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Abstract: With the development of online advertisements, clickbait spread wider and wider. Clickbait
dissatisfies users because the article content does not match their expectation. Thus, clickbait detection
has attracted more and more attention recently. Traditional clickbait-detection methods rely on heavy
feature engineering and fail to distinguish clickbait from normal headlines precisely because of the
limited information in headlines. A convolutional neural network is useful for clickbait detection,
since it utilizes pretrained Word2Vec to understand the headlines semantically, and employs different
kernels to find various characteristics of the headlines. However, different types of articles tend to use
different ways to draw users’ attention, and a pretrained Word2Vec model cannot distinguish these
different ways. To address this issue, we propose a clickbait convolutional neural network (CBCNN)
to consider not only the overall characteristics but also specific characteristics from different article
types. Our experimental results show that our method outperforms traditional clickbait-detection
algorithms and the TextCNN model in terms of precision, recall and accuracy.
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1. Introduction

With the development of web advertisements these years, publishers want more clicks on their
web pages to increase revenue from advertisements. Under this circumstance, clickbait appears on the
net, and tries to attract users’ attention and encourage them to click the link. Generally, clickbait utilizes
erotic words, misleading contents, unverified news and exaggerated tones to achieve their goals.
While increasing the click-through rates (CTR) of the articles, clickbait decreases users’ satisfaction
substantially because users feel a gap between what they want to know (the headline) and what
they really read (the content). Besides, clickbait also causes fake news to spread on the Internet since
many users forward them without further reading the contents. Therefore, it is important to develop
technologies to detect clickbait.

Research aiming at detecting clickbait is still in its infancy. Current algorithms about detecting
clickbait can be categorized into lexical similarity-based algorithms [1] and machine learning-based
algorithms [2–5]. Lexical similarity-based algorithms detect clickbait by the semantic similarities
between headlines and corresponding contents. However, information in headlines is limited, so it
is hard to calculate the similarities between headlines and contents. Moreover, some headlines of
clickbait are relevant to the contents literally. Consequently, the performances of such algorithms are
poor. Machine learning-based algorithms solve the information-lack problem by taking additional
features into consideration [6–9]. The performance of these algorithms is better than lexical algorithms.
However, these algorithms suffer from two limitations. Firstly, many features used in these algorithms
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are domain specific. The performance of such methods are doubtful when they are applied to normal
headlines. Secondly, heavy feature-engineering tasks are required for such methods, which implies
significant time resources and effort to define new features in new domains. The performance in this
situation needs to be examined accordingly.

Convolutional neural networks (CNNs) [10–12] have been applied to various domains and have
improved machine-learning performance significantly in the last six years. In the nature language
processing (NLP) area, Word2Vec [13,14] is the most popular model to produce word embedding,
which can discover semantic information of words. Based on that, CNN utilizes kernels with different
sizes to find various features from the input text. These features are automatically detected and
are used to train a neural network for the corresponding task. Thus, CNN understands the input
text from different perspectives, and it can be applied to various nature language processing tasks.
For example, CNNs are applied to part-of-speech recognition [15], named entity recognition [15],
relation extraction [16], event extraction [17] and sentence similarity calculation [18]. Agrawal [19]
shows the performance of using CNN to detect clickbait. However, there is no optimized CNN model
for clickbait detection until now.

Unlike traditional text-analyzing problems, headlines of different article types tend to use different
ways to attract users’ attention, that is, the characteristics of clickbait vary between article types.
For example, headlines of blogs and forums are more colloquial than those of ordinary news. A news
headline using the word “amazing” is more likely to be clickbait than the headlines containing the
same word but appearing in forums or blogs. Traditional CNN models utilize the pretrained Word2Vec
model for all the articles, and the different characteristics in different types of articles are neglected.

To address these issues, we propose a clickbait convolutional neural network (CBCNN) model in
this work. The CBCNN model utilizes a new word-embedding structure, which not only considers
the overall word meaning but also the type-related word meaning. Experimental results show the
optimized CNN model is the best one among the baseline methods. Our main contributions are listed
below:

1. We proposed a clickbait convolutional neural network (CBCNN) model for the clickbait-detection
problem. To the best of our knowledge, this is the first attempt to optimize a CNN model in
clickbait detection.

2. We designed a new word-embedding structure in this work. The new word-embedding layer
takes both overall and type-related word meanings into consideration.

