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Abstract: Action and event recognition in multimedia collections is relevant to progress in
cross-disciplinary research areas including computer vision, computational optimization, statistical
learning, and nonlinear dynamics. Over the past two decades, action and event recognition has
evolved from earlier intervening strategies under controlled environments to recent automatic
solutions under dynamic environments, resulting in an imperative requirement to effectively organize
spatiotemporal deep features. Consequently, resorting to feature encodings and poolings for action
and event recognition in complex multimedia collections is an inevitable trend. The purpose of
this paper is to offer a comprehensive survey on the most popular feature encoding and pooling
approaches in action and event recognition in recent years by summarizing systematically both
underlying theoretical principles and original experimental conclusions of those approaches based
on an approach-based taxonomy, so as to provide impetus for future relevant studies.

Keywords: action and event recognition; multimedia collections; computer vision; feature encodings
and poolings

1. Introduction

More and more research efforts within the computer vision community have focused on
recognizing actions and events from uncontrolled videos over the past two decades. There are
many promising applications for action and event recognition, such as abnormal action and
event recognition in surveillance applications [1–4], interaction action and event recognition in
entertainment applications [5–8], and home-based rehabilitation action and event recognition in
healthcare applications [9–12], and many other analogous applications such as in [13–18]. According to
the definition given by NIST [19], an event is a complex activity occurring at a specific place and time,
which involves people interacting with other people and/or objects, and consists of a number of human
actions, processes, and activities. Feature representation approaches, pattern recognition models and
performance evaluation strategies are three key components in action and event recognition [20].
Compared to the other two key components, feature representation approaches, which should contain
robust appearance and motion information, played a more critical role in video analysis. There are three
key components in feature representation approaches, which are feature extractions, feature encodings,
and feature poolings.
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Feature extractions care mainly about how to extract required features from specified multimedia
collections. On the one hand, there are many approaches proposed for feature extraction using
specified sensors in previous research work. For example, Lara et al. [21] surveyed the state of the
art in wearable sensors-based human activity recognition, and categorized feature extraction from
time series data into statistical approaches and structural approaches, with measured attributes of
acceleration, environmental signals and vital signs. Jalal et al. [22] developed a life logging system,
where both magnitude features and direction angle features were extracted from depth silhouettes
of human activities captured by a depth camera. Yang et al. [23] applied a low-bandwidth wearable
motion sensor network to recognize human actions distributed on individual sensor nodes and a
base station computer, based on a set of LDA features. Song et al. [24] proposed a robust feature
approach, namely the body surface context, to encode the cylindrical angular of the difference vector
according to the characteristics of human body, for action recognition from videos of depth camera.
Jalal et al. [25] presented a methodology for human activity recognition-based smart home application,
by extraction of both magnitude features and direction features from human silhouettes in a depth
camera. Althloothi et al. [26] extracted two sets of 3D spatiotemporal features via a Kinect sensor for
human activity recognition, where the shape features were from the surface points using spherical
harmonics coefficients, and the motion features were from the end points of the distal limb segments.
Besides, similar research work in the area can be found in references [27–29].

On the other hand, there are also a number of approaches proposed for extraction of multimedia
features in previous research work, including audio features, visual features, text features, and hybrid
features. For example, Li et al. [30] proposed the extraction of deep audio features for acoustic event
detection by a multi-stream hierarchical deep neural network. Kumar et al. [31] proposed a unified
approach that adopted strongly and weakly labeled data for audio event and scene recognition based
on a mel-ceptra coefficients feature. Farooq et al. [32] constructed a feature-structured framework
by using skin joints features and self-organizing map for 3D human activity detection, tracking
and recognition from RGB-D video sequences. Siswanto et al. [33] verified by experiments that
PCA-based Eigenface outperformed LDA-based Fisherface for facial recognition for biometrics-based
time attendance purposes. Manwatkar et al. [34] designed an automatic image-text recognition system
by using matrix features and Kohonen neural networks. Chang et al. [35] invented a source-concept
bi-level semantic representation analysis framework for multimedia event detection. Jalal et al. [36]
proposed a hybrid feature representation approach called depth silhouettes context, which is fused
of invariant features, depth sequential silhouettes features and spatiotemporal body joints features,
for human activity recognition based on embedded Hidden Markov Models. Kamal et al. [37] presented
a framework for 3D human body detection, tracking and recognition from depth video sequences
using spatiotemporal features and modified HMM. Jalal et al. [38] proposed a hybrid multi-fused
spatiotemporal feature representation approach that concatenated four skeleton joint features and one
body shape feature to recognize human activity from depth video.

