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Abstract: With the incremental introduction of solar photovoltaic (PV) generators into existing power
systems, and their fast-growing share in the gross electricity generation, system voltage stability has
become a critical issue. One of the major concerns is voltage fluctuation, due to large and random
penetration of solar PV generators. To suppress severe system voltage deviation, reactive power
control of the photovoltaic system inverter has been widely proposed in recent works; however,
excessive use of reactive power control would increase both initial and operating costs. In this
paper, a method for efficient allocation and control of reactive power injection using the sparse
optimization technique is proposed. Based on a constrained linearized model describing the influence
of reactive power injection on voltage magnitude change, the objective of this study is formulated
as an optimization problem, which aims to find the best reactive power injection that minimizes
the whole system voltage variation. Two types of formulations are compared: the first one is the
conventional least-square optimization, while the second one is adopted from a sparse optimization
technique, called the constrained least absolute shrinkage and selection operator (LASSO) method.
The constrained LASSO method adds `1-norm penalty to the total reactive power injection, which
contributes to the suppression of the number of control nodes with non-zero reactive power injection.
The authors analyzed the effectiveness of the constrained LASSO method using the IEEE 39-bus and
57-bus power network as benchmark examples, under various PV power generation and allocation
patterns. The simulation results show that the constrained LASSO method automatically selects the
minimum number of inverters required for voltage regulation at the current operating point.

Keywords: solar photovoltaic system (PV); random allocation; power system integration; voltage
variation; inverter reactive power control; constrained least absolute shrinkage and selection operator
(LASSO)

1. Introduction

Promotion of electricity production with renewable energy sources delivers significant ecological
and economic benefits to the world’s sustainable development. Global electricity production from
renewable energy reached a 23.7% production share by the end of 2015 [1]. Among all the renewable
energy sources, the falling cost of the solar photovoltaic system (PV) brings incremental demands
for its power system integration, which expands the electricity production share of PV in both the
industrial and residential market, and makes PV one of the most fast-growing renewable sources of
electricity [2,3]. Meanwhile, the widespread use of PV also challenges the existing power system to
ensure its power quality. One of the major concerns is system voltage variation caused by power flow
from the grid-connected PV [4], where a grid-connected PV compensates the power demand of its
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integrated consumer bus with solar power generation and delivers excess power to the utility grid as a
reverse power flow. These two processes may result in voltage exceeding or decreasing beyond its
permitted operation limit [5–7].

Since the power flow from PV generation induces voltage variation to the power system, several
studies have concentrated on the optimal allocation and sizing of the grid-connected PV to improve
the overall system voltage profile through strategic planning [8–10]. Unfortunately, practical location
or size of PV is usually a matter of customer’s choice [4], and the exponential growth of PV integration
may significantly influence the voltage quality of the utility grid without appropriate technical support
for voltage regulation, as the power system operates only within a permitted range of voltage. Namely,
the large penetration of randomly allocated PV demands effective voltage control methods to suppress
system voltage deviation and sustain power system voltage stability [7].

Reactive power control of the PV inverter has been widely proposed to regulate voltage deviation
with respect to high and random allocated PV generation in recent works. Smith et al. [11] and
Turitsyn et al. [12] discussed the benefits of utilizing local inverter reactive power to control voltage
deviation, and proposed several control functions of inverter reactive power with respect to voltage
state. On the contrary, the IEEE 1547 standard for interconnecting distributed resources with a power
system forbids reactive power injection from distributed resources in current state due to safety
concerns [13]. Thus, massive reactive power control of grid-connected PV inverters would be difficult
to realize in a power system with high and random allocated PV generators. Excessive use of reactive
power control would also increase both initial and operating costs. In this paper, we propose a method
for efficient allocation and control of reactive power injection using sparse optimization technique to
realize the voltage regulation with less choice of PV inverters.

In the authors’ previous works [14,15], statistical and worst-case analyses of voltage stability
were conducted under a completely random distribution of PV generators. The authors then pointed
out that the voltage stability may be spoiled under local reactive power control, for some dangerous
choices of PV allocations. These results motivate the authors to consider the importance of allocation of
both PV generators and reactive power controllers, and to consider better allocation of reactive power
controllers with limited control effort. Now, to begin this study, a constrained linear relation between
inverter reactive power change and voltage magnitude change is derived from linearized power flow
equations with PV power generation at the current system operating point [16,17]. Based on the
constrained linear model, the study objective is formulated as an optimization problem to find the best
reactive power injection that minimizes the system voltage variation. Two types of formulations are
compared: the first one is the conventional least-square optimization, while the second one is adopted
from a sparse optimization technique, called the constrained least absolute shrinkage and selection
operator (LASSO) method [18,19]. The constrained LASSO method is characterized by a `1-norm
penalty on its regression coefficients, which is added to the reactive power change in this study. The
`1-norm penalty contributes to the reduction of some estimates of the reactive power change towards
zero and selects fewer PV inverters to interpret the strongest feature of the provided model [20,21].