3. We proposed a new loss function to regulate the influence of type-related word meaning.
4. We conducted extensive experiments, and the results show that the CBCNN model outperforms

all the five baseline methods in terms of accuracy, precision and recall.

This paper is organized as follows: In the next section, we review the related work about clickbait
detection. Section 3 elaborates the CBCNN model. Section 4 shows the evaluation of the proposed
method and discusses the experimental results. The last section presents the conclusions and the
future work.

2. Related Work

Clickbait appeared in recent years, and research about detecting clickbait is still in an early stage.
We categorize current clickbait-detection algorithms into two types: lexical similarity algorithms and
machine learning algorithms.

2.1. Lexical Similarity Algorithms

Lexical similarity algorithms try to figure out clickbait based on the similarity between headlines
and content texts. Headlines are supposed to tell readers about the topic of corresponding article.
Therefore, the semantic meaning of the headline and the content should be highly related. Otherwise,
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the headline probably contains some attractive information to draw readers’ attention. Consequently,
such uncorrelated relations are the characteristic of clickbait articles.

Wang et al. [1] represented the similarity between a headline and the content by the similarity
between the headline and the core sentence of the article. They also proposed a method extracting the
core sentence from the article. Some other methods calculating semantic similarity between sentences
can also be adapted into clickbait-detection tasks. For example, Gabrilovich and Markovitch [20]
proposed a method computing semantic similarities based on Wikipedia concepts. Kiros et al. [21]
proposed a method encoding sentences into vectors. The similarity between a headline and the content
can be calculated based on these vectors.

However, some clickbait utilizes exaggerated words to attract users’ attention, and the headline
and the content are relevant semantically. Thus, these clickbait articles are misjudged by these
algorithms. Besides, if the information in headlines is limited, it is hard to calculate the similarities
between headlines and contents.

2.2. Machine Learning Algorithms

The main idea of machine learning algorithms is to find out the features of clickbait.
For example, most clickbait headlines contain exaggerated words or interrogatives. Machine learning
algorithms [22–26] learn these characteristics based on human-designed features. The main differences
between machine learning algorithms is the choice of features. When features are determined,
the algorithm extracts features from documents, trains the learning model and predicts new documents
by the trained model.

Potthast et al. [4] proposed a model detecting clickbait on Twitter. Three different machine
learning algorithms are examined in their work. The algorithms include logistic regression [27],
naive Bayesian [28] and random forests [29]. Three types of features are used in their research, including
text features, page features and tweetter features. There are 203 text features in their work, including the
tweetter tags provided by authors, the mentioned persons in the tweet, emotional polarity, stop-words
number, simple words number and punctuation number. Page features are the features of the web
page this tweet links to, including the page’s readability, the content length, n-grams and other
content-related features. Twitter features are the features about the tweet itself, such as the author’s
name, the attachment type of the tweet, retransmission or not, and the frequency of the author
publishing new tweets.

Chakraborty et al. [3] compared the differences between clickbait and normal articles in various
views. Four types of features are used in their research: sentence structure features, n-grams, special
words and POS features. Consequently, Biyani et al. [2] also proposed series types of features to
detect clickbait.

All these models require a number of features to detect clickbait. Obtaining these features suffers
from various problems, such as domain limitation, language limitation, being labor intensive and
so on.

Chen et al. [5] suggested to use nonlexical features, image features and user-behavior features
to detect clickbait.However, they have not yet found a appropriate way to use these features. After
that, Zheng et al. [30] proposed a model that takes into account the user-behavior features to detect
clickbait. Their model takes the outputs of traditional models as inputs, and recalculates the clickbait
probability according to user behaviors. In real situations, clickbait should be detected as soon as
it appears, while only when the articles are displayed to users can the user behaviors be collected.
Therefore, these models cannot be deployed independently in real situations. In this work, we focus
on detecting clickbait based on semantic meanings of headlines.

Agrawal [19] examined the performance of TextCNN [12] in a clickbait-detection task. He proved
that CNN is useful in clickbait detection. Anand et al. [31] utilized recurrent neural networks [32,33]
and character-level word embedding [34] to detect clickbait. However, their models are general
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classification models, which are not designed for clickbait detection. In addition, the character-level
word embedding cannot be applied to languages such as Chinese and Japanese.