The feature encodings and poolings concern primarily how to organize effectively the extracted
features, so that overall performances in action and event recognition, such as recognition precision,
recognition robustness and computation complexity, can be further improved. The difference between
action representation and event representation lies mainly in their feature extraction approaches,
whereas these two representations usually share same feature encodings and poolings. Due to
complex spatiotemporal relationships between actions and events in multimedia collections, feature
encodings and poolings are becoming increasingly important in feature representation approaches.
There have been many survey papers available on feature representation approaches of action
and event recognition [39–48]. However, most of them focused on reviewing proposed feature
extraction approaches, and thus did not take into comprehensive account feature encoding and
pooling approaches, which have been widely used in both image and video analysis. The purpose
of the paper is to conduct a complete survey on the most popular feature encoding and pooling
approaches in action and event recognition from recent years.
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2. Feature Encoding and Pooling Taxonomy

The hierarchical taxonomy of the survey paper is shown in Figure 1. These proposed
methodologies of feature encodings and poolings for action and event recognition from recent years
can be classified into four categories, which are 2D encodings, 3D encodings, general poolings,
and particular poolings, where most of the methodologies the paper surveyed are from papers of
either top conferences or top journals in computer vision and pattern recognition.
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Figure 1. The hierarchical feature encoding and pooling taxonomy of the paper. 
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Figure 1. The hierarchical feature encoding and pooling taxonomy of the paper.

Specifically, for 2D encodings, eight popular approaches were surveyed, i.e., standard bag-of-features
encoding [49,50], Fisher vector encoding [51–54], VLAD encoding [55], locality-constrained linear
encoding [56], super vector encoding [57], kernel codebook encoding [58], spatial pyramid encoding [59,60],
and Jensen-Shannon tiling encoding [61]. For 3D encodings, three popular approaches were surveyed, i.e.,
spatiotemporal grids encoding [62,63], STLPC encoding [64], and spatiotemporal VLAD encoding [65].
For general poolings, three popular approaches were surveyed, i.e., sum pooling [66–70], average
pooling [71–76], and max pooling [77–80]. For particular poolings, another three popular approaches were
surveyed, i.e., stochastic pooling [81], semantic pooling [82], and multi-scale pooling [83–86].

The rest of the survey paper is organized as follows. Firstly, popular approaches for 2D encodings
are surveyed in Section 3. Then, Section 4 covers popular approaches for 3D encodings. In addition,
Section 5 presents popular approaches for both general pooling strategies and particular pooling
strategies. Finally, Section 6 concludes the survey paper.

3. 2D Encodings

There are eight popular approaches surveyed for 2D encodings, as shown in Table 1.

Table 1. Popular approaches and corresponding references for 2D encodings.

Approaches References

Standard bag-of-features encoding Csurka et al., 2004 [49]; Sivic et al., 2003 [50]

Fisher vector encoding Perronnin et al., 2010 [51]; Perronnin et al., 2007 [52];
Perronnin et al., 2010 [53]; Sánchez et al., 2013 [54]

VLAD encoding Jégou et al., 2010 [55]
Locality-constrained linear encoding Wang et al., 2010 [56]

Super vector encoding Zhou et al., 2010 [57]
Kernel codebook encoding van Gemert et al., 2008 [58]
Spatial pyramid encoding Lazebnik et al., 2006 [59]; Grauman et al., 2005 [60]

Jensen-Shannon tiling encoding Jiang et al., 2014 [61]
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3.1. Standard Bag-of-Features Encoding

Since most classifiers require fixed length feature vectors, the ever-changing number of local
features in images or videos, e.g., SIFT [87,88] and HOG3D [89], poses difficulties for further pattern
recognition tasks. This issue can be solved by the most popular orderless tiling method called
bag-of-keypoints [49] or bag-of-visual-words (BOV) [50], which was inspired by the well-known
bag-of-words used in text categorization.

BOV treats an image or video frame as a document, the visual vocabulary which is generated by
clustering a large set of local features extracted from patches around detected interest points as the
word vocabulary, and the cluster centers as the visual words. BOV is a typically high-dimensional
sparse visual word occurrence histogram representation.

BOV has been widely used in event and action recognition. Wang and Schmid improved the
dense trajectories approach [90] by taking into account camera motion and proposed an efficient
state-of-the-art action recognition approach, called Improved Trajectories, where they observed an
improvement due to our motion-stabilized descriptors when encoding extracted features with BOV.
Lan et al. [91] adopted spatial BOV as one of three encodings to combine more than 10 kinds of features
for the TRECVID 2013 multimedia event detection and multimedia event recounting tasks. Ye et al. [92]
developed the Raytheon BBN Technologies (BBN) led VISER system for the TRECVID 2013 multimedia
event detection and multimedia event recounting tasks, which is based on the BOV approach built on
low-level features extracted from pixel patterns in videos.

Although performing surprisingly well, the BOV-based approaches are unable to understand
deeply semantic contents of the videos, such as the hierarchical components, which is common
issue in high-level event and action recognition [20]. Another drawback is that the important spatial
information is lost in this coarse representation.

3.2. Fisher Vector Encoding

Based on the Fisher Kernel framework [93], the Fisher Vector [51–54] is an extension of the
bag-of-visual-words (BOV) and encodes feature vectors of patches within one specific image by
a gradient vector derived from log likelihood of a universal generative Gaussian mixture model
(GMM) [94–99] which can be regarded as a probabilistic visual vocabulary.

