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Abstract: During the last decades, smart tactile sensing systems based on different sensing techniques
have been developed due to their high potential in industry and biomedical engineering. However,
smart tactile sensing technologies and systems are still in their infancy, as many technological
and system issues remain unresolved and require strong interdisciplinary efforts to address them.
This paper provides an overview of smart tactile sensing systems, with a focus on signal processing
technologies used to interpret the measured information from tactile sensors and/or sensors for other
sensory modalities. The tactile sensing transduction and principles, fabrication and structures are
also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology
needs to overcome are highlighted.
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1. Introduction

Benefiting from the sense of touch, we learn to delicately perceive, grasp and manipulate a wide
range of objects. It is an important way to sense and interact with the world. Recent years has seen
increased exploration of tactile sensing [1]. Given the importance of tactile sensing in daily life and
industry, researchers have been striving to understand this sense, and aim to develop smart tactile
sensing systems which can facilitate people’s life [2–5]. Tactile sensors range from simple sensors for
sensing the location of contact to more complex sensors used to measure surface properties, such as
roughness, stiffness and temperature. There are innumerable applications of tactile sensing systems of
which most people are never aware, such as manual palpation and prosthetic limb.

The research on smart tactile sensing has attracted intense research interest in different fields
because of its diverse applications, from industry to biomedical engineering. Great efforts have been
made to develop advanced tactile sensors using new transduction techniques and materials [2,6].
Over the past two decades, a wide variety of tactile sensors able to acquire various contact parameters
have been reported in the literature, exploring almost all possible modes of transduction [2,6–13].
For instance, Drimus et al. developed a novel tactile sensor based on piezoresistive rubber and thread
electrodes [8]. They further utilized these sensors for classification of rigid and deformable objects.
In [9], a flexible and stretchable durable fabric-based tactile sensor capable of capturing typical human
interaction forces was developed. There are numerous tactile sensors able to acquire more than one
type of characters of the object to be contacted. A highly sensitive tactile sensor using free-standing
Zinc Oxide or Polyvinylidene Difluoride (ZnO/PVDF) thin film with graphene electrodes is developed
for monitoring pressure and temperature simultaneously [10]. However, the usage of tactile sensor
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in practical applications is still limited [4]. One of the main reasons stems from the difficulties with
the processing of acquired data from tactile sensors [4,14]. Compared to other senses, such as visual
and hearing, the properties of tactile sensor data are much more variable [15]. The signals from tactile
sensors can be noisy, high-dimensional, complex and contain irrelevant information as well as essential
one [16]. There still is lack of signal processing and machine learning methods that can deal with such
complicated problems [16].

An effective tactile sensing system should be endowed both advanced tactile sensors and/or
sensors for other sensory modalities, which are able to perceive information from the environment,
and intelligent signal processing tools capable of interpreting the measured information and making
decisions [17,18]. However, to our knowledge, there is no smart sensing system capable of perceiving
and interpreting surrounding information at the same level as the human somatosensory system
yet [19]. In addition, the penetration of tactile sensors in industrial and biomedical applications is still
extremely low [4]. Most of the existing smart tactile systems are still mainly research tools.

The development of smart tactile sensing systems is still an open problem with many technical
and scientific challenges. It requires strong interdisciplinary efforts, not only for advanced tactile
sensors, but also for appropriate algorithms to deal with the acquired data. Smart tactile sensing can
be enhanced by advances in the utilized materials, fabrication technologies and signal processing.
Although some topics tackled in this paper may overlap with some previous surveys, the focus of this
review is different. This paper extends previous reviews by focusing on the current state-of-the-art
machine learning and signal processing technology, outstanding challenges which must be overcome,
and applications of smart tactile sensing technology. In addition, novel physical principles, material
processing methods, and more recent developed fabrication technologies that can contribute to the
hardware development of tactile sensing systems are also discussed.

2. Tactile Sensing Principles and Structures

Tactile sensing principles refer to the mechanisms coupling the non-electrical domain with the
electrical domain. Efficient domain coupling principles can be generally divided into four main
types: capacitive, piezo-resistive, piezoelectric and optic. The four principles are preferred due to
their more robust implementation of functional structures at the Microelectromechanical Systems or
Nanoelectromechanical Systems (MEMS/NEMS) level.

2.1. Capacitive Tactile Sensors

The philosophy behind capacitive tactile sensing is changing the capacitance by mechanically
changing the geometry of a capacitor. The capacitance of a parallel capacitor, the classic capacitor
structure used for capacitive sensing, can be calculated as:

C =
εwl
d

(1)

In Equation (1), ε is the di-electrical permittivity, w is the width of the overlapped area, l is the
length of the overlapped area of the two parallel plates, and d is the gap between the two parallel
plates. Capacitive sensors generally have good frequency response, high spatial resolution and large
dynamic ranges [2], though they might be susceptible to multiple types of noises [2].

Parallel plate capacitors are the fundamental structure for capacitive sensing. Sensing plates have
at least one degree of freedom for geometry variance to change capacitance [2,20]. Mesa structures
are generally used on the movable plate to promote the contact with the sensing target [11,21–29].
Rectangular stripes [21,29], pyramidic structures [11,22,24–27], spheres [26], and pillars [11,27] have
all been used in similar applications. As for readout circuit, current or voltage setup can be used
to sense the capacitance change by the transient voltage or current output changes respectively [22].
RCL oscillation circuit can be used to sense the change of capacitance by the shift of resonant
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frequencies [23]. To the best of the authors’ knowledge, the best performance of capacitive tactile
sensors ever reported is a minimum resolution of 3 Pa with a sensitivity of 0.55 kPa−1 [27].