As a conclusion, lexical similarity-based methods suffer from the information-limitation problem.
Traditional machine learning methods need heavy feature engineering to guarantee the performance.
User behavior-based methods cannot be deployed independently because only when the articles are
displayed to users can the user behaviors be collected. Deep-learning methods solve these problems
by word embedding and convolutional networks, but are not adapted to the new situation of clickbait
detection, that is, the semantic meanings of words change according to the article types. In this work,
we focus on optimizing a CNN model for clickbait-detection tasks. The proposed CBCNN model
takes the article types into consideration, and the meanings of words in the model are combined by
two factors: the overall meaning and the type-related meaning. Therefore, CBCNN is easy to train and
can overcome all the disadvantages mentioned above. Our experimental results show the significant
improvement of CBCNN.

3. Methodology

The main difference between clickbait and normal headlines is the linguistic character of the
headline, such as questioning, exaggerating, wondering. Therefore, only the headlines are taken into
consideration in the CBCNN model.

Figure 1 shows the main steps of CBCNN. When training CBCNN, the headlines are preprocessed,
including segmentation, stop-words filtering, and part-of-speech filtering. After that, these headlines
are used to train the CBCNN model. The CBCNN model consists of 1 + |T|Word2Vec [13,14] models
and a CNN model, where T is the collection containing all article types, and |T| is the size of T.
One of the Word2Vec models is the overall Word2Vec model and the other |T|Word2Vec models are
type-related models. These Word2Vec models are used to embed words into the CNN model. On
the predicting side, the input headline is preprocessed as the same as that of training. After that, the
Word2Vec models are utilized to convert the headline to a weight matrix. Thus, the weight matrix
contains both general characteristics and type-related characteristics. At last, the CNN model is used
to predict the clickbait.

Figure 1. The main steps of CBCNN while training and predicting.
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3.1. Word Embedding

As described in the first section, article type is a necessary feature in detecting clickbait. Different
types of articles tend to write headlines in different ways, and detecting clickbait should vary
accordingly. We also realize that clickbait articles have their own characteristics which should also be
taken into consideration. To address this issue, we designed a new word-embedding structure for the
CBCNN model.

The word-embedding model consists of 1 + |T|Word2Vec models. The first one is the overall
Word2Vec model, which learns from all the headlines in the dataset. The other |T| models are
type-related Word2Vec models. The type-related Word2Vec models learn word vectors from the
headlines of the corresponding article type. The overall Word2Vec model is used to learn general
clickbait characteristics, and the type-related Word2Vec models learn type-related characteristics from
the headlines. After that, a headline of article type t with n words is represented by V1:n.

V1:n = v
′
(w1)⊕ v

′
(w2)⊕ ...⊕ v

′
(wn), (1)

v
′
(w) = v(w) + vt(w), (2)

where V1:n is a k × n matrix, k is the length of the word vector, ⊕ is the concatenation operator,
w1, w2...wn and w are words, t is the article type, v

′
(w) is w’s final word vector, v(w) is w’s word vector

based on the whole dataset and vt(w) is w’s word vector based on articles with type t.
Therefore, the word-embedding layer of the CBCNN model contains both overall characteristics

and type-related characteristics, and the convolutional layer can learn more diversified features from
this embedding layer.

Obviously, overall characteristics are much more important than type-related characteristics.
However, they are treated equivalently in function (2). Thus in the CBCNN model, we train Word2Vec
and CNN together, and add a regulation to the loss function of CBCNN. The regulation function makes
sure that type-related characteristics are weighted lower than overall characteristics. The new loss
function is as follows:

L(X) = − 1
n ∑

x∈X
ln[o(x)] +

α

|T| ∗ k ∗ |V| ∑
t∈T

∑
wj∈V

‖vt(wj)‖2, (3)

where X is the training dataset, o(x) is the probability of the CBCNN model’s correct prediction, k is
the length of the word vector, V is the vocabulary, T is the article type, α is the weight of regularization
and |.| is the size of corresponding collection. In our model, each headline x is represented by the
words (w1, w2, ..., wn) appearing in it. The first part of the loss function is that of the traditional CNN
model. This loss function is used to make sure the prediction results of CBCNN are the same as the
training data. Janocha and Czarnecki [35] proposed that log loss is the best choice in classification tasks.
Therefore, we use log loss in CBCNN. The second part of the loss function is the regulation part, which
limits the 2-norm of the type-related word vectors. ‖vt(wj)‖ is the 2-norm of word wj. In CBCNN, we
have |T| types, where each type contains |V| words and each word consists of k dimensions, and the
final regulation is the average value of all dimensions.

