatenated with multiple scales in different blocks and is helpful in classifying
the buildings of different sizes.
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Figure 10. The results of the building extraction in the urban district of the Potsdam dataset with and
without the NDVI as a channel of the input. (a) The original imagery of the urban district. (b) The NDVI
of this district. (c) The ground of this region. (d) The prediction results using the Res-U-Net without
the NDVI as a channel of input. (e) The prediction results corresponding to the input with the NDVI.

Table 3. Compared with the results of proposed method with others methods on Vaihingen and
Potsdam datasets.

Dataset SegNet FCN CNN + RF Mulit-Scale Deep Network [33] CNN + RF + CRF Ours

Vaihingen 0.9078 0.9279 0.9423 0.945 0.943 0.9771
Potsdam 0.9174 0.9127 0.9303 0.9406 0.9392 0.9691

4.2. Influence of the Guided Filter

The threshold used in the optimization by the guided filter is important. Since some pixels near
the building edge and the spectrum are similar to the buildings if the threshold is smaller, more pixels
will be extracted as buildings and lead to the extracted building area being larger than the real building
area. On the other hand, if the threshold is larger, some unclear edges will be excluded and the
extracted building area will be smaller than the real area of the buildings (Figure 11).
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Figure 11. The results of the guided filter. (a) The imagery of the urban district. (b) The ground truth
corresponding with the imagery. (c) The optimization result with a guided filter with a threshold t = 40.
(d) The optimization result with a guided filter with a threshold of t = 90. (e) The optimization result
with a guided filter with a threshold of t = 165.
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To get the optimal threshold, we compared the overall accuracy and F1 of the results using
different thresholds. The guided filter with different thresholds was then used by the same predicted
results of the Res-U-Net. The thresholds range was between 40 and 175 and the threshold value
increased by every five steps. From the result (Figure 12) we can see that the accuracy increases as the
threshold grows until it reaches a threshold of t = 90. After that, the overall accuracy and F1 decreases
with the growing threshold. In this way, the threshold in this work was set to 90 while optimizing
using the guided filter.
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by the guided filter.

The size of the window in the guided filter also affects the accuracy during optimization. If the
size of window is too small, there will be less information in view to be used to guide the optimization
and the filtered result will not be able to obtain enough surrounding information during optimization.
On the contrary, if the size of window is too large, the information in the window will be mixed,
which will mislead the filter optimization. To get the optimal window size in the guided filter,
we compared the overall accuracy and F1 of the results using different window sizes from two to 15.
From the results (Figure 13) we can see that the overall accuracy and F1 increased as the window size
increased until it reached size = 5. After that, the overall accuracy and F1 decreased with the growing
window size. Therefore, the size of the window in the guided filter was set as five while optimizing
the Res-U-Net results in the experiments.
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5. Conclusions

In this paper, a novel framework to perform building extraction in urban districts with very
high resolution (VHR) remote sensing imagery is presented. The major contribution of this work
is to explore an alternative technique for labeling objects in urban districts, which combined deep
learning and guided filtering. This project aimed to design a network which improved the accuracy
of building extraction and introduced a guided filter into the post-processing of the results. In our
work, during the preprocessing of the date, we used edge enhancing and it is helpful in improving
the performance of the segmentation process. As the deep neural network, Res-U-Net did well in
labeling different scales buildings; guided filtering was introduced after the Res-U-Net neural network
stage, which optimized the classification results and removed the salt-and-pepper class noise. At the
same time, it preserved the boundaries of the objects within the imagery effectively. Experiments
were carried out on two VHR remote sensing imagery datasets. Every desirable object was extracted
successfully using the method mentioned in this work and the results showed the effectiveness and
feasibility of the proposed framework in improving the performance of the urban district remote
sensing imagery classification. The method was compared with some classical VHR remote sensing
classification such as the fully convolutional network (FCN) as well as the method that combined the
convolutional neural network (CNN) and random forest (RF). Experimental results demonstrated
that our methods were better than the other methods. The proposed method in this work can obtain
improvements in terms of overall accuracy, precision and F1 over the classical classification systems.
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With the development of remote sensing technology, more and more VHR images can be accessed
conveniently, and the classification of the urban district plays an important role in practical applications
such as urban infrastructure, management, and so on. This work has provided an effective method
to improve VHR image classification performance. However, the shape of some buildings that are
covered by trees cannot be detected precisely, and some blurry and irregular boundaries are hardly
classified. In the future, a more optimized deep neural network is required to improve efficiency
and accuracy. At the same time, further improvement may be achieved by combining the deep
neural network and the guided filter in an end-to-end model, which would combine the advantage
of a guided filter that preserves boundaries and decreases the salt-and-pepper class noise whilst also
being convenient to train like the FCN. Instead of treating non-building as a background class, we will
take the scene semantic into account and extract the roads and trees as well as the cars and so on in
future studies.
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