2.2. Piezo-Resistive Tactile Sensors

Piezo-resistive tactile sensing is implemented by mechanically changing resistivity of a sensing
structure. Piezo-resistive effect for a conductive (semi-conductive) material can be described as [30]:

∆R
R

= (1 + 2σ + πE)χ (2)

R = ρ
L
A

(3)

π =
∆ρ

ρ
T (4)

E =
T
χ

(5)

In Equation (2), R is the electrical resistance of a conductive structure along longitudinal direction,
and ∆R is the corresponding change of resistance as a result of applied strain. σ is the Poisson’s ratio of
the material. π is the piezo-resistive coefficient. E is the Young’s modulus. χ is the longitudinal strain.
Equation (3) is the classic calculation of electrical resistance. Equation (4) is the math computation
for piezo-resistive coefficient along one crystal orientation. Equation (5) describes the relationship
between stress and strain. Piezo-resistive sensing is robust against noise, making it a better choice
for array based applications [2,20]. As for limitations, piezo-resistive sensing is heavily affected by
hysteresis, leading to a lower frequency response, and it can only be used for dynamic measurements
with limited spatial resolution [2].

Effective piezo-resistive sensing can be implemented as long as the sensor can efficiently contact
the sensing object. Diaphragms or cantilevers are sometimes used to increase sensing efficiency by
increasing mechanical deflection and stress [31–34]. For a piezo-resistive sensing system, the read out
circuit can be as simple as a DC biased Weston bridge. The reported maximum piezo-resistive sensing
sensitivity can reach 0.25 mV/nm [33].

2.3. Piezoelectric Tactile Sensors

There are two different sensing principles for piezoelectric tactile sensors: passive and active.
Passive tactile sensing takes advantage of direct piezoelectric effect. As a result of the material
polarization under external stress, electrical charge is generated. The generated electrical charge
density can be expressed as [35]:

Di = dijkχjk (6)

In Equation (6), Di is the generated charge density at i orientation in a Cartesian coordinate system,
and dijk is the direct piezoelectric coefficient of the material. χjk is the external stress signal as sensing
input. Active tactile sensing takes advantage of converse piezoelectric effect. The piezoelectric sensing
structures are electrically actuated under its first-order resonant frequency. When an external stress is
applied, a resonant frequency shift linear to the external stress is generated. The resonant frequency
can be calculated as [36]:

f0 =
1

2Z

√
K
ρ

(7)

Z is the thickness of the piezoelectric materials. K is the stiffness constant of the material, and ρ

is the density of the material. The resonant frequency shift under external stress can be considered
directly linear to the external stress [36]. Piezoelectric tactile sensors exhibits very high frequency
response, making them the best choice for dynamic signal sensing [2].
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The sensing principle leads to sandwich structures as the general sensing structures for
piezoelectric tactile sensors. Piezoelectric layers are deposited between two electrode layers. Similar to
the capacitive tactile sensors, convex structures like mesas, spheres have been integrated as a contact
promoter [37,38]. For piezoelectric tactile sensors, electrical readout circuit presents either voltage
or current changes as a result of the external stress, or frequency shift. The maximum measurable
pressure range has been reported as 100 MPa [39].

2.4. Optical Tactile Sensors

Optical tactile sensing is implemented by coupling geometric change of electromagnetic
waveguide with the modulation of wavelength, phase, polarization or intensity of the wave [40].
Optical tactile sensing is immune to electronic noise [41]. Optical sensors generally have high
spatial resolution and wide dynamic response range [2]. Optical tactile sensing can be used for
sensing surface roughness [42], compliance [40], shear and vertical stress [43–45]. For roughness
measurements, the reported best resolution is around ~100 nm level [42]. Key sensing structures
for tactile roughness sensing are optic fibers vertically placed towards the sensing surface [40,42].
Waveguides sandwiched between substrate and contact interface structures are commonly used for
tactile stress sensing [43–46]. For stress and mechanical forces, a resolution of 0.02 N has been reported
for optical sensors used for the minimally invasive surgery [47]. Optical tactile sensing has shown
great potential in applications requiring flexibility and portability [48,49]. Optical fibers are able to
cooperate with other sensing principles to significantly improve the system performance and enhance
the robustness to electromagnetic disturbance [49]. In addition, optical fibers have been used for both
contact tactile sensing and proximity tactile sensing. 3D printed, deflectable mini structures are used
to couple the mechanical signal with the optical signal through a reflective surface. It can significantly
enhance the grasping capability of a robotic arm [48]. In conclusion, optical tactile sensors can provide
high sensitivity [40,41,44,45,47,50].

2.5. Trade-offs and Challenge

In this section, the four basic tactile sensing principles and the electrical interfaces are introduced.
As to other sensing principles such as strain gauges [2,20], they take advantage of at least one of these
four principles to couple the external sensing signals into readout electrical signals. A comparison
between different sensing principles is provided in Table 1.

Table 1. Trade-offs of different sensing principles.

Sensing Principle
Trade-Offs

Sensing Structure Related Read out System Related

Capacitive

High sensitivity and resolution Highly integratable
Large dynamic measurement range Medium complexity
Static and dynamic measurement Medium power consumption

Easily affected by noise High portability

Piezo-resistive

High sensitivity and resolution Highly integratable
Robust to noise Highly Low complexity

In-situ structured sensor High portability
Susceptible to hysteresis High power consumption

Piezoelectric

High sensitivity Highly integratable
Large dynamic range Medium complexity

High frequency response Medium portability, little bulky
Low spatial resolution Medium power consumption

Optic

High sensitivity Highly integrable
Large dynamic range Medium complexity

High frequency response Medium power consumption
High spatial resolution Medium portability
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In this review, the capability of integration is emphasized because it is vital to multi-domain tactile
sensing. The capability of integration is discussed from two perspectives: integration with electrical
interface; and integration of functional sensing structure for multi-domain signals. For all of these four
sensing principles, research has demonstrated their capabilities of integration in both perspectives.