3.2. Clickbait Convolutional Neural Network

We have designed the clickbait convolutional neural network model as depicted in Figure 2.
The inputs of the CBCNN model are the type of articles and the headlines. The word-embedding
layer learns the word matrix as described in the previous subsection. In the CBCNN model, we set the
length of each word vector to 50. The rows n of the word matrix are set to 12 because the lengths of
most headlines are shorter than 12 words. Matrices of headlines with less than 12 words are padded
with zeros, otherwise the first 12 words of the headline are used to form the matrix. Therefore, the size
of the word-embedding layer is 12 × 50.
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The next layer is the convolutional layer. The convolutional layer learns different features from
the embedded word matrix with different kernels. Each kernel consists of a filter W ∈ Rhk and a bias
term b ∈ R. The input of the kernel is a window of words with height h. The output of the kernel is
shown in Equation (4).

ci = f (W ·Vi:i+h−1 + b), (4)

where ci is a feature learned from the ith row to the i + h− 1th row. The kernel is applied to each
possible window of the headline, and learns n + 1− h features.

c = [c1, c2, ..., cn+1−h] (5)

The CBCNN model contains 60 kernels in the convolutional layer. One third of the kernels have
the size 2 × 50, one third 3 × 50, and one third 4 × 50.

Figure 2. The structure of the clickbait convolutional neural network.

The outputs of each kernel are passed to the max-pooling layer [15]. The max-pooling layer finds
the maximum value—the most important feature—for the corresponding kernel.

The last layer is a fully connected layer, which takes all the outputs of the max-pooling layer as
input and utilizes a dropout [36] mechanism to prevent from over-fitting. The softmax function is
utilized to limit the output of the fully connected layer into [0, 1], which proved useful in TextCNN [12].
The softmax result indicates the possibility that the corresponding headline is clickbait.

We defined a new loss function in the CBCNN model in Equation (3). When training the
CBCNN model, we need to calculate the new error functions of each layer in backpropagation. Since
the regularization part only depends on the type-related characteristics, the error functions of the
word-embedding layer, convolutional layer, pooling layer and fully connected layer in the CBCNN
model are the same as that of TextCNN [12].

Bouvrie [37] proposed a detailed derivation progress of CNN models. Following their derivation,
we can obtain the error δv(w) of word w in the word-embedding layer. After that, we need to calculate
the errors of corresponding Word2Vec models. In each iteration, only the specialized type-related
Word2Vec model is involved. Therefore, the word-embedding error is caused by the overall Word2Vec
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model, and the specialized type-related Word2Vec model. According to Equation (2), the two Word2Vec
models are weighted the same. Therefore, the overall Word2Vec model is updated as follows:

vitr+1(w)⇐ vitr(w) +
β

2
δv(w), (6)

where vitr(w) is the word vector of w in the itrth step, δv(w) is the error of the word-embedding layer,
and β is the learning rate.

The type-related Word2Vec model is relevant to the regulation part of the loss function.
It is updated as follows:

vitr+1
t (w) ⇐ vitr

t (w) +
β

2
(δv(w) +

∂L(X)

∂w
)

⇐ vitr
t (w) +

β

2
(δv(w) +

2α

|T| ∗ k ∗ |V| ∑
t∈T

vitr
t (w)). (7)

4. Experiments and Discussions

In this section, we conduct experiments and discuss the results. Firstly, we introduce the dataset
setup, the experimental environment, the baseline methods and the effectiveness matrices used in our
experiments. After that, we present the experimental results of our method, including the parameter
setup and the comparative results between our method and the baseline methods. At last, we discuss
the experimental results and the usage of clickbait-detection methods.

4.1. Experiment Setup

As the article-type information is missing in the existing datasets, we had to construct our own
dataset for conducting the experiments. Our dataset contains 14,922 headlines, where half of them are
clickbait. These headlines are taken from four famous Chinese news websites (Tencent, 163, Sohu, Sina),
well-known blogs, popular BBSs and Wechat official accounts. Therefore, we have four article types:
news, blogs, BBSs and Wechats. In order to learn knowledge as much as possible, the training dataset
should be as large as possible. Therefore, 90% of the data is used for training and the remaining 10%
is used for evaluating. Since our dataset is large enough, 10% of the data is enough to evaluate the
corresponding methods. The experiment is conducted in a computer with 8 GB memory and 2.5 GHz,
8-kernel CPU. Our method is implemented by TensorFlow V1.4. Our experimental data and source
code are uploaded to GitHub (https://github.com/chenjinyuan87/cbcnn).