The resulting sparsity and effectiveness of the constrained LASSO method were compared with
the corresponding results of the constrained least-square method. Analyses of voltage regulation
with these methods were conducted on two benchmark power networks: 39-bus and 57-bus power
systems, under various PV power generation and allocation patterns. The 39-bus and 57-bus power
systems consist of different network topologies, initial system parameters, and size of consumer power
demands. Analysis results on the two systems contributed to fully illustrate the performance of the
proposed method.

This manuscript is organized as follows: Section 2 formulates power flow equations in the PV
integrated power system; Section 3 derives a constrained linear mathematical relation between voltage
change and PV inverter reactive power change from the power flow equations in Section 2, and adapts
the constrained LASSO method based on this linear model to conduct inverter reactive power control
for voltage regulation; Section 4 analyzes the effectiveness of the constrained LASSO method on voltage
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regulation in PV integrated power systems with respect to various amounts of PV generation and
allocation patterns; Section 5 summarizes the conclusions of this study, and discusses our future works.

2. Power Flow Model

To conduct an analysis of voltage regulation with a PV integrated power system, power flow
equations with PV integration are formulated in this section. Assume a power system is composed of
n buses and m generators. Let {1, · · · , n} be the set of indices of all buses; the buses are sorted into the
following three types:

• Reference bus: One generator is selected as the reference bus; let Fref denote the set of bus indices.
• Generator buses: Let Fg denote the set of bus indices, which is composed of (m− 1) buses.
• Consumer buses: Let Fd denote the set of bus indices (the subscript "d" stands for "demand".),

which is composed of (n−m) buses.

The power flow equations can be described as follows [22]:[
∆P
∆Q

]
=

[
P(Θ, V) + Pd − Pg

Q(Θ, V) + Qd −Qg

]
= 0 (1)

Pi(Θ, V) = Vi

n

∑
s=1

Vs(Gis cos θis + Bis sin θis), ∀i ∈ Fd ∪ Fg (1a)

Qj(Θ, V) = Vj

n

∑
s=1

Vs(Gjs sin θjs − Bjs cos θjs), ∀j ∈ Fd (1b)

where Pi and Qj are net real power and reactive power balance at bus i and j. Gis and Bis are the real
and the imaginary parts of the element in the bus admittance matrix corresponding to the ith row and
sth column, and Gjs and Bjs correspond to its jth row and sth column. θis and θjs are the difference
of voltage angle between the respective two index buses. Pd and Qd are vectors of real and reactive
power demand at consumer buses, which are assumed constant and given. Pg and Qg are vectors
of real and reactive power generation at generator buses, Pg is assumed given. V = [V{j}], ∀j ∈ Fd
is the vector of voltage magnitudes; Θ = [θ{i}], ∀i ∈ Fd ∪ Fg is the vector of voltage phase angles.
Equation (1) characterizes the real and reactive power balance for all buses, which is formulated to
solve unknown voltage magnitudes and voltage angles.

When PV generators connect with the power system, power generation of PV flows into the
PV-enabled consumer buses, and excess power injects into the utility grid. The power demand of
consumer buses could be modified in Equation (1) as below:[

Pd
Qd

]
=

[
P
′
d − PPV

Q
′
d −QPV

]
(2)

where PPV and QPV are vectors of real and reactive power from PV generators respectively, P
′
d and Q

′
d

are the original vectors of real and reactive power demand of the consumer buses respectively. Power
flow with PV integration could be solved using Equations (1) and (2). The Matpower software is used
to solve the power flow equations in this study [23].

3. Reactive Power Control Scheme Using Sparse Optimization

In this section, a reactive power control scheme for voltage regulation is proposed, with the aid of
the sparse optimization technique. First, a linearized relation between the reactive power injection
and the resulting voltage change is derived from the original nonlinear power flow model, under the
constraint of constant real power injection. Then, the voltage regulation problem is formulated so as
to minimize the regulation error subject to inverter capability constraints, with two types of penalty
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functions: a standard least-square method is introduced in the Section 3.2, while the constrained
LASSO method is introduced in the Section 3.3 in order to pick up essential inverters for voltage
regulation to suppress the effort of reactive power injection.