Let X = {xt|1 ≤ t ≤ T} be the set of T local low level D dimensional feature vectors extracted
from an image, e.g., a set of 128 dimensional SIFT feature vectors of interest patches in the image, and

p(xt|Θ) =
N
∑

i=1
wig(xt

∣∣∣∣µ(i), Σ(i)) is the probability density function of the GMM, where Θ = {w, µ, Σ} =

{wi, µi, Σi|1 ≤ i ≤ N} are parameters, wi ∈ R are the mixture weights with
N
∑

i=1
wi = 1, µ(i) ∈ RD are

the D dimensional mean vectors, Σ(i) ∈ SD
++ are the D× D symmetric positive definite covariance

matrices which are assumed to be diagonal by the variance vector σ2
i = diag

(
Σ(i)

)
, and g(xt

∣∣∣µ(i), Σ(i))

are the component Gaussian density functions.
Then, the fisher vector encoding adopted in [53] follows steps of:

(1) GMM parameters Θ are trained on a large number of images using the expectation-maximization
(EM)-based maximum likelihood estimate (MLE) of [100–102].

(2) Both Φnorm
µi

(X) =
T
∑

t=1
γt(i)(xt − µi)/

(
Tσi
√

wi
)

and Φnorm
σi

(X) =

T
∑

t=1
γt(i)

[
(xt − µi)

2 − σ2
i

]
/
(
Tσ2

i
√

2wi
)

are computed, where 1 ≤ i ≤ N and

γt(i) = (wig(xt|·))/
N
∑

j=1
wjg(xt

∣∣∣∣∣·) .

(3) The final fisher vector Φnorm(X) of the image X is the concatenation of Φnorm
µi

(X) and Φnorm
σi

(X)

for 1 ≤ i ≤ N.
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Thus, the dimension of the fisher vector Φnorm(X) is 2ND. Furthermore, the authors stated
that, linear classifiers provide almost the same results as computation expensive kernel classifiers by
using the fisher vector encoding which yields high-classification accuracy and is efficient for large
scale processing.

3.3. VLAD Encoding

For indexation and categorization applications, a high-dimensional BOV representation usually
shows better yet robust results. However, the efficiency becomes unbearable when those applications
are performed on a large amount of data. Jégou et al. [55] proposed a representation, called VLAD
(vector of locally aggregated descriptors), for image search on a very large scale. This approach could
jointly consider the accuracy, the efficiency, and the computational complexity of the image search.

Let X =
{

xi

∣∣∣1 ≤ i ≤ n, xi ∈ Rd
}

is the set of n local low level d feature vectors extracted

from n interest patches of an image, D = {w1, w2, · · · , wk} ⊂ Rd×k be the learned codebook
with k-means, and w∗ = argmin

wj∈D,1≤j≤k
‖xi − wj‖ is the nearest visual word for local patch xi. Then,

the VLAD encoding of the image X can be denoted by a d × k dimensional vector fVLAD(X) =

( fVLAD(X|w1), fVLAD(X|w2), · · · , fVLAD(X|wk)), where fVLAD
(
X
∣∣wj
)
= ∑

xi=argmin
1≤i≤n

‖xi−wj‖
xi − wj is

the accumulation of differences between the visual word wj and its nearest multiple image patches,
and 1 ≤ j ≤ k.

Jégou et al. [55] combined the normalized fVLAD(X) with dimension reduction oriented principal
component analysis and indexing oriented approximate nearest neighbor search [103], resulting an
accurate, efficient, yet memory friendly image search.

3.4. Locality-Constrained Linear Encoding

Wang et al. [56] pointed out that in order to achieve desirable performance in classification
tasks, the most common combinational strategies adopt either linear encodings plus nonlinear
classifiers, such as BOV [50] plus χ2-SVM, or nonlinear encodings plus linear classifiers, such as
ScSPM [83] plus linear SVM. Usually, either the nonlinear encodings or the nonlinear classifiers are
computationally expensive. As a result, Wang et al. proposed a fast linear encoding approach, called
Locality-constrained Linear Coding (LLC) [56] for real-time classification applications.

Suppose X =
{

xi

∣∣∣1 ≤ i ≤ n, xi ∈ Rl
}

is a set of n local l dimensional feature vectors extracted

from an image, and D = {d1, d2, · · · , dm} ⊂ Rl×m is the encoding dictionary with m words. Then,
the process of the proposed fast linear LLC encoding works as follows: (1) For each xi, find its k
nearest neighbors from the dictionary D by using k-NN method, denoted as Di =

{
vj
∣∣ 1 ≤ j ≤ m

}
,

where vj = dj if vj is a neighbor of xi, else vj = 0; (2) Then, for each xi, its LLC encoding can be
obtained from the objective function fLLC(xi) = argmin

ci

‖xi − cT
i Di‖2

2, where ‖ci‖0 = k and 1Tci = 1.

The authors showed that the promising LLC approach cannot only improve encoding velocity,
but also classification performance even with linear classifier than several compared approaches.

3.5. Super Vector Encoding

Zhou et al. [57] proposed a nonlinear high-dimensional sparse coding approach, called Super
Vector (SV) encoding, for image representation and classification. The approach is an extended version
of the well-known Vector Quantization (VQ) encoding [104].

