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Abstract: The electric powered wheelchair (EPW) is an essential assistive tool for people with serious
injuries or disability. This manuscript describes the validation of applied research for reducing
the charging time of an electric wheelchair using a hybrid electric system (HES) composed of a
supercapacitor (SC) bank and a lithium-ion battery with a fuzzy logic controller (FLC)-based fast
charging system for Li-ion batteries and a fuzzy logic-based intelligent energy management system
(FLIEMS) for controlling the power flow within the HES. The fast charging FLC was designed to drive
the voltage difference (Vd) among the different cells of a multi-cell battery and the cell voltage (Vc) of
an individual cell. These parameters (voltage difference and cell voltage) were used as input voltages
to reduce the charge time and activate a bypass equalization (BPE) scheme. BPE was introduced in
this paper so that the battery operates within the safe voltage range. For SC/Li-ion HES, the FLIEMS
presented in this paper controls the bi-directional power flow to smooth the power extracted from
Li-ion batteries. Moreover, a dual active bridge isolated bidirectional DC converter (DAB-IBDC) was
used for power conversion. The DAB-IBDC presented in this paper has the characteristics of galvanic
isolation, and high power conversion efficiency compared to the conventional converter circuits due
to the reduced reverse power flow and current stresses.

Keywords: fuzzy logic controller (FLC); supercapacitor; Li-ion; hybrid electric system (HES); energy
management system (EMS); dual active bridge (DAB) converter

1. Introduction

Electric powered wheelchairs (EPW) are quite popular among differently disabled people.
Reducing the charging time to as low as possible has been a long desire and recent research emphasis.
The prevailing energy source used for EPW is the lithium-ion (Li-ion) battery. Li-ion batteries
are flexible, require less maintenance, offer higher energy density (typically in the range of 115 to
165 Wh/kg), and have a low self-discharge rate (approximately 5% per month) [1]. On the other hand,
Li-ion batteries have a low power density and slow charging rates (taking several hours for charging).
Once the battery is discharged and the battery voltage drops below a safe limit, the EPW cannot
move, which prevents differently disabled people from moving freely and performing their daily
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activities. Special charging circuits are required for voltage balancing to alleviate this limitation [2,3].
To overcome these limitations of conventional batteries system for EPW, this paper introduces an
approach using supercapacitors (SCs) in parallel with Li-ion batteries.

SCs are electrochemical capacitors with double layers, having high power densities. SCs have
rapid charging and discharging ability and can achieve a higher power density. Moreover, there is
no need for chemical action for the operation and lifespan of many thousands of cycles, which is
equivalent to a lifetime of 10 to 12 years [4,5]. Nevertheless, SCs have a low power-to-weight ratio and
low energy density compared to the high self-discharge rate and current battery technology, so they
are not ideal as the only source of electric power for electric wheelchairs [6–8].

A hybrid energy storage system has attracted attention in recent years for on-ground
transportation systems and many other applications [9–13]. The use of a SC hybrid with Li-ion
batteries for the uninterrupted movement of an EPW, which will not only minimize the charging
time, but will also facilitate the charging process while moving back from some heights using a
regenerative mechanism. The performance of these hybrid electric systems mainly depends upon the
energy controlling mechanism and the system assembly selection. Among all these assemblies, passive,
semi-active, and active structures have been studied in [14]. In passive structures, SCs banks are
connected in parallel to the Li-ion batteries and the power distribution between them depends simply
on their internal resistance. SCs and passive battery structures are low-cost and easy to manufacture.
On the other hand, control of the power flow is always challenging. In active architectures, both the
SCs and batteries are connected to a direct current (DC) bus by two full-sized bi-directional DC/DC
converters controlled independently [15]. In semi-active structures, the Li-Po battery or supercapacitor
is attached to the DC bus with a bi-directional DC/DC converter as the controlled element, and this
structure offers a tradeoff among the control strategies and complexity [16]. An EPS–algorithm-based
DAB converter for charging a SC bank under pulsed load conditions was proposed [17]; the SC acts as
a filter that relieves the peak stresses on the battery. Multi-input converters (MICs) are prominent in
DC-DC converters used in hybrid energy storage systems (HESSs) because of its low cost [18].