For the integration with electrical interfaces, system level integration (printed circuit board level) has
been extensively studied, verified and applied for all of these four principles [11,24–29,31,38,40,41,47–55].
Integrating functional sensing structures into a single micro/nanodevice is a more recent research
trend, and significant progress has been reported. Capacitive tactile sensors have been fabricated by
post-Complementary Metal Oxide Semiconductor (post-CMOS) fabrication technologies on Metal Oxide
Semiconductor Field Effect Transistors (MOSFETs) [23]. Piezo-resistive tactile sensors can be fabricated
by similar processes [32,56]. Dahiya et al. developed new tactile sensing chips consisting of array
of Piezoelectric Oxide Semiconductor Field Effect Transistors (POSFETs) tactile sensing devices [57].
Electrical charge accumulates under external force. Polymer optical tactile sensors have been fabricated
by photoresist as waveguide with photovoltaic microstructures [58]. Micro Optical Electrical Mechanical
System (MOEMS) have also been fabricated for tactile sensing applications [59–64]. Quantum dots
can be used as solid state light source and electrical interface for optical tactile sensing at the level of
micro/nanodevices [58–60,62].

For sensing structure integration, capacitive sensing structures with piezo-resistive layers have
enabled the measurement of dynamic properties such as acceleration and displacement (including
thermal induced displacement) as well as hardness and contact forces [34]. In addition, integration of
multiple MEMS sensors into a single Printed circuit board (PCB) level chip has been proved feasible
for multiple domain tactile sensing [65]. Integration of MEMS transducers on micro optic fibers enable
multiple domain tactile sensing for DaVinci robots [66]. Optical tactile sensing has a unique advantage
in sensing structure integration. Optical tactile sensors, especially fiber based ones, can be used for
multi-domain sensing with a single type of structures [48]. For instance, hard and soft mechanical
sensing, as well as distance sensing can all be implemented through the measurement of reflected laser
intensity [48].

3. Materials for Tactile Sensing

3.1. Capacitive Tactile Sensors

Capacitive sensing structures can be fabricated by various types of materials. Besides the
possibilities of forming sandwich, parallel capacitors, good mechanical properties are required.
Polysilicon has been one of the major material types for capacitive tactile sensor [21–23,28].
Polymer materials, typically Polydimethylsiloxane (PDMS) [24,26,27] and SU-8 [67], have become more
and more popular. These polymer materials have acceptable chemical stability and elastic properties.
Polymer materials open the field of flexible tactile sensor devices [24–27]. In a flexible capacitive sensor,
polymer materials can be used for di-electrical intermediate layers [27], movable sensing plates, or the
3D contact promoters [11,24–26].

3.2. Piezo-Resistive Tactile Sensors

Electrical resistivity and mechanical elasticity are necessary for piezo-resistive sensing. These are
common physical properties for most metal, semiconductor, and some polymer materials, which are
therefore candidates for piezo-resistive sensing structure. In early years, piezo-electrical tactile sensors
have been fabricated in single crystal silicon and poly-silicon [31–34]. Recently, research works have
extensively demonstrated the piezo-resistivity in carbon nanomaterials such as multi-walled carbon
nanotube and graphene related materials [53,54,68]. Carbon black micro/nanoparticles have also
been shown to be piezo-resistive [55]. When used in the fabrication of piezo-resistive tactile sensors,
additional supportive polymers are usually used for carbon materials. Typical examples include
polystyrenes [55], poly-urethanes [54,68], and PDMS [53].



Sensors 2017, 17, 2653 6 of 24

3.3. Piezoelectric Tactile Sensors

The dependence of piezo-electrical property narrows available options of material for piezoelectric
tactile sensors. For rigid sensors, quartz [35], zinc oxide [35,39,69] and lead zirconated titanate
(PZT) [36,52,70–72] are popular materials. Piezo-electrical sensing structures for flexible tactile sensors
have been fabricated based on zinc oxide nanomaterials [39,69]. Polyvinylidene fluoride (PVDF) is a
more popular choice for flexible piezoelectric tactile sensors [37,38,57,70,73–76]. More recent research
about piezoelectricity in cellulose materials indicates a novel material for flexible piezoelectric tactile
sensor fabrication [77,78].

3.4. Optical Tactile Sensors

Optic waveguide materials are the key material for optical tactile sensors. Dating back to
1970s, composite like ZnCl2 glass has been proposed as fiber materials [79]. Silica materials
are very good options for single-mode optical fibers [80]. Conventional polymer fibers include
poly(methyl-methacrylate) (PMMA), polystyrene(PS), polycarbonate(PC), polyurethane(PU) and
epoxies [81]. Newly explored optical polymers includes: deuterated and halogenated polyacrylates,
fluorinated polyimides, benzocyclobutene, perfluorovinyl ether copolymers [81]. Materials for
supportive structures include acrylic polymers [43], PDMS [44] and nitinol [41]. Materials for optical
tactile sensors have to fulfill certain optical transparency and elasticity requirements.

3.5. Material Functionalization: Towards Multiple Domain Tactile Sensing

A recent trend in tactile sensor material development is material functionalization in order to
implement certain properties for certain tactile sensing principles. Material functionalization greatly
expands the potential material options for tactile sensing structures.

Physical functionalization includes surface functionalization and bulk functionalization.
The typical bulk functionalization method is mixing additives into the target materials for certain
functional properties. Once the concentration of the functional additives reaches a threshold, known
as the percolation threshold, the mixture starts to exhibit the corresponding functional properties for
certain applications. Silver nanoparticles can be mixed into SU-8 photoresist, which is originally an
electrical insulator, to fabricate suspended membrane structures suitable for both capacitance tactile
sensing and piezo-resistive tactile sensing [67]. Carbon black micro particles have been mixed into
thermal plastic for piezo-resistive sensors [55]. Cellulose nanocrystals have also been mixed into
photo-curable matrix for piezoelectric applications [77,78]. Surface functionalization is 2D or 3D
functional coating on the non-functional surface. The key factor for consideration is the adhesion.
Conductive layers can be coated on the polymer suspended structure surface to get capacitive or
piezo-resistive sensors [24–27,54,67,68]. In a sequence of piezoelectric functional coating followed by
conductive functional coating, flexible piezoelectric tactile sensors can be fabricated [76].