Let x ∈ Rd be the original d dimensional feature vector of an interest patch to be encoded,
and D ⊂ Rd×l be the encoding dictionary with l words. Then, the SV vector encoded from x can

be denoted by SVx =
[
αδ(x|w), δ(x|w)(x− w)T

]T

w∈D
, where α is a nonnegative constant, w ∈ Rl
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represents a word, δ(x|w) = 1 if w = argmin
w∈D

‖x−w‖, else δ(x|w) = 0. Thus, the final sparse SV vector

is l(d + 1) dimensional.
The authors stated that the SV encoding could achieve a lower function approximation error than

the VQ encoding, and their proposed classification method achieved state-of-the-art accuracy on the
PASCAL dataset.

3.6. Kernel Codebook Encoding

In addition to the loss of spatial structure information, there are another two major drawbacks [58],
i.e., codeword uncertainty and codeword plausibility, to the traditional BOV encoding model due
to the hard assignment of visual patches to a single codeword. Van Gemert et al. [58] proposed a
kernel density estimation approach, called Kernel Codebook encoding, to solve above two issues for
scene categorization.

Suppose X =
{

xj

∣∣∣1 ≤ j ≤ n, xj ∈ Rd
}

is the set of n local low level d dimensional feature vectors

extracted from n interest patches of an image, and D = {v1, v2, · · · , vl} ⊂ Rd×l be the encoding
dictionary with l words. Then, the Kernel codebook encoding of the image X can be denoted by a

vector fkcb(X) = { fdis(vi)|1 ≤ i ≤ l}, where fdis(vi) =
n
∑

j=1
Kσ

(
vi, xj

)
/n is the distribution of codeword

vi in the image X, and Kσ

(
vi, xj

)
= exp

{
−
(
vi − xj

)2/2σ2
}

/
√

2πσ is the Gaussian kernel with a scale
parameter σ.

Meanwhile, van Gemert et al. [58] concluded that: (1) The encoding fkcb(X) has integrated both
codeword uncertainty and codeword plausibility; (2) The Kernel codebook encoding could improve the
categorization performance, with either a high-dimensional image descriptor or a smaller dictionary.

3.7. Spatial Pyramid Encoding

Disregarding spatial layouts of interest patches, the bag-of-features-based methods have severely
limited descriptive ability in capturing shape information. Lazebnik [59,60] proposed a spatial pyramid
encoding and matching approach for scene recognition.

The approach involves repeatedly partitioning the scene image or frame into increasingly fine
cells, computing histograms of local features at each cell and measuring similarity with pyramid match
kernel. Specifically:

(1) A 400-dimension visual vocabulary is formed by performing k-means clustering on random
subset of interest patches, such as 16× 16 sized SIFT patches, from the training dataset.

(2) A 4-level spatial pyramid is applied to the scene image or frame X, such that there are 2l cells
along each dimension of level l, resulting in a total of 85 cells in the pyramid, where 0 ≤ l ≤ 3.

(3) For each cell, a 400-dimension bag-of-features histogram is computed. The histograms from all
85 cells are then concatenated and normalized to generate a 34,000-dimension feature vector SPX
as the spatial pyramid encoding of X.

(4) The pyramid match kernel K(SPX , SPY) defined in [59,60] is applied to measure the similarity
between scene images or frames X and Y for scene recognition.

Researchers also found that recognition performance from step 1–3 plus SVM classifier with
standard kernels is similar to that from step 1–3 plus the pyramid match kernel. The spatial pyramid
encoding has been proved effective and is now widely adopted in many applications, such as
scene recognition.

3.8. Jensen-Shannon Tiling Encoding

Reseach has shown that representations that consider dynamic salient spatial layouts could
always perform better than those with predefined spatial layouts on many recognition or detection
tasks [105–107]. However, both the layout of the spatial Bag-of-Words [49,50] encoding and the
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layout of spatial pyramid [59,60] encoding are predefined and data independent, which would lead to
suboptimal representations.

Jiang et al. [61] proposed a Jensen-Shannon (JS) tiling approach, based on efficiently learned
layouts, to encode feature vectors derived from the target image or frame by concatenated histograms
from according tiles. Two steps are involved in the JS tiling approach:

(1) It generates systematically all possible tilings, i.e., all vectors κ =
〈

κ1, κ2, · · · , κ|S|

〉
, from a base

mask S =
(

t1, t2, · · · , t|S|
)

by the proposed Algorithm 1, such that the resulting masks can be

denoted by S′ = Tκ(S), where κi ∈ Z and Tκ is the tiling operator.
(2) It selects the best tiling T ∗κ as the encoding layout, such that T ∗κ = argmin

Tκ

cos t(Tκ), based

on the assumption that an optimal tiling tends to separate positive and negative samples
with maximum distance, i.e., JS divergence, where the cost is got by cost(Tκ) = λ|Tκ(S)| −
|Tκ(S)|−1

∑
j=0

JS
(

Dj
+‖D

j
−

)
/|Tκ(S)|, |Tκ(S)| indicates tile number, λ is a regularized parameter, JS(·)

is the JS divergence, Dj
+ = H j

+/‖H j
+‖1 (or Dj

− = H j
−/‖H j

−‖1) is the normalized H j
+ (or

H j
−), H j

+ = ∑
yi=+1

(
xj

i + 1
)

/n+ (or H j
− = ∑

yi=−1

(
xj

i + 1
)

/n−) is average histogram of all positive

(or negative) samples for the jth tile, and n+(or n−) denotes the total number of positive (or
negative) samples.