HESSs and battery/SCs have been studied in detail for use in electric vehicles (EVs); hybridization
of this kind might meet the requirements of an EV. Moreover, due to the low energy density, it is
always desirable to use SCs effectively in a HES, which is why, in a HEES, an energy management
strategy (EMS) and power distribution unit play crucial roles. In a previous study [19], based on
Markov random prediction, a fuzzy-logic energy management was considered for a semi-active HESS
structure. The power management strategy in [19] uses the current electric power demand and the
predicted electric power demand; to distribute the electrical power between the battery bank and the
SC bank. Battery bank power is limited to a certain range using this scheme. Optimization-based EMSs
artificially design a cost function with limitations and solve its minimum online through different
types of algorithms: convex optimization (CVX), dynamic programming (DP), model predictive
control (MPC), or some evolutionary algorithms [20,21]. The method presented in [21] is based on
a combination of deterministic dynamic programming (DP) and convex optimization, the method
yields a global optimum. In this work, real-time implementable previewing strategies (utilizing model
predictive control (MPC) and dynamic programming (DP)) are applied to a hybrid commercial vehicle’s
results while returning the solution in much less time than the conventional DP method. In parallel,
a SC with a Li-ion battery creates a hybrid energy storage that supports a higher discharge current
because of the high-power density of the SC [22], which reduces the impact of the rate capacity effect.
The EMS examined in [23] presented an inflexible and effective solution to the energy management
problem; the control principle is defined by this method via the given rules for the operation modes of
the utilized converter. The EMSs given in [24–26] aim to protect batteries from sudden load changes
based on a frequency decoupling approach. The advantage of the FLC is that it does not require an
exact mathematical model or information of the HESS. References [27,28] examined the FLC can be
utilized fully in an EMS or combined with other methods, such as a neural network and wavelet
decomposition, as reported in [29,30]. The fuzzy logic controller (FLC) is designed in [31] to shorten
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the charge line using the battery protection cell voltage and the voltage difference between each
battery cell, and to ensure that the battery operates within the safe voltage range. Genetic-neuro-fuzzy
controllers for a PID controller is proposed and tested in [32] while the results in [33] show the
robustness of this PID controller for industrial applications due to its optimal time response and good
overshoot values. An intelligent battery equalization scheme based on fuzzy logic control is presented
in [34] to adaptively control the equalizing process of series-connected lithium-ion batteries and to
design a ripple-free converter for improving the input current distortion of the battery charge supply
power system.

A previous study [35] presented a SC/HESS/battery through a novel MIC topology for EVs;
in this research, a rule-based EMS was used to charge SCs during regenerative braking and the
battery power during propulsion. This method was effective, but it had two serious disadvantages:
it did not limit the rate-of-charge battery power and it did not consider the state-of-charge. Based
on the literature survey it is necessary to design an EMS in which the battery/SC HESS will control
overcharging and SC/battery currents during the output power peak. With respect to the above
issues, this paper also presents a fuzzy logic-based intelligent energy management system (FLIEMS)
to determine the effect of battery/SC hybridization on the battery output power. The three main
objectives of the paper are as follows: (1) a fuzzy logic-based fast charging scheme was designed for
Li-ion batteries so that an electric wheelchair can move freely with less concern regarding the long wait
for recharging; (2) an intelligent power management was designed for the SC-Li HES to effectively
utilize the power from the SC-Li during charging, discharging, and regenerative modes, which was
achieved by designing a fuzzy logic-based intelligent energy management system with a rate limiter
for lithium ions. The presented EMS aimed to regulate the state of charge of super capacitor (SOCSC)
using the developed FLC and the battery power peak was reduced using a rate limiter; and (3) a dual
active bridge converter system was designed to facilitate the charge/discharge process during different
modes of wheelchair operation. The working DAB converter designed in this paper was based on
an EPES to offer easier power conversion than those conventional algorithms. The remainder of the
paper is organized in three sections. Section 2 provides the theoretical background and components
for the design of the proposed HES system and experimental set up for the proposed study. Section 3
discusses the results obtained from the study and reports the conclusions of the overall research.