Chemical functionalization can be done by bonding functional groups for specific sensing
purposes to large molecules. The bonded functional groups enable additional sensing capability
of the material. Multi-walled carbon nanotubes (MWNTs) have always been ideal subject to chemical
functionalization [82–85]. After chemical functionalization, carbon nanotubes can also be used
for thermal tactile sensing [86] or sensing for specific chemicals [85,87,88] besides their traditional
piezo-resistive applications [54], making them ideal candidates for artificial skin [88–90].

3.6. Comparisons and Trade-Off Discussion

Advantages and disadvantages of different material types are listed in Table 2. Table 2 focuses on
structural materials for tactile sensors. For nanomaterials such as graphene, carbon nanotubes and
nanowires, they have to reply on at least one of the structural materials for the sensing purposes.
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Table 2. Comparisons of tactile sensor material types.

Material
Type

Patterning Properties
Deposit Etch

Silicic

High temperature
Highly dangerous chemical

Good mechanical properties

High vacuum requirement Tunable electrical conductivity

Complex equipment

Complex equipment

Good thermal conductivity

Low rate
Good optical properties

High chemical stability

Metallic

Flexible temperature Flexible and simpler
etching method

Good electrical conductivity

Flexible vacuum requirement Good thermal conductivity

Medium equipment complexity
Simpler equipment Medium chemical stability

Medium rate

Polymer

Low temperature

Safe chemical

Medium to low mechanical properties

Low vacuum requirement
Insulator

High flexibility in functionalization

Simple equipment

High rate

Good optical properties

High rate Low chemical stability, prone
to oxidation

4. Fabrication Technology

4.1. Standard Fabrication: Micromachining and Molding

Micromachining is the most important fabrication technology for tactile sensors. Tactile sensors
can be directly fabricated by micromachining [21–23,28,31,32,34,71], or vital fabrication pre-requisites
are fulfilled through micromachining process, such as molds for polymers [24,26,27]. The fundamental
flow of micromachining is illustrated in Figure 1a.
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with permission [24]. Copyright 2006, IEEE) examples of micromachined and modeled tactile
sensing structures.
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As illustrated in Figure 1a, micromachining process can be summarized as material
deposition-masking-patterning cycles. This cycle is necessary for not only structural materials, but also
sacrificial materials. For instance, photoresist may not withstand dry etching or wet etching of certain
material, so additional cycles in Figure 1a is required to first pattern layers of masking material. The total
repeat times of a single micromachining cycle are determined by the complexity of the structures to
fabricate and the structural material properties. Micromachining can be subcategorized into surface
micromachining and bulk micromachining. In surface micromachining, processed materials are stacked
layer by layer on substrates. No process is done on the substrate material, while substrate material
is also structured in bulk micromachining. Surface micromachining is generally used to fabricate
tactile sensors integrated with IC level electrical read out circuits [23,34,57]. Bulk micromachined tactile
sensors are generally standalone, and additional bonding steps are required to interface electrical read
out circuits. Depending on the material properties and compatibility with etchant, the order of process
for different materials have to be carefully considered to guarantee patterned layers to survive the
process followed.

Molding/imprinting is the second popular and important fabrication method for tactile
sensors. It is mainly used for polymer based tactile sensors for low cost or flexible applications.
Molding fabrication can be done at both the macroscale and the microscale; nevertheless, lithography
steps or micromachinings are always required to first pattern inversed structures in order to successfully
mold tactile sensing structures. A typical molding process flow is illustrated in Figure 1b. To fabricate
complex 3D tactile sensing structures, molded polymers have to be bonded through adhesive bonding
or oxygen plasma bonding [24,26,27].

4.2. Lithography Based Rapid Micro 3D Fabrication

Some recently developed 3D fabrication technologies can greatly simplify the fabrication
process for tactile sensors. A typical example is the lithography based polymer MEMS fabrication
technology [67,91–95]. Using cross-linkable epoxy negative permanent photoresist, high resolution
and rapid micro-3D fabrications can be implemented by tuning the exposure dose emitted towards
the photoresist to partially trigger post exposure cross-linking. This technology is suitable for the
fabrication of capacitive and piezo-resistive tactile sensors, and it also has the potential of fabricating
support structures for micro optic tactile sensors.

4.3. Comparison of Fabrication Technologies

When choosing a fabrication technology for specific tactile sensors, process cost, complexity,
robustness are the major factors for consideration. For the four principles discussed, the advantages
and disadvantages of major fabrication technologies are compared in Table 3.

Table 3. Fabrication methods for different types of tactile sensors.

Sensing Principles
Complexity and Cost

Surface/Bulk Machining Mold/Imprinting Rapid 3D Fabrication

Capacitive High Medium Low
Piezo-resistive Medium Medium Low
Piezoelectric Low Medium Low

Optic Medium Low Low

Sensing Principles
Robustness

Surface/Bulk Machining Mold/Imprinting Rapid 3D Fabrication

Capacitive Low High Low
Piezo-resistive Medium High High
Piezoelectric High High High

Optic Medium High High
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Many capacitive tactile sensors require suspended, movable 3D structures for efficient sensing.
The fabrication of this type of structures is generally more complicated than fixed structures, and the
releasing process suffers from the stiction problem: due to the surface tension after releasing by
wet etching, sometimes the fabricated structures will collapse to the substrate. In some cases of
piezo-resistive sensors [31,32,34], suspended 3D structures are used to promote deformation. This type
of piezo-resistive sensors suffers from the similar stiction problem. For piezoelectric and optical
sensing, only fixed structures are required. This makes the micromachining based fabrication much
simpler. However, optical tactile sensors are generally stricter on defects and geometrical variation
of deposited layers, slightly reducing the robustness. Molding and imprinting are generally simpler
than micromachining, but the fabrication of molds relies either on micromachining or 3D fabrications
on a substrate, leading to additional process steps and complexity. For suspended 3D structures,
the bonding process of molded structures is done in gaseous or vacuum ambient, eliminating the
stiction problem. Rapid 3D fabrication methods are simpler than molding since the polymer structures
can be directly patterned based on the design. For both molding and 3D fabrication, suitable materials
are neither electrically conductive nor piezoelectric. Additional surface processes are generally required
to make the devices functional. Most polymers have satisfying optical properties. Therefore, molding
and rapid 3D fabrications are good choices for fabrication of optic tactile sensors.