The authors demonstrated that the JS tiling, as a much faster method, is especially appropriate for
large-scale datasets, but with comparable or even better classification results.

4. 3D Encodings

There are three popular approaches surveyed for 3D encodings, as shown in Table 2.

Table 2. Popular approaches and corresponding references for 3D encodings.

Approaches References

Spatiotemporal grids encoding Laptev et al., 2008 [62]; Laptev et al., 2007 [63]
STLPC encoding Shao et al., 2014 [64]

Spatiotemporal VLAD encoding Duta et al., 2017 [65]

4.1. Spatiotemporal Grids Encoding

Although spatial 2D encodings, such as spatial pyramid and JS tiling, could improve recognition
accuracy by considering spatial layouts of interest patches, they are designed mainly for describing
one image or one frame and thus not sufficient for describing spatiotemporal targets, such as actions
and events.

Laptev et al. [62,63] proposed a spatiotemporal grids (or spatiotemporal bag-of-features)
encoding approach for action recognition, which is an extension of the spatial pyramid encoding to
spatiotemporal domain. The pipeline involves:

(1) A K-dimension, e.g., K = 4000, visual vocabulary is constructed by clustering interest patches
sampled from the training videos, such as HOG patches or HOF patches around detected interest
points, with k-means algorithm.

(2) For a given test video clip V, 3D interest points are obtained firstly by the spatiotemporal detector,
such as Harris 3D detector. Then, spatiotemporal features, such as HOG or HOF, are extracted
from patches around those interest points.

(3) The whole test video clip V is divided by a σ1 × σ2 × τ sized grid into cuboids, e.g., spatial
sizes σ1 = 3, σ2 = 1, and temporal size τ = 2. For each cuboid, a K-dimension bag-of-features
histogram is formed.



Information 2017, 8, 134 8 of 18

(4) All histograms are further concatenated and normalized to form a K× σ1 × σ2 × τ dimensional
feature vector to represent the video clip V.

The authors concluded that the spatiotemporal grids give a significant gain over the standard
bag-of-features methods for action recognition. Besides, the same spatiotemporal grids-based
pipeline has been widely used and shown promising results by several research groups [108–111] for
multimedia event detection in TRECVID dataset.

4.2. STLPC Encoding

Shao et al. mentioned in paper [64] that local interest points-based sparse representations are not
able to preserve adequate spatiotemporal action structures, and traditional tracking or spatial/temporal
alignment-based holistic representations are sensitive to background variations. To overcome these
defects, they designed a spatiotemporal laplacian pyramid encoding (STLPC) for action recognition.
Being different from representation first and encoding or pooling later feature extraction pipelines,
Shao et al. proposed to extract action features by successively using frame differences-based STLPC
encoding, 3D Gabor filtering representation, and max pooling, where the STLPC encoding involves
there primary operations, as follows.

(1) Frame difference volume buliding. For the original video sequence volume VO, the difference
approach is applied as a preprocessing step to generate its frame difference volume VD.

(2) Spatiotemporal gaussian pyramid buliding. Firstly, generate a four-level frame difference
volume pyramid PVD by subsampling the volume VD with (1, 1/2, 1/4, 1/8) resolution. Then,
generate a four-level spatiotemporal gaussian pyramid Pg by convolving a 3-D Gaussian function

fσ(x, y, t) = exp
(
−
(

x2 + y2 + t2)/2σ2)/(√2πσ
)3

with each level of the pyramid PVD.

(3) Spatiotemporal laplacian pyramid buliding. In the beginning, generate a four-level revised
pyramid PG by expanding each level of the Pg into the same size as of the bottom level. After that,
generate a three-level spatiotemporal laplacian pyramid PL by differencing all two consecutive
levels on the revised PG with Pi

L = Pi
G − Pi+1

G , where 1 ≤ i ≤ 3 is the level number.

Evaluation experiments [64] on four typical action datasets illustrated that the spatiotemporal
STLPC, which performed well even with coarse bounding boxes, is an effective yet efficient global
encoding for complex human action recognition.

4.3. Spatiotemporal VLAD Encoding

It is well known that spatiotemporal feature extraction is crucial for action recognition. However,
as another key factor in action recognition, spatiotemporal encoding has not been paid enough
attention. In order to combine both spatial information and temporal information in traditional
2D VLAD encoding, Duta et al. [65] proposed a spatiotemporal VLAD encoding for human action
recognition in videos. The pipeline of the ST-VLAD encoding is as follows.