2. Materials and Methods

2.1. Methodology

2.1.1. An Overview of the Proposed HES

This section provides a theoretical background for mathematical modeling, design parameters,
and consideration of the components of the proposed HES for an EPW. The EPW consumes different
amounts of power during its movement and uses some nominal power when moving on a planned
path. The EPW consumes more power than normal when climbing and can save some energy when
moving down from some heights. Therefore, based on the different amount of power required during
the different modes of operation, this study developed a fuzzy-controlled energy management system
that keeps a record of the power requirements and decides when to use the SCs, when to use the Li-ion
batteries, and when to use them both in a very safe manner. Conventional charging (CC-CV charging)
is replaced with the FLC-based rapid charging method proposed in this paper. Figure 1 outlines the
proposed HES for EPW. As Li-Po batteries have a high energy density and SCs have a high-power
density, it would be best to formulate a hybrid power source comprised of both Li-ion batteries and
SC. The summations of a SC bank and Li-ion currents (i.e., Isc and Ib) contribute to the load current (IL)
and bus current (Ibus). The SC bank voltage (Vsc) is regulated using the DAB-IBDC (DAB) converters
proposed in this paper. Figure 1 provides an overview of the total proposed power system that is
explained in Section 2.1.2.
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Figure 1. Block diagram and an overview of the proposed HESS for the EPW.

2.1.2. Components of the Suggested Fast-Charging Li-SC HES

A detailed overview of the components along with their working mechanism is given below.

2.1.2.1. Multi-Cell Lithium-Ion Batteries

Lithium-ion batteries are commonly used in portable electronics, but are now being used in
large-scale applications, such as electric vehicles and grid-connected systems. Li-ion batteries offer
lower weight, volume, temperature sensitivity, and maintenance. Lithium-ion battery packs have a
longer life than other types, such as lead acid, because of the higher round-trip efficiency than many
options [36]. When choosing a battery for an EPW, it is important to consider the life and maintenance.
The battery modeling approaches rely on the desired details in the model. The equivalent circuit
model includes resistors connected in series with a constant voltage source, as shown in Figure 2 [37].
The equivalent circuit can exhibit simple, dynamic, and stable state behaviors [38].
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In Figure 2, the internal dynamic current (A) of the battery is represented by i(t), the internal
ohmic resistance (ohms) of the battery is represented by Ro, the output voltage of the battery is
represented by Vbatt, and the input voltage of the battery is represented by Voc:

Voc = Vbatt− i(t)Ro (1)

Typically, the voltage of Li-ion single cell ranges from 3–4 V and need a large number of cells
connected in series and parallel to increases the output voltage and current as per desired application,
however, doing so reduces the charging efficiency as increase in number of cells also leads to a large
unbalancing in voltage and, as a result, an increase in charging time occurs. A special charging circuit
is required to solve this problem. A detail of our designed FLC charger for Li-ion batteries is provided
in Section 2.1.2.3.