5. Smart Tactile Sensor Applications

Compared with other perception methods, e.g., visual or hearing, tactile sensing was relatively
neglected in the early years of robotics. Both research and industry communities have been directing
their attentions toward tactile sensing technologies since 2000 [2]. Tactile sensors have diverse
applications in different fields, which have been reviewed and reported in the literature [2,7,18,96].
Great efforts have been made to develop high-performance tactile sensors. In the last decade,
tactile sensing has attracted increasing interest mainly due to its applications in three domains,
including artificial skin for robotics, tactile sensing for unstructured environments and biomedical
applications [3,4,18,97–100]. In this section, we will discuss state-of-the-art applications related to these
three domains and present some research challenges.

5.1. Tactile Sensing for Artificial Skin (E-Skin)

The sense of touch enables tactile sensors to assess physical properties of the object, such as
force, temperature, size, hardness and texture, and allow it to detect slip and control parameters
in manipulation. Inspired by the human skin, significant progress in the development of artificial
skin based on tactile sensing has been achieved in recent years and a wide variety of tactile sensors
capable of mimicking the human skin have been reported in the literature, such as wearable devices
and smart robots [4,101–105]. Artificial skin requires the macroscale integration of a large number
of single sensing elements on a thin flexible substrate [104]. This cannot be achieved by simply
aggregating them. Inorganic crystalline semiconductors show an advantage as they can provide high
carrier mobility with excellent mechanical flexibility. Takei et al. integrated parallel semiconductors
nanowires as the active-matrix backplane of a flexible pressure-sensor array [104]. Harada et al.
developed a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial
skin applications. The proposed artificial skin device utilized a fingerprint-like structure which allows
tactile and slip force to be detected as the human skin. The authors printed multifunctional sensors on
a flexible substrate, rather than using semiconductor infrastructures. It can significantly reduce the
fabrication cost and enhance the feasibility of tactile sensors in commercial applications [103]. To ensure
energy autonomy, recently, Núñez et al. developed a transparent tactile e-skin along with single layer
graphene and coplanar interdigitated capacitive electrodes [106]. They also demonstrate the feasibility
of large-scale and low-cost fabrication of a flexible and transparent e-skin for pressure sensing on a
prosthetic hand [106]. Table 4 lists some existing tactile sensors developed for artificial skin.
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Table 4. Examples of existing tactile sensors for artificial skin.

Reference Characters Function

[104] Pressure-sensitive, macroscale Electronic skin capable of monitoring pressure with
high spatial resolution

[106] Energy-Autonomous, Flexible, and
Transparent, sensitive to touch

Mimic human skin and can perform task ranging
from simple touching to grabbing of soft objects

[107] Ultra-lightweight, unbreakable
and imperceptible

electronic skin, health care and monitoring and
many others

[108] Flexible, self-powered, self-clean multi-functional e-skin, such as elbow bending or
finger pressing

[109] Unprecedented sensitivity for
tactile pressure

Mimic human skin, with potential application in
novel prosthetics and robotic surgery

Significant progress in the development of sensing material and sensing technology have
been achieved [23]. However, the function of artificial skin always was hindered by limitations
in microfabrication and cost issues [45], and only a few approaches have been successfully employed
in practical robots [45]. In addition, the majorities of the researches in the literature focused on the
development of fabrication of sensors which are sensitive to a specific property of the object [45].
To mimic human skin, the need for developing a sensor or a sensing system that can provide more
types of properties is increasing.

5.2. Tactile Sensing for Unstructured Environments

Even some attempts have been made recently to mimic human skin and sense of touch [2–4,110],
tactile sensing has rarely been used in complex robotic applications, especially in unstructured
environments [18]. Unlike traditional industrial robots, such as manipulator arms, which follow a
predefined and simple program, smart robots are designed to work autonomously and interact with the
surrounding environment [18]. It requires that the smart robot can feel and interpret the environment
with the help of various sensors [18]. Tactile sensing is crucial for safe interactions of robots and
the surrounding environments, because it provides the most direct haptic feedback to control the
force during the interactions [96]. It was shown that the remote tactile sensing is preferable in many
unstructured environments where other sensing modality, such as vision or hearing, are limited [111].
In [112], the authors analyzed the reason why robots are glorious in factory while incompetent at the
home. Outside of controlled environments, it is difficult for robots to perform sophisticated tasks
without the operation command from a human.

To interact with the environment and autonomously learn, fusion-of full-body tactile sensors
and other types of sensors is shown to be indispensable [6]. Researchers from Stanford University
incorporated actuated smart staffs with vision and tactile sensing, and developed a smart platform
SupraPed [113]. Simulation results demonstrated that the proposed control framework significantly
enhanced the locomotion performance of humanoid robots in unstructured environments. Inspired by
the actuation and sensing in biological systems, Jain et al. enabled the robots to manipulate effectively
with haptic sensing in unstructured environments [114]. They presented the potentiality of data-driven
machine intelligence methods to inform robot about the forces that they probably encounter when
performing specific tasks. The growth of robotic applications in unstructured environments has
created a pressing need for smart tactile sensing systems with advanced tactile materials and
fabrication technologies.