(1) Spatiotemporal deep video features extraction using two stream ConvNet or Improved Dense
Trajectories (iDT). For two stream ConvNet, frames are resized to size of 224× 224. Then, VGG19
ConvNet is pretrained on ImageNet and then adopted to extract 49 feature vectors with 512
dimentions by each vector for each frame in spatial stream, and VGG16 ConvNet is pretrained
on UCF101 and then adopted to extract 49 feature vectors with 512 dimentions feature for each
ten frames in temporal stream. For iDT, the resulted dimensionality is 96 for HOG, MBHx and
MBHy, and 108 for HOF. Finally, all extracted features are reduced by PCA.

(2) VLAD encoding. Suppose X =
{

xi

∣∣∣1 ≤ i ≤ n, xi ∈ Rd
}

is a set of n local low level d
dimensional spatial temporal deep video features extracted with approaches in the first
step, and Da = {va1, va2, · · · , val} ⊂ Rd×l is the appearance encoding dictionary with l
words. Then, VLAD encoding is defined as a d × l dimensional feature vector fVLAD(X) =
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( fVLAD(X|va1), · · · , fVLAD(X|val)), where fVLAD
(
X
∣∣vaj

)
= ∑

xi∈NN(vaj)

(
xi − vaj

)
/
∣∣NN

(
vaj
)∣∣,

and NN
(
vaj
)
= argmin

1≤i≤n
‖xi − vaj‖.

(3) Spatiotemporal encoding. Suppose pos(·) is a function to generate a three dimensional
normalized position vector, and Dp = {vp1, vp2, · · · , vpm} ⊂ R3×m is the spatiotemporal
encoding dictionary with m three dimensional words. Then, the ST encoding is defined
as a m × (d + l) dimensional feature vector by fST(X) = ( fST(X|vp1), · · · , fST(X|vpm)),
where fST

(
X
∣∣vpj

)
= ∑

pos(xi) & pos(vak)∈NN(vpj)
((xi − vak)/|NN(vak)|, MSi), NN

(
vpj
)

=

argmin
y=pos(xi) or pos(vak)

‖y− vpj‖, and MSi is its membership vector.

(4) ST-VLAD encoding. The final representation, i.e., ST-VLAD, of a video concatenates VLAD
encoding and ST encoding in a d× l + m× (d + l) dimensional vector.

The authors verified that combing powerful deep features, the proposed ST-VLAD encoding
could obtain state-of-art performance on three major challenging action recognition datasets.

5. Pooling Strategies

In computer vision and image processing, there are mainly two applications for pooling strategies.
One is to pool the encoding features, and the other is to pool the convolutional features. In this section,
let I be an input image. For encoding pooling, suppose X = {xi|1 ≤ i ≤ n, xi ∈ Rr} is the set of n local
low level r dimensional feature vectors extracted from I, E =

{
ej
∣∣1 ≤ j ≤ m, ej ∈ Rs} is the encoding

feature vectors of I, and PE = {pek|1 ≤ k ≤ s, pek ∈ R} be the pooling feature vector of I.
For convolutional pooling, suppose C =

{
ci,j
∣∣1 ≤ i ≤ rowc, 1 ≤ j ≤ colc, ci,j ∈ R

}
is the convolutional feature map of I or its upper pooling layer, and PC ={

pca,b
∣∣1 ≤ a ≤ rowp, 1 ≤ b ≤ colp, pca,b ∈ R

}
is the pooling feature map of C.

5.1. General Poolings

There are three popular approaches surveyed for general poolings, as shown in Table 3.

Table 3. Popular approaches and corresponding references for general poolings.

Approaches References

Sum pooling Peng et al., 2016 [66]; Zhang et al., 2015 [67]; Gao et al., 2016 [68];
LeCun et al., 1998 [69]; Mohedano et al., 2016 [70]

Average pooling Pinto et al., 2008 [71]; Boureau et al., 2010 [72]; Boureau et al., 2010 [73];
He et al., 2016 [74]; Sainath et al., 2013 [75]; Yu et al., 2014 [76]

Max pooling Serre et al., 2005 [77]; Sainath et al., 2013 [78]; Scherer et al., 2010 [79]; Wei et al., 2016 [80]

5.1.1. Sum Pooling

For encoding pooling, mathematical representation of the sum pooling can be expressed by:

pek =
m
∑

j=1
ej,k. Although sum pooling is an intuitive pooling strategy, there are a number of papers using

this method. For example, Peng et al. [66] analyzed action recognition performance among several bag
of visual words and fusion methods, where they adopted sum pooling and power l2-normalization
for pooling and normalization strategy. Zhang et al. [67] gave a probabilistic interpretation why the
max pooling was usually better than sum pooling in the context of sparse coding framework for
image retrieval applications, since max pooling tended to increase the discrimination of the similarity
measurement than sum pooling. Besides, they proposed a modified sum pooling method, improving
the retrieval accuracy significantly over the max pooling strategy.
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For convolutional pooling, sum pooling can be derived by: pca,b = ∑
(i,j)∈Ra,b

ci,j. There are some

attempts using sum pooling for convolutional neural network (CNN) based applications. For instance,
Gao et al. [68] proposed a compact bilinear pooling method for image classification based on a
kernelized analysis of bilinear sum pooling. They verified that the method could reduce the feature
dimensionality two orders of magnitude with little loss in performance, and the CNN back-propagation
can be efficiently computed. LeCun et al. [69] developed a typical CNN, called LeNet-5, for isolated
character recognition. The LeNet-5 architecture consisted of two convolution layers, two sum-pooling
layers, and several full connection layers. However, Mohedano et al. [70] found that for instance
retrieval tasks, even bag-of-words aggregation could outperform techniques using sum pooling when
combing with local CNN features at the challenging TRECVID INS benchmark.