2.1.2.2. SC Bank

Compared to current battery technologies, SCs have a low power-to-weight ratio and low energy
density. In contrast, SCs have rapid charging and discharging capability at high output densities,
giving the EPW the fastest charging and discharging rates at high power densities when used as a
component of a hybrid energy system and climbing high altitudes and climbing back from a height
on some slopes. SCs have rapid charging and discharging ability and a higher power density; these
features helps the electric wheelchair use a component of the hybrid energy system and utilize its
rapid charging and discharging with a higher power density while climbing some heights for moving
back from a height with some slopes. The selection of SC for EPW is based on three parameters: SCs
voltage, capacitance, and energy storage capacity and SCs losses. The rated voltage SC module needs
to be as close as possible to the DC bus voltage. When the DC bus voltage is a maximum (the drive is
braking), the supercapacitor is charged. The supercapacitor rated voltage Vsc max is recommended to
follow Equation (2) [39]:

Vscmax ≤ Vbusmax (2)

The minimum operating voltage for a supercapacitor is determined by the DC-DC converter
current capability power Po and Icmax:

Vscmin ≤ Po

Icmax
(3)

Energy storage capacity of the SC can be calculated as:

EC =
Co

2

(
Vscmax2 −Vsco

2
)
+

2
3

Kc

(
Vscmax3 −Vsco

3
)

(4)

where Vscmax is the SC maximum working voltage while C0 represents the electrostatic capacitance of
the capacitor and Vsco is initial voltage of SC. Kc is coefficient that represents the effects of diffused
layer of the SC.

The initial capacitance C0 for the given coefficient and energy EB given by Equations (5) and (6)
respectively:

C0 =

(
EB −

2
3

Kc

(
Vscmax3 −Vscin3M

)) 2
(Vscmax2 −Vscin2M)

(5)

where VscinM is intermediate voltage of SC bank. The braking energy EB is given by:

EB = ηB
∫ TB

0
Po(t)dt (6)
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where ηB is the efficiency of the whole conversion system, including the drive converter, the motor,
the DC-DC converter and SC efficiency. Power P0(t) is the drive shaft power and TB is the braking
time [36].

The energy available for the ride through of SC is given by:

ERT =
C0

2

(
VscinM2 −Vscmin2

)
+

2
3

Kc

(
VscinM2 −Vscmin3

)
(7)

The ride-through energy (ERT) that SC bank can deliver to the drive system during power
interruption is given by relation:

ERT = ERT =
1

ηM

∫ tRT

0
Po(t)dt (8)

where tRT is the ride-through time; and ηM is the efficiency of the whole system which depends upon
the internal resistance of the SC bank and drive shaft power P0(t).

It is not recommended to discharge all the energy of the supercapacitor than that needed to
support them. Therefore, the minimum voltage ratio should be fixed and the discharge ratio can be
found using the following relation:

%d =
Vscmin
Vscmax

× 100 (9)

The depth of discharge (DOD) can be written:

DOD = (100− d) = 100
(

1− Vscmin
Vscmax

)
(10)

While selecting for any EV it is important to compute power losses for SC. Assuming that the SC
is a linear capacitor (KC ∼= 0) and neglecting the internal resistance RC0, one can find the SC charging
current as:

ico = Pco

√
Co

CoVscmin2 + 2PC0(t)
Charging (11)

ico = −|Pco|
√

Co

CoVsco
2 − 2PC0(t)

Discharging (12)

where the Vsco is the initial voltage. The SC charging/discharging power PC0 is the constant [40].
The power losses SC are computed as under:

Pc ∼= RCoPC0
2

{ Co
CoVscmin2+2PC0(t)

Charging
Co

CoVsco
2−2PC0(t)

discharging

}
(13)

2.1.2.3. FLC Fast Charger Li-Po/Li-Ion Batteries

Li-ion batteries have very intricate nonlinear chemistry, and because the FLC does not need
to control the precise mathematical model, an FLC adaptive method has been developed to control
the battery cells. The charging time increases due to misbalancing voltages during charging time.
The charging efficiency can be improved using a FLC to control the current in the CC-CV section.
In this paper, we proposed a bypass equalization (BPE) technique controlled by the LC controller
(see Figure 3). The BPE scheme is used for cell voltage balancing in multi-cell battery systems. Figure 3
presents the BFE algorithm for intelligent charging system arrays for the BPE method. The proposed
intelligent charging system can reduce the charging time based on the fuzzy control rule ensuring that
each cell of the battery string operates within a safe voltage range.