5.3. Tactile Sensing for Biomedical Applications

During the last decade, tactile sensing has been rapidly growing, particularly in the area of
biomedical engineering. The use of tactile sensing in biomedical systems has resulted in cutting edge
outcomes, as reviewed by [2,97,115–118]. Here, from the standpoint of smart properties, we mainly
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introduce two most exciting and state-of-the-art applications in this field, including prosthesis and
pattern recognition based on tactile sensing [115,119]. For more general applications, readers are
referred to [2,19,97]. Based on advanced tactile sensing technologies as well as signal processing
methods, researchers are able to make prosthetics that are remarkably useful and realistic [97,120].
The absence of tactile information impedes the functionality and efficiency of traditional prostheses,
such as the simple peg leg. The tactile feedback from tactile sensors is essential to the amputees or
people with impaired tactile sensibility. However, only a few existing prosthesis can provide effective
tactile sensation feedback to users, which is mainly due to technical difficulties and the complicated
nature of the human tactile system. One of the most fantastic examples is the modular prosthetic limb
developed by researchers from Johns Hopkins University, as shown in Figure 2a [120]. Based on more
than 100 sensors, the anthropomorphic prosthetic hand can provide high-resolution tactile and position
sensing capabilities. In addition, to restore the sense of touch to the people with tactile sensation
difficulties, advanced machine learning algorithms are necessary to map tactile sensor information
with object properties.
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The area of tactile pattern recognition has also attracted increasing attentions from researchers in
signal processing and computer science. Pattern recognition methods, which will be further discussed
in the next section, have been shown to be effective for interpreting information from tactile sensors
in challenging applications, such as objective diagnostic palpation, cancer detection, gait analysis
et al. [2,18,19]. Clinically, the doctors always use the hand and palm to evaluate the condition of organs
and tissues. The main reason is that the mechanical properties of healthy soft tissues differ from the
cancerous ones [19,122]. It was demonstrated that SureTouch, as shown in Figure 2b, a tactile sensing
device by Medical Tactile Inc., Los Angeles, CA, USA, can provide up to four times more sensitivity
than the human hand in breast cancer detection. Equipped with 192 high resolution pressure sensors,
the device can detect lumps or masses as small as 5 mm, which is more sensitive than the human
sense of touch. Considering the present limitations of kidney stone removal laparoscopy, Afshari et al.
developed a novel tactile sensory system capable of detecting the exact location of kidney stones
during laparoscopy [123] based on force sensors. This new tactile sensing system can also be applied
in different fields of artificial palpation, such as detection of breast cancer and estimation of different
properties of cancerous tumors [124].

6. Intelligent Signal Processing for Smart Tactile Sensing

Figure 3 illustrates the tactile signal transmission in the human skin. Sensory units,
e.g., mechanoreceptors, distributed in human skin detect mechanical stimulations, e.g., force and
texture. Then, a sequence of neural pulses is generated and transmitted to the central nervous
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system for further processing [97]. Similar to the human skin, the general hierarchical transmission
of tactile signals in a smart tactile sensing system includes signal transduction, signal conditioning,
data transmission, signal processing and control system [3,4,125]. Smart Tactile sensing is not only
hardware demanding, e.g., high sensitive tactile sensors, but also much more demanding in terms of
software corresponding to sophisticated neural signal processing in the brain (e.g., signal processing
and data fusion techniques). In this section, we mainly discuss state-of-the-art methods which have
been proposed to address the following data processing challenges: data acquisition and artifacts
removal, pattern recognition and tactile sensor fusion.

Sensors 2017, 17, 2653  12 of 23 

 

hardware demanding, e.g., high sensitive tactile sensors, but also much more demanding in terms of 
software corresponding to sophisticated neural signal processing in the brain (e.g., signal processing 
and data fusion techniques). In this section, we mainly discuss state-of-the-art methods which have 
been proposed to address the following data processing challenges: data acquisition and artifacts 
removal, pattern recognition and tactile sensor fusion. 

 
Figure 3. The illustrative hierarchical transmission of tactile signals in: (a) human skin; and (b) smart 
tactile sensing system. 

6.1. Data Acquisition and Artifacts Removal 

The first stage of tactile sensing is data acquisition, which aims to collect physical properties of 
the object or the contact via tactile sensors. As mentioned earlier, tactile sensors can be used to 
measure different types of tactile signals, such as force, temperature, size, hardness and texture. With 
different tasks, various types of tactile sensors can be utilized, such as sensors to measure pressure [126] 
and hardness [127]. The change of the signal of interest can be reflected by the change of the sensors’ 
electrical properties. Many tactile sensing systems also involve integrated amplifiers for the reason 
that the amplitude of the acquired signal is too tiny. An analog-to-digital converter digitizes the signal 
before further analysis.  

In addition, the research also needs to deal with challenges related to data acquisition, such as 
trade-off between the spatial resolution and temporal resolution, simultaneous sensing of multiple 
stimuli, etc. [128–131]. The massive amount of tactile signals need to be acquired at high rates. 
However, the increase of the number of tactile sensors limits the speed to collect the data. To provide 
fast sampling rate with high spatial resolution, Lee et al. took advantage of parallel processing 
properties of Field Programmable Gate Array (FPGA) and developed a tactile sensing system with 
high spatiotemporal resolution [128]. Based on the theory of compressed sensing, Hollis et al. 
proposed a novel strategy to reduce hardware complexity and addressed the scalability challenges 
of tactile signals acquisition [129].  

Prior to conducting any other signal processing task, it is essential to remove the unwanted 
signal disturbances by using artifact removal methods [132]. In practice, the acquired signals may be 
contaminated by different types of noise and distortions, such as instrumentation noise, powerline 
noise and other types of interference [133,134]. The suitability of specific artifact removal techniques 
greatly depends on the application and the nature of the sensor signals (e.g., data statistics, 
stationarity of the desired signal and the noise). A commonly-used artifact removal technique is 
bandpass filtering, implemented in the hardware or later in a digital software manner. However, 

Figure 3. The illustrative hierarchical transmission of tactile signals in: (a) human skin; and (b) smart
tactile sensing system.