5.1.2. Average Pooling

For encoding pooling, the average pooling strategy can be represented by: pek =
m
∑

j=1
ej,k/m.

There are many works using average pooling. For instance, Pinto et al. [71] constructed a biologically
inspired object recognition system, i.e., a simple V1-like model, based on average pooling [72].
This model outperforms state-of-the-art object recognition systems on a standard natural image
recognition test. However, many researchers have shown that, in most encoding pooling-based
vision applications, average pooling usually was not the best pooling strategy. For example,
Boureau et al. [73] provided a theoretical and empirical insight into the performance between max
pooling and average pooling. They pointed out that max pooling outperformed almost always average
pooling, especially dramatically when using a linear SVM.

For convolutional pooling, average pooling can be denoted as: pca,b = ∑
(i,j)∈Ra,b

ci,j/
∣∣Ra,b

∣∣2,

whereRa,b is a pooling region, and
∣∣Ra,b

∣∣ is its edge length. He et al. [74] introduced a deep residual
net, called ResNet, for large-scale image recognition. The ResNet ended with a global average pooling
layer and a fully connected layer with softmax. The authors won first place in several tracks in ILSVRC
& COCO 2015 competitions by using the ResNet. For convolutional pooling-based vision applications,
the situation that average pooling is always not the best choice is similar. For example, Sainath et al. [75]
explored four pooling strategies in frequency only for an LVCSR speech task, and concluded that either
lp pooling or Stochastic pooling can address the issues of max pooling or average pooling. Yu et al. [76]
invented a mixed pooling method to regularize CNN. They demonstrated that the mixed pooling
method is superior to both max pooling and average pooling, since the latter may reduce largely the
feature map if there are many zero elements. In 2016 TRECVID competition, the CMU Informedia
team [112] adopted the average-pooling for video representation in the multimedia event detection
task, the Ad-hoc video search task, and the surveillance event detection task. Besides, they also adopted
the average-pooling for document representation in the video hyperlinking task. Their experiments
indicated that the average-pooling is an ideal discriminative strategy for hybrid representations.

5.1.3. Max Pooling

As one of the most welcome pooling strategies in vision related tasks, max pooling has been widely
used in both encoding-based and convolutional-based pooling applications. For encoding pooling,
the max pooling strategy has following formalization: pek = max

j∈{1,2··· ,m}
ej,k. This max-pooling has

been empirically justified by many algorithms. For example, Serre et al. [77] developed a biologically
motivated framework. The framework adopts only two major kinds of computations, i.e., template
matching and max pooling, to obtain a set of scale- and translation-invariant C2 features, for robust
object recognition. Boureau et al. [72] conducted a theoretical analysis of average pooling and max
pooling for visual recognition tasks. The authors concluded that the recognition performance using
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pooling strategies can be influenced by many factors, such as sample cardinality, resolution, codebook
size, and max pooling performs no worse than average pooling in most cases.

For convolutional pooling, the max pooling strategy can be formalized as: pca,b = max
(i,j)∈Ra,b

ci,j,

where Ra,b is a pooling region. There are also lots of researches using max pooling in CNN to
generate deep features. For example, Sainath et al. [78] explored applying CNNs to large-vocabulary
speech tasks, and showed that their convolutional network architecture, which consisted of a
convolutional and max-pooling layer, was an improved CNN. Scherer et al. [79] evaluated two
pooling operations in convolutional architectures for object recognition, and showed that a maximum
pooling operation significantly outperformed a subsampling operation. Wei et al. [80] presented a
flexible CNN framework, which can be pre-trained well on large-scale single-label image datasets,
for multi-label image classification. The framework generated its ultimate multi-label predictions with
a cross-hypothesis max-pooling operation on confidence vectors obtained from the input hypotheses
using the shared CNN.

5.2. Particular Poolings

There are three popular approaches surveyed for particular poolings, as shown in Table 4.

Table 4. Popular approaches and corresponding references for particular poolings.

Approaches References

Stochastic pooling Zeiler et al., 2013 [81]
Semantic pooling Chang et al., 2017 [82]

Multi-scale pooling Yang et al., 2009 [83]; Gong et al., 2014 [84];
He et al., 2015 [85]; Szegedy et al., 2015 [86]

5.2.1. Stochastic Pooling

For large-scale convolutional neural networks, how to simultaneously reduce computational
complexity and keep visual invariance in training processes has become an important issue.
Conventionally, researchers solved this issue by adding several extra average pooling or max
pooling layers. However, both types of pooling have drawbacks. Namely, average pooling leads to
small-pooled responses, and max pooling leads to over-fitting. Thus, Zeiler et al. [81] proposed a
stochastic pooling approach for regularization of deep convolutional neural networks.