The FLC limits the charging current according to the discrete cells’ voltage differences and the
cell voltage. Five linguistic variables are used to describe the FLC membership function, i.e., very
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small, small, medium, large, and very large. As presented in Figure 3, the control rules are collected
by the rule base that describes the experience and knowledge of the battery equalization control in
the fuzzy set. The de-fuzzifier is then used to convert the fuzzy linguistic inference results into the
corresponding output. The control effort is the required fuzzy controlled output current as elaborated
in Figure 3.
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2.1.2.4. Intelligent Energy Management System Based on Fuzzy Logic

Figure 4 shows a detail working of the proposed FLIEMS. The EMS first decides the mode of
operation by reading and analyzing the output voltage. The amount of power required for the motor is
determined by the power available from the Li-ion battery and the SOCSC for the FLIEMS. To control
the SOCSC at a reference value the battery reference power is determined by the FLC. In order to
supply the desired demand, this value should be determined and the available braking energy to
be captured has sufficient capacity should be ensured. To smooth the battery power profile, the
rate limiter defines the slew rate of the reference battery power. Finally, the battery current is tuned
utilizing a proportional integral (PID) controller to acquire the required battery power. The suggested
control strategy selects the discharge mode or the charge mode by associating the battery with the
output power level: the discharge mode is activated if the battery power is lower than the output
power. Otherwise, the charge/discharge mode is enabled. For implementation of the FLIEMS specific
attention should be given to battery chargers to control the gradual changes in the charging and
assigning functions of the battery. As reported in [41], increasing dTo (the duty cycle of time) extends
the input voltage range of the converter; the efficiency increases with increasing switch stress.

Furthermore, for the discharging mode, a reasonable dTo of 0.5 is set. In addition, to regulate the
DC bus for controlling the power of the SC, as well as charging and discharging modes, PI controllers
are used. On the contrary, if the output voltage increases, the charging mode will be activated as
regenerative braking energy is sensed. dQo is adjusted by another PI controller for the DC bus direction
in the charging mode. The overall mode determination methodology is presented in Figure 5, where ∆
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is the considered voltage level. The FLC is defined by two input member functions: SOCSC (SOC of
SC) and Po. Three input member functions: high (H), medium (M), and low (L), define the SOCSC.
Four input membership functions for Po are considered. The output membership function, Pbat * high
(V), has six output membership functions: very high (VH), high (H), medium (M), low (L), very low
(VL), and very, very low (VVL). The reference of the battery power is obtained using a defuzzification
technique based on defined membership functions and the rule base.
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2.1.2.5. ESPS Controlled DAB-IBDC Converter

Figure 5 shows complete assembly for the DAB IBDC converter with switches, transformer, drivers,
sensor, and DSP controller. The DAB DC-DC converter mainly contributes in application-related power
electronics, such as semiconductor transformer electric vehicles and battery energy storage, due to
its distinguishing feature of electrical isolation, high transmission efficiency, high power density, and
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bidirectional flow. The design of a high-frequency transformer, T, is mainly associated with bridges, such
as the primary H-bridge consisting of Q1 to Q4, the H-bridge from Q5 to Q8, and the secondary bridge
from Q1 to Q4. The inductor ‘L’ is the transformer primary side leakage inductance and harmonizing
inductance. V1 and V2 are primary and secondary side voltages. The winding ratio of the transformer
is set to 1; if not so, there can be back current flow from secondary on the primary side [42,43], due to
which n = 1 was used during our analysis. Figure 6 illustrates the resulting curve of the DAB-IBDC
using ESPS control, where d is the phase shift ratio between the primary and secondary voltages and T
is the half switching period of the isolated high-frequency transformer having a value of d between ‘0’
and ‘1’ [44]. The square-shaped wave from Vab and Vcd were observed, and due to the inductance
in the converter circuit association among the two voltages was observed. The primary voltage will
not always be in phase with the primary current because it passes through the inductor. Based on
the waveform IL the average current of the leakage inductor is derived. At inductor L mismatching
between Vab and Vcd occurs, and at inductor current IL during switching of t1 and t2.
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Figure 5. Complete assembly for the DAB IBDC converter with switches, transformer, drivers, sensor,
and DSP controller.