6.1. Data Acquisition and Artifacts Removal

The first stage of tactile sensing is data acquisition, which aims to collect physical properties of the
object or the contact via tactile sensors. As mentioned earlier, tactile sensors can be used to measure
different types of tactile signals, such as force, temperature, size, hardness and texture. With different
tasks, various types of tactile sensors can be utilized, such as sensors to measure pressure [126] and
hardness [127]. The change of the signal of interest can be reflected by the change of the sensors’
electrical properties. Many tactile sensing systems also involve integrated amplifiers for the reason
that the amplitude of the acquired signal is too tiny. An analog-to-digital converter digitizes the signal
before further analysis.

In addition, the research also needs to deal with challenges related to data acquisition, such as
trade-off between the spatial resolution and temporal resolution, simultaneous sensing of multiple
stimuli, etc. [128–131]. The massive amount of tactile signals need to be acquired at high rates. However,
the increase of the number of tactile sensors limits the speed to collect the data. To provide fast sampling
rate with high spatial resolution, Lee et al. took advantage of parallel processing properties of Field
Programmable Gate Array (FPGA) and developed a tactile sensing system with high spatiotemporal
resolution [128]. Based on the theory of compressed sensing, Hollis et al. proposed a novel strategy to
reduce hardware complexity and addressed the scalability challenges of tactile signals acquisition [129].

Prior to conducting any other signal processing task, it is essential to remove the unwanted
signal disturbances by using artifact removal methods [132]. In practice, the acquired signals may be
contaminated by different types of noise and distortions, such as instrumentation noise, powerline
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noise and other types of interference [133,134]. The suitability of specific artifact removal techniques
greatly depends on the application and the nature of the sensor signals (e.g., data statistics, stationarity
of the desired signal and the noise). A commonly-used artifact removal technique is bandpass filtering,
implemented in the hardware or later in a digital software manner. However, filtering always fail to
remove the artifacts when the desired signals and the artifacts overlap in the frequency domain or when
the noise has a non-stationary nature [135]. To overcome this challenge, adaptive de-noising strategies,
such as wavelet transform and empirical mode decomposition (EMD) are widely employed [133].

6.2. Smart Tactile Sensing Based on Machine Learning

Several works in the literature witness the adoption of machine learning algorithms for
pattern-recognition tasks in tactile sensing systems [4,16,136–148]. The first stage of data mining
typically is feature extraction. It provides a meaningful representation of the raw signals and can
significantly reduce the amount of transmitted data through the tactile sensing system [4].

One common approach to represent tactile data is based on manually specified properties, such
as the statistical characters of the time series signals, geometric properties of the object to touch [16].
For instance, Hoelscher et al. compared seven different methods of feature extraction from the
preprocessed tactile signals [138], including physically motivated features, temporal BioTac features,
Principal component analysis (PCA) of the raw data, mean features, pressure features, electrode
features and temperature features. It was demonstrated that the robot could reliably classify 49 objects
based on mean features from five robot motions [138].

In addition, a great deal of attention has been paid to extract features in unsupervised ways.
Unsupervised feature learning can serve a wide range of applications and is also able to adapt to
task-specific applications. For instance, Madry et al. proposed an unsupervised spatio-temporal
feature learning method, named Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) [137,149].
The main idea is to extract features from the raw consecutive frames and then pool them over
the time dimension. They further demonstrated the effectiveness of the proposed method on two
tactile-based robotics applications, including the grasping stability assessment and object instance
recognition [137]. Another powerful way to learn features without requiring prior knowledge is
based on deep learning [144,149]. To extract features applicable in general tactile-based applications,
Yuan et al. proposed a deep learning based method for shape-independent hardness estimation.
They first represented frames of tactile imaging using a convolutional neural network (CNN) [150],
and further adopted a recurrent neural network (RNN) [151] to model changes of the gel deformation
over time [149]. As shown in [136,137], some of these handcrafted features might not be relevant to
the given task. In addition, classification in high-dimensional feature spaces is prone to overfitting.
Therefore, after feature extraction, it is always desirable to apply feature selection methods to select
the best subset candidate features from the whole feature space [133].

Besides the quality of the acquired signals and the extracted/selected features, the performance
of the smart tactile sensing system also depends on machine learning techniques. Each algorithm has
its own advantages and limitations. For instance, the algorithm of K-Nearest Neighbors (KNN) is
robust to noisy training data and effective when the training data is large. Naya et al. utilized the KNN
principle to the haptic interface of a pet-like robot and aimed to recognize five touch modalities [145].
However, people need to determine the value of K and choose the suitable type of distance to get the
best performance. In addition, the required time to find the nearest neighbors in a large training set can
be excessive. Therefore, it is not suitable for real-time tactile sensing systems with limited computational
ability. Support vector machines (SVMs) have also been successfully deployed in smart tactile sensing
systems [146–148]. For instance, Gastaldo et al. utilized SVMs to tackle the interpretation of touch
modalities in [146]. SVMs generally provide high accuracy, whereas they are memory intensive and are
not recommended for small memory systems. Another important variety of machine learning methods
is deep learning based methods. Recently, an extremely simple macroscale electronic skin without
nano/micropatterns were realized with deep learning methods [149]. Figure 4 shows the Deep Neural
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Network (DNN) architecture used in this study. Deep learning enables the use of a simple bulky material
for use in a smart sensory device (e.g., e-skin). The proposed revolutionary approach outperformed the
present sensors in terms of pressure sensitivity and spatial resolution. The e-skin based on deep learning
is unprecedented since all other currently available e-skins require a complicated and device-oriented
construction and also depend on high-cost manufacturing processes [144]. Deep learning has been
successful in multiple domains, outperforming traditional machine learning methods, if sufficient
amount of training data is available [152,153]. The criterion to choose an appropriate method is subject
to the nature of the acquired signals and the application of interest. Table 5 lists some existing smart
tactile sensing systems and their utilized machine learning techniques.
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Table 5. Some existing smart tactile sensing systems and the related machine learning techniques.