Firstly, they derive a probability map PM =
{

pmi,j
}

from the convolutional feature map
C using pmi,j = ci,j/ ∑

(p,q)∈Ri,j

cp,q, where Ri,j is the pooling region determined by ci,j. Secondly,

they compute the pooling feature map PC =
{

pca,b
}

using pca,b = ci∗ ,j∗ , s.t. (i∗, j∗) ∼
PMN

(
pm1,1, · · · , pm|Ri,j |h ,|Ri,j |v

)
, where (i∗, j∗) is pooled activation, PMN(·) is the multinomial

distribution, and
∣∣Ri,j

∣∣
h or

∣∣Ri,j
∣∣
v refers to horizontal or vertical dimension of the pooling region.

Thus, the convolutional feature map in the large CNN can be randomly pooled according to
the multinomial distribution. The authors also stated that the simple yet effective stochastic pooling
strategy can be combined with any other forms of regularization to prevent over-fitting and reduce
computational complexity for deep convolutional neural networks based applications.

5.2.2. Semantic Pooling

For complex event detection in long internet videos with few relevant shots, traditional pooling
strategies treat usually each shot equally and cannot aggregate the shots based on their relevance
with respect to the event of interest [82]. Chang et al. [82] proposed a semantic pooling approach to
prioritize CNN shot outputs according to their semantic saliencies.

Firstly, shots-based CNN feature extraction. Specifically, compute the average number of key
frames m for all videos in the experiment dataset, and adopt the color histogram difference-based
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shot boundary algorithm to divide each video into m shots, denoted by V = {SHi|1 ≤ i ≤ m}. Then,
select randomly one frame in the shot as its key frame, and extract CNN features on all key frames,
denoted by XC =

{
xci

∣∣∣1 ≤ i ≤ m, xci ∈ Rd
}

.
Secondly, concept probability-based feature extraction. Specifically, apply common datasets of

action and event recognition to train beforehand plenty of semantic auxiliary concept detectors, i.e.,
c = 1534, and generate a c dimensional probability vector for each shot by concatenating responses of
all concept detectors on the shot, denoted by XV = {xvi|1 ≤ i ≤ m, xvi ∈ Rc}.

Thirdly, concept relevance-based feature extraction. Specifically, bring the English Wikipedia
dump to train previously a skip-gram model, and employ the skip-gram model together with the
Fisher vector encoding approach to vectorize both the textual event descriptions and the c concept
names. Then, compute the cosine distance between the overall textual description vector and each
concept name vector, resulting in a concept relevance vector XR = {xri|1 ≤ i ≤ c, xri ∈ R}.

Subsequently, saliency-based semantic pooling. For each shot i, compute a semantic saliency
score sai inner product between its corresponding row vector xvi of the concept probability matrix
XV and the concept relevance vector XR, producing a semantic saliency score vector SA ={

sai
∣∣sai = XRTxvi, 1 ≤ i ≤ m, sai ∈ R

}
. Then, rank all CNN feature vector xci in a descending order

according to its saliency score sai, and concatenate successively the ranked feature vectors as the final
deep representation.

In order to exploit ordering information in the semantic pooling-based deep features,
the authors [82] designed also a nearly isotonic classification approach, and verified through a
number of experiments that the combination of the flexible deep representation and the sophisticated
classification exhibited higher discriminative power in event analysis tasks of event detection, event
recognition, and event recounting.

5.2.3. Multi-Scale Pooling

For encoding pooling, Yang et al. [83] proposed a multi-scale spatial max pooling approach to
generate nonlinear features based on sparse coding, as a generalized vector quantization, for fast yet
accurate image classification.

For convolutional pooling, Gong et al. [84] proposed a multi-scale orderless pooling approach
to improve geometric invariance in CNN for classification and matching of highly variable scenes.
He et al. [85] proposed a spatial pyramid pooling approach to generate fixed length representations for
CNN-based visual recognition. The major contribution of the spatial pyramid pooling approach
is its additional three-scale max-pooling layer. Szegedy et al. [86] proposed a 22-layer deep
model, namely GoogLeNet, for classification and detection in the ImageNet challenge competition.
The GoogLeNet employs a parallel multi-scale hybrid pooling architecture to reduce computing
resources in deeper convolutions.

6. Conclusions

In this paper, we have surveyed comprehensively the approaches of encodings and poolings
that have been previously studied for feature representations in action and event recognition on
uncontrolled video clips, and summarized systematically both underlying theoretical principles
and original experimental conclusions of those approaches. Furthermore, we have designed an
approach-based taxonomy to categorize the most popular previous research work on encodings and
poolings by 2D encodings, 3D encodings, general poolings, and particular poolings. As mentioned
above, feature encoding and feature pooling are only two of three key components in feature
representation approach, whereas the feature representation approach is only one of three key
components in action and event recognition. In the future, we will conduct three more surveys
for the other three key components, namely a survey on feature extraction approaches, a survey on
pattern recognition models, and a survey on performance evaluation strategies, for recognition of
complex actions and events.
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