2.2. Materials and Experimental Arrangements

Figure 6 shows the experimental setup for proposed HES. The experimental setup for the proposed
EPW power supply and control consist of three arrangements: (1) the FLC for fast charging of Li-Po
batteries (Figure 6a,d), (2) the fuzzy logic intelligent energy management system (Figure 6b); and (3) the
DAB converter setup (Figure 6c). In the DAB-IBDC topology, the active bridges for both sides were
designed using a 47N60C3 power MOSFET (Texas Instruments, Dallas, TX, USA) with a drain-source
resistance of 0.07 Ω. To trigger the MOSFET switches in high frequency (f > 10 kHz) applications,
pulse width modulation (PWM) signals (±7 to ±30 V, 3 mA) were applied through the gate-source
terminal. The PWM signals were produced using a digital signal processor (TMS320F28335, (Texas
Instruments, Dallas, TX, USA) based on the control algorithm. A MOSFET driving circuit was designed
and used to interface the DSP and MOSFET switches, as the PWM signals from the TMS320F28335
(Texas Instruments, Dallas, TX, USA) do not have sufficient power to operate the switches. The rapid
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charging FLC algorithm was implemented using a Samsung 18750 (Samsung, Seocho, Seoul, Korea)
stacked in series with a Hall-effect-based current sensing ACS712 IC (eleparts, Dangsan-Dong, Seoul,
Korea) to monitor the motor current. A voltage sensor was used to monitor the SC bank voltage
with a three-channel relay for switching. To achieve these goals, two different experimental setups
were introduced. (1) To achieve safe charging, and the rapid-charging characteristics of the SC bank
and drive, a distinct comparison between the different charging current was made. For this, five
supercapacitors (100 F each) in series, and a 12 V charging source as a supply with a series resistor for
current controlling were used. In this experiment, the specifications of a SC shown in Table 1were used
to record the thermal image during the charging process, a VT04A visual IR thermometer (FLUKE,
Everett, WA, USA) with different charging currents was used. The specification of the SC used for
experimental setup is given in Table 1.

Table 1. Specification of the supercapacitor used for experimental analysis.

Rated Voltage (VR) at 65 ◦C 2.7 VDC
Surge Voltage 2.85 VDC

Rated Capacitance 100 F
DC-ESR Max. 12 mΩ Avg. 8 mΩ

Leakage Current Max. 0.26 mA
Max. Continuous Current 17 A (∆T = 40 ◦C)

Max. Peak Current 61 A (at 65 ◦C)
Max. Stored Energy 0.10 Wh (at 65 ◦C)

Specific Power 7230 W/kg
Endurance 1500 h (at 65 ◦C, 2.7 V)
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3. Results and Discussion