Three evaluation metrics are used in this work: precision, recall and accuracy. Their definitions
are listed as follows:

precision =
tp

tp + f p
, (8)

recall =
tp

tp + f n
, (9)

accuracy =
tp + tn

N
, (10)

where tp is the number of clickbait articles that have been predicted correctly by the algorithm, f p is
the number of non-clickbait articles that have been predicted as clickbait, f n is the number of clickbait
articles that have been predicted as non-clickbait, tn is the number of non-clickbait articles that have
been predicted correctly, and N is the number of the predicted articles.

Five baseline methods are chosen to verify the effectiveness of the CBCNN model. The first
baseline is the lexical similarity-based method, the second to the fourth methods are machine
learning-based methods and the last one is TextCNN.

• CIBTSS. Wang et al. [1] proposed a method detecting clickbait based on the lexical similarity
between headline and content. Their method is named as CIBTSS.
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• NB. The classic text classification method naive Bayes. We utilized unigrams and bigrams as the
features of Bayes. The method that uses only unigrams is marked as NB1gram, the method that
uses only bigrams is named as NB2gram, and the method that utilizes both unigrams and bigrams
is marked as NB1−2gram.

• PBCD. Biyani et al. [2] proposed series types of features for detecting clickbait, which is the latest
machine learning-based method. Their features include unigram, bigram and a series of other
newly defined features, such as the number of words, exclamatory marks and question marks.
We named it as PBCD in this study.

• FastText. FastText [38] is a text-classification method similar to Word2Vec. Like Word2Vec, the
sequence of words is considered in FastText. The learning algorithm of FastText is similar
to the continuous bag-of-word (CBOW) model [39], which is a model learning distributed
representations of words based on ordered words.

• TextCNN. TextCNN is evaluated by Agrawal [19]. As shown by Agrawal, the performance of
TextCNN is the best among the five baselines.

4.2. Experimental Results

The first experiment is set up to show the influence of the regulation weight α.
As shown in the Table 1, the first five columns are the performance of CBCNN with different α,

and the last column is the performance of TextCNN. When α = 1, the performance of CBCNN reaches
the best. The precision, recall and accuracy are 73.37%, 88.21% and 80.5%, respectively. When α is
smaller than 1, the type-related characteristics are over-weighted. Thus, the CBCNN’s performance
rises when α < 1. On the other hand, fewer weighting type-related characteristics also cause the
performance of CBCNN to go down. An important finding is when α is bigger than 4, the performance
of CBCNN is the same as TextCNN. The reason is that when α is big enough, all the type-related
characteristics are weighted as zero, and the CBCNN model degrades into TextCNN.

Figure 3 shows the comparison’s results between the CBCNN model and the baseline methods.
Our method CBCNN performs the best among all the methods. The precision of our method is 73.37%,
recall is 88.21% and accuracy is 80.50%. All the three metrics are the best using CBCNN. Comparing
with TextCNN, our model is 1.63%, 1.73% and 1.68% better in terms of precision, recall and accuracy,
respectively. Comparing with FastText, our model is 16.22%, 3.09% and 6.57% better, respectively.
Comparing with PBCD, our model is 4.05%, 10.67% and 6.33% better, respectively.

Figure 3. Comparing the results obtained by the CBCNN model and the five baselines.
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Table 1. The influence of the regulation weight α.

α = 0.25 α = 0.5 α = 1 α = 2 α >= 4 TextCNN

Precision 69.21% 71.32% 73.37% 72.59% 71.74% 71.74%
Recall 81.34% 84.31% 88.21% 87.35% 86.48% 86.48%

Accuracy 74.16% 77.54% 80.5% 79.84% 78.18% 78.18%

4.3. Discussion

Since the headlines do not contain enough information, calculating similarity between headlines
and contents is difficult. In practice, all the similarity values are small because of the word-impedance
problem (only few words in the headline appear in the content). Thus, the lexical similarity-based
method CIBTSS tends to treat most headlines as clickbait. It finds out 79.47% clickbait, but only 45.32%
are really clickbait. Overall, the lexical similarity-based method fails to distinguish normal headlines
from clickbait.