Reference Tactile Sensors (Hardware) Extracted Features Machine
Learning Method Aim

[141] BioTac (Pressure sensor) Taction, roughness and fitness Bayes Texture classification

[143] Tactile sensor array 226 features Decision trees Object identification

[137] Schunk Dexterous, Schunk
Parallel and iCub hands

Spatio-Temporal structures by
unsupervised feature learning
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Grasp stability
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resistance change by DNN

Deep neural
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[154] GelSight Tactile Sensor Features from tactile images
by DNN

Deep convolutional and
recurrent neural network Hardness Estimation

[139] Barometric pressure sensors 34 “haptic adjectives” Random Forests Estimation of metabolic
equivalent of tasks

[145] Humanoid robot, Cody, with
force sensitive skin

Maximum force, contact area,
and contact motion et al.

k-nearest
neighbor (KNN)

Haptic classification and
object recognition

[146]
A tactile sensing system
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6.3. Tactile Sensor Fusion

In reality, a human combines the sense of touch with other sensory modalities, such as vision and
hearing, to form a coherent and robust perception of the world [15]. Tactile sensing systems relying on a
single sensor could suffer from several limitations, such as limited spatial coverage and the system/data
uncertainties. Therefore, the design of a smart tactile sensing system should take into account the
presence of multiple sensors, for a signal sensory modality or multiple modalities. Similar to the
human perceptual mechanism, a well-structured tactile sensing system collects information from
the external environment by multiple sensors, such as the prosthetic limb equipped with more than
100 sensors [120]. The performance of a tactile sensing system is also highly determined by sensor data
fusion algorithms.

Generally, combining sensory information can yield better recognition performance. An effective
way to combine multiple sensor data is represented as sensor fusion [133,155]. Sensor fusion can
be performed at any stage of the signal processing and decision-making process, including the raw
data-fusion, feature-fusion, and classifier-fusion.

Different sensor fusion methods can be adopted depending on the specific problem and the
collected signals. If the sensors measure the same type of physical phenomena, the acquired signals
from these sensors can be directly fused. Otherwise, data generated from heterogeneous sources may
not be combined directly and it is generally preferred to be fused at the feature extraction stage or
decision-making stage. As to feature-fusion, features extracted from multiple sensors separately can
be concatenated into new high dimensional features as the input of the further classification/pattern
recognition step. For instance, Jia et al. [156] used the sparse coding algorithm to extract features
from three modalities independently, including the vibration, internal fluid pressure, and electrode
impedance. The generated 200, 100 and 100 features from these sensor modalities are then fused via a
fully connected layer. Classifier-fusion is the process of combining decisions generated from multiple
“low level” classifiers. It attempts to get higher accuracy than those attainable from each individual
classifier. Depending on the confidence of each classifier, decisions can be fused in a weighted voting
manner. In [157], Halatci et al. proposed a classifier fusion method for planetary exploration rovers
based on visual and tactile signals. It was demonstrated that more accurate terrain classification can be
achieved via classifier fusion. For more related information, please refer to [15,155,157–160] and the
references therein.

7. Challenges for the Application of Tactile Sensing

Although developing smart tactile sensors has been an active area and has drawn increasing
research attention in the last decades, the penetration of tactile sensors in commercial applications
is still extremely low in comparisons with other sensing modalities. Today’s smart tactile sensing
systems remain in their infancy. The remaining challenges include, but not limited to, the following:

(1) Cost. One of the challenges facing the researchers is finding a way to cut down the sophisticated
tactile sensor system’s cost. Most existing tactile systems reported in the literature are still at the
experiment level. It is desirable to get the cost down to a point affordable for the market.

(2) Hardware related to sensor performances (e.g., sensitivity, ability to measure various parameters),
physical aspects (e.g., spatial resolution, conformability), tactile sensors arrangement, wireless
communication and crosstalk. Nanotechnology and microfabrication may provide a way to
integrate different sensing modalities and signal processing units. They further can provide a
high density array of sensors.

(3) Software. Even if people have already developed numerous tactile sensors with fantastic
characters, such as mimic the human sense of touch, tactile sensors are rarely used in real
applications. Practical tactile sensing systems highly demand not only suitable hardware but
also powerful software, especially for the systems working in unconstructed environments.
The development of tactile sensing requires not only better sensors, but also efficient and effective
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techniques to process these sensors’ data. Difficulties with data acquisition and interpretation
have consistently been cited as one main reason for the slow development.

(4) Modularization design and transportability. Ease of assembly and disassembly is another concern
that should be better addressed. Tactile sensing systems, including the hardware and the
software, are generally designed based on certain task-specific criteria. From the design point,
modularization designs which can facilitate the transportability between different devices are
highly desired.

8. Conclusions

In this paper, we overview fundamental factors to be concerned in the design and implementation
of a smart tactile sensing system. As in the human perceptual mechanism, a smart sensing system
not only needs to be equipped with a large number of receptors, tactile sensors, but also requires
effective algorithms that can interpret the acquired information [3,4,125]. Therefore, the design issues
of a smart tactile sensing system can be divided into two broad categories: physical aspects and
software related issues. It is a multidisciplinary field requiring intensive interdisciplinary efforts and
collaborations [2,15].

The performance of smart tactile sensing systems can be enhanced by exploring recent advances
in the utilized materials and fabrication technologies, as well as signal processing and machine
learning methods. Compared to some previous surveys of tactile sensing technologies, this review
paper extends on previous reviews and emphasizes the state-of-the-art technologies to manufacture
tactile sensors (especially factors related to sensor fabrication, structure and materials), outstanding
signal processing methods which can effectively interpret the information from multiple sensors
(numerous sensors for single modality or for multiple modalities), and challenges which must be
overcome. Although the development of smart sensing systems remains in its infancy, the tactile
sensing technology has great potential in enhancing people’s life quality. In this review, we mainly
discuss the applications of smart tactile sensing technology in three fields: artificial skin for robotics,
tactile sensing for unstructured environments, and biomedical applications.
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