3.1. Investigating the Fast Charging Characteristics of SC Bank

Li-Po/Li-ion batteries, as power sources in rapid charging, are a hot research topic because UAVs
require several hours to completely recharge once discharged. Rapid charging of these batteries is
not possible by only increasing the charging current because charging a chemical process affects
the charge transfer capabilities, e.g., the formation of resistive films on the active particle surface,
reduction/oxidation of materials other than the active material, and finite diffusion rate of lithium
ions in electrolytes. Only a finite amount of current is allowed to pass through the batteries because
of these limitations. The battery health is affected directly by faster charge transfer. Therefore, the
manufacturers recommend keeping the charging current between 0.5 C and 1.0 C because of the limits
of the operating temperature domain, maximum charge/discharge current, and limits of lower and
upper cut-off. This study examined the charging time in this/the proposed HEPS, in which the SC
bank was used as a fast charging source, five supercapacitors (100 F each) connected in series, and
characteristics for charging at five different charging rates (2.5 A, 5 A, 7.5 A, 10 A, and 12.5 A) same
as 0.5 C, 1.0 C, 1.5 C, 2.0 C, and 2.5 C, respectively, of a Li-Po battery (5000 mAh, 11.1 V). Thermal
images were taken for every charging current to check the effect of the charging current on the SC bank
temperature. To fully charge SC banks at a charge charging current of 2.5, 2.5 A, 5 A, 7.5 A, 10 A, and
12.5 A, it took the 2250 s, 1300 s, 800 s, 600 s, and 450 s, respectively. Figure 7a presents the charging
time curve.

Figure 7b displays thermal images of SC bank for charging currents shown in Figure 7a (i.e., 2.5 A,
5.0 A, 7.5 A, 10.0 A, and 12.5 A). Figure 7b shows that it is safe to use to use such a high current to
charge a SC bank because there was no significant increase in temperature during these charging
currents. As the charging current was increased, the charging time of the SC decreased without a rise
in temperature.
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3.2. Performance Evaluation of the FLC Charger

Rapid charging of the proposed FLC charging system was confirmed using the flowchart
explained in Section 2.1.2.3 and recording the data from the experimental setup developed in Section 3.
The fuzzy controlled bypass equalization helped reduce the charging time of the Li-ion batteries.
Figure 8 compares the conventional CC-CV charging with the FLC for a three-cell arrangement.
Figure 8a shows the output current based on the cell voltage and voltage difference for the defined FIS
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(fuzzy interface system) variables (cell voltage and output current) with membership functions (very
small, small, medium, large, very large). An increase in the charging current decreases the charging
time, and Figure 8b shows the charging characteristics of Li-ion batteries at 0.5 C, 1 C, 1.5 C, and 2.0 C
for CC-CV and FLC chargers. Figure 8b shows the voltage of the batteries and time required to fully
charge the cell at different charging currents. During the process of Li-ion charging, a fuzzy control
device was used for feedback control, which is used in the FLC charger and fine-tuning, resulting in
an increased output current to shorten the charging time. The performance of the FLC-based charger
increased with increasing charging current, as shown in Figure 8c. The FLC controlled BPE proposed
in Section 2.1.2.3 is the main reason for the reduced charging time. A net percentage decrease of 13.13%,
12.26%, 13.60%, and 19.23% occurred at 1 C, 1.5 C, and 2.0 C, respectively, with FLC charging compared
to CC-VV charging (as highlighted in Figure 8c).
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Figure 8. (a) Output current based on cell voltage and voltage difference for defined FIS variables
(cell voltage and output current) with membership functions (very small, small, medium, large, very
large); (b) voltage curves at 0.5 C, 1.0 C, 1.5 C, and 2.0 C for the proposed FLC charger and the CC-CV
charging method; and (c) the performance evaluation and comparison between the proposed FLC
charger and the conventional CC-CV charging.

3.3. Power Conversion System

An experimental module of the DAB converter was designed and analyzed at a 2.8 kW load for
the proposed HESS was analyzed as shown in Figure 9. The input source on the primary side of the
DAB converter is connected to the DC-bus HESS to the energy storage component (i.e., SC and Li-ion,
which operate in parallel). A phase shift was introduced and the Vcd square wave was shifted from
the Vab square wave, as shown in Figure 9. The switching frequency was kept high and a fixed value,
i.e., fs = 70 kHz, was used. The orange line waveforms represent Vab, while dark pink, blue, and green
represent Vcd, battery current, and battery voltage. The experimental module for the DAB converter
captures the operating point maximum power at a phase shift d = 0.3 and a battery voltage of 28 V.
The high-value switching frequency offers low phase shift values required at full load. The secondary
side switches reduce the conduction losses. The DAB converter can operate both in buck and boost
modes. Results for buck mode when ESS charging is in progress is shown in Figure 9a and when the
ESS is fully charged is shown in Figure 9b. The experimental results show the current at 100 A when
the battery voltage is limited to 2.8 kW.
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Figure 9. Experimental results of DAB-IBDC converter (a) when charging process is continued (ON)
and (b) when the batteries are fully charged.