The method NB1gram utilizes unigrams as features. Only word features are considered in this
method. NB2gram utilizes bigrams as features. It is supposed to perform better than the unigram
method since bigrams contain some word-sequence information. However, in our experiment, the
headlines are too short for bigrams, and most bigrams are unique in the dataset. These unique
bigrams are useless for machine learning. Therefore the performance of NB2gram does not meet the
expectation. NB1−2gram tries combine the two methods, but the same problem exists as seen in NB2gram.
The PBCD method considers word-level features the same as many other expert-designed features.
Its performance is much better than the Bayesian methods. Both Bayesian methods and PBCD fail to
consider sequence information, which is important for understanding nature languages. Therefore,
their performance is worse than that of TextCNN and CBCNN.

The method FastText utilizes word-sequence information to predict clickbait. The performance is
similar to PBCD even if no expert-designed features are used. This result shows the importance of
word-sequence information for detecting clickbait.

TextCNN not only considers sequence information but also utilizes a convolutional neural network
to detect various level features. Its performance is much better than FastText and PBCD. Comparing
with CBCNN, TextCNN neglects the influence of writing habit differences between various article
types. Therefore, its performance is worse than that of CBCNN.

CBCNN utilizes the Word2Vec model to learn word-sequence information, combines overall
word vectors and type-related word vectors together to adjust the writing habits of different article
types, employs a convolutional neural network to find various features, and regulates the influence of
type-related characteristics by a loss function. Its performance is the best among all the methods.

To conclude, we have the following five findings:

1. A number of clickbait articles tend to use similar words to attract users’ attention. Therefore,
unigram-based machine learning algorithms figure out clickbait to a certain extent.

2. Feature engineering is useful for clickbait detection, discarding the robustness problem.
3. Word-sequence information helps machine learning algorithms to understand clickbait

semantically.
4. Various features are necessary for detecting clickbait, no matter if they had been extracted by

feature engineering or by convolutional neural network means.
5. The type-related features are important but undesirable when overvalued.

Another important finding is that all the methods run relatively quickly. We can train CBCNN in
less than one minute, and it only takes dozens of milliseconds to identify a clickbait article. Therefore,
we did not compare the efficiency of those methods.
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One limitation of CBCNN is that the maximum length of the headline is limited, which may cause
information loss for long headlines. Besides, CBCNN does not contain a pretrained Word2Vec model,
which may help it understand the overall word meaning more precisely.

In real environments, clickbait-detection methods benefit news searching and recommendation
systems (such as Google news (https://news.google.com), Smartnews (https://www.smartnews.
com), etc.) significantly. These systems attract more users by providing information with high quality,
and consequently growing their profits. The articles of these systems are downloaded by crawlers,
many of them are clickbait and it is difficult to distinguish them from normal articles. For these
systems, clickbait-detection methods such as CBCNN help them detect clickbait and differentiate
between these articles.

In order to implement CBCNN in the real world, we need to tag data for training CBCNN.
Since our model is time insensitive, the training data is not required to be the latest. At the same
time, we do not need to collect a huge amount of data for training,because clickbait-generation patterns
are limited. Based on our experience, ten-thousand headlines, where half of them are clickbait, are
enough. A computer installing Python 3 and TensorFlow V1.4 or higher is required also. The hardware
is not important, since CBCNN runs relatively quickly. After the CBCNN model is trained, it can be
used to identify clickbait articles in real-time. We suggest to retrain the CBCNN model every three
months when new words or new clickbait-generation patterns appear, otherwise retraining is not
necessary. To retrain the model, previous training data should be stored in the server and additional
training data should be tagged. In case of considering user personalization, the training data may vary
among users. Users are required to select the clickbait in a survey. They can also provide feedback to
the server when the network fails to identify a clickbait. The feedback is used to update users’ profiles
in the future.

5. Conclusions and Future Work

In this paper, we proposed a CBCNN model for clickbait detection. Considering the
word-sequence information and learning word meanings from the whole dataset, CNN models perform
much better than traditional machine learning algorithms in clickbait-detection tasks. The CBCNN
model utilizes article types as an additional input for the CNN model. It takes advantage of the
different writing habits between different article types. The experimental results show that CBCNN
outperforms the five baseline methods in terms of precision, recall and accuracy. Besides, CBCNN
runs relatively quickly, the training process takes less than 60 seconds, and it only takes dozens of
milliseconds to identify a clickbait article. Therefore, it can be deployed in real systems.

In the future, we will study how to interpret long headlines in CBCNN to address the
information-loss problem. We will also study how to improve the CBCNN model by incorporating
user-behavior analysis.
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