3.4. Performance Evaluation of FLIEMS

To confirm the effective use of the FLIEMS, the profile for the wheelchair speed and distance
covered was designated. Figure 10 presents the distance variation and speed. The speed profile of the
wheelchair increased and decreased, highlighting different needs of power during the movement of
EPW at such speeds. The maximum speed acquired by EPW in Figure 10 is about 5.2 km/h while the
net distance covered by the EPW is approximately 250 m.

Figure 11 depicts the variations in the output voltage and current changes according to the wind
and speed profile highlighted in Figure 10 using the FLIEMS. The current demand for the motor in
an electric wheelchair alters the output current fluctuation with acceleration and deceleration during
the different time intervals (see Figure 11a). The output voltage remains constant with almost no
variation in the output voltage waveform providing proof that the voltage is regulated regardless of
the variations in the output current (Figure 11b). On the other hand, the FLIEMS showed that the
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output voltage regulation was successful. This shows that the proposed FLIEMS can properly realize
the transition occurring during the different operation modes.Electronics 2018, 7, x FOR PEER REVIEW  15 of 19 
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Figure 12 shows the change in the resulting output power level and the source power level.
The maximum output power during the movement of an electric wheelchair and regenerative braking
were approximately 150 W and 90 W, respectively.
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operability of the hybrid system and decrease the battery power peaks to extend the battery life. In 
this paper, a Li-ion charging system was charged using FCFLC. The FLC control charging method 
shortens the charging time. FLC-based bypass equalization (BPE) cell voltage balancing has been 
used to reduce the voltage differences, avoid overcharging, and improve the battery charging 
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Figure 12. Output power for the EPW with FLIEMS.

FMIEMS smartly controls the power flow from both the sources, i.e., lithium ion and SC at the
very beginning, and the SC is discharged instantly to fulfill the power requirement of the motor. Owing
to the increase in the power demand of the motor, the battery power becomes dominant over the
SC power. In addition, priority is given to the SC to recharge itself by the energy produced during
regenerative braking due to the inherent rapid charging characteristics of the SC.

Li-ion battery power is controlled and smoothed using the FLIEMS. On the other hand, the net
amount of power delivered by the Li-ion batteries is controlled by the rate limiter defined in the
energy management strategy and it is quite clear from the Figure 13 that SC attempts to contribute
to Li-ion batteries in parallel to fulfill the power demand of the load. The rate limiter used in the
controller strategy improves the battery power considerably by limiting the power extracted from the
Li-ion batteries.
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4. Conclusions

This paper discussed a novel hybrid power supply for an EPW. The FLIEMS was designed for the
effective utilization of SCs, i.e., to smoothly regulate the battery power profile and use it when rapid
charge or discharge is needed. By applying this FLIEMS, it was targeted to ensure the operability of
the hybrid system and decrease the battery power peaks to extend the battery life. In this paper, a
Li-ion charging system was charged using FCFLC. The FLC control charging method shortens the
charging time. FLC-based bypass equalization (BPE) cell voltage balancing has been used to reduce
the voltage differences, avoid overcharging, and improve the battery charging efficiency. The charging
time was reduced by 13.13%, 12.26%, 13.60%, and 19.23% for 1C, 1.5 C, and 2.0 C, respectively, using
the FLC charger discussed in this paper compared with conventional CC-CV charging. The proposed
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method will make battery operation safer and develop a complete set of battery charge-discharge
management systems. DAB-IBDC converter was used for the effective charging and discharging of SC
banks in the various modes of operation.
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