3.1. Linearized Model

First, the nonlinear power flow Equation (1) is linearized by taking its gradient at the operating
point, as in the manner of [24]: [

∆P
∆Q

]
= −J ·

[
∆Θ
∆V

]
(3)

J =

[
J11 J12

J21 J22

]
:=

[
∂∆P
∂Θ

∂∆Q
∂Θ

∂∆P
∂V

∂∆Q
∂V

]
(4)

where the Jacobian matrix J in Equation (3) consists of partial derivatives of the power flow Equation (1)
with respect to voltage angle vector Θ and voltage magnitude vector V, evaluated at the current system
operating point.

Assume that the real power demand at the consumer buses and the real power injection at
PV-enabled buses do not change during the voltage regulation period, and the generator buses sustain
their power production at the operating point, the constraint of real power is obtained as:

∆Pi = 0, ∀i ∈ Fd ∪ Fg (5)

substitute Equations (4) and (5) for Equation (3), which gives [16]:

∆Q = [J21 J−1
11 J12 − J22]∆V

= JR∆V (6)

where JR = [J21 J−1
11 J12 − J22].

Similarly, the reactive power demand at consumer buses without PV integration remains the
same at the operating point, thus, reactive power change at consumer buses without PV integration
would be zero. LetH denote the set of PV-enabled bus indices; the constraint is described as:

∆Qr = 0, ∀r ∈ Fd ∩H (7)

Rearrange the sequence of non-PV integrated consumer buses and PV-enabled consumer buses in
Equation (6), and reformulate it as follows [17]:[

0
∆QPV

]
=

[
B11 B12

B21 B22

]
·
[

∆VL

∆VPV

]
= B ·

[
∆VL

∆VPV

]
(8)

where ∆VL and ∆VPV denote vectors of voltage magnitude change at non-PV consumer buses and
PV-enabled consumer buses respectively; ∆QPV represents the vector of reactive power change at
PV-enabled consumer buses; matrix B is the reformulated version of matrix JR. From Equation (8), the
relation between ∆QPV and ∆VPV can be described as:

∆QPV = (B22 − B21B−1
11 B12)∆VPV

= BR∆VPV (9)
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where BR = [B22 − B21B−1
11 B12] . Thus:

∆VPV = B−1
R ∆QPV (10)

based on Equation (10), we regulated the voltage variation with the reactive power change of PV
inverters in this study. Let ∆VPV = Vref −VPV and Vref be the reference voltage.

3.2. Constrained Least-Square Method

A simple and direct approach of reactive power control with the constrained linear model of
Equation (10) is the constrained least-square method, which finds the best injection of reactive power
∆QPV that minimizes the pre-designed response vector of voltage magnitude change ∆VPV in terms of
the sum of the squared residuals. The corresponding optimization problem can be expressed as follows:

min
∆QPV

1
2
‖ ∆VPV − B−1

R ∆QPV ‖2
2 (11a)

subject to: |∆QPV, k| ≤
√

S2
max − SP2

k , ∀k ∈ H (11b)

where Smax is the inverter-apparent power capability, SPk is the real power injection of PV at k-th bus,
and the total number of integrated PV generators is K.

However, the solution to the constrained least-square method tends to contain all non-zero
entries, and all grid-connected PV inverters may need to participate in the reactive power control.
To overcome the drawback of the constrained least-square method, the authors propose the adoption of
the constrained LASSO method to suppress the number of non-zero entries in the optimizing solution.

3.3. Constrained Least Absolute Shrinkage and Selection Operator (LASSO) Method

The original LASSO problem modifies the least square problem by adding the `1-norm penalty to
its regression coefficients, ∆QPV [20,21], which is described as:

min
∆QPV

1
2
‖ ∆VPV − B−1

R ∆QPV ‖2
2 +β ‖ ∆QPV ‖1 (12)

LASSO shrinks some coefficient estimates in ∆QPV towards 0 due to the `1-norm penalty. The `1-norm
penalty could contribute to the reformation of the optimal solutions of the inverter reactive power
set point formed by the least-square method, characterize the covariance of B−1

R , and select the least
essential PV inverters for voltage regulation.

As the reactive power capability of the PV inverter is limited by its physical components,
constrained LASSO is employed in the constrained linear model [18,19], which allows prior constraints
on ∆QPV to be added to the original LASSO problem. The constrained LASSO is demonstrated
as below:

min
∆QPV

1
2
‖ ∆VPV − B−1

R ∆QPV ‖2
2 +β ‖ ∆QPV ‖1 (13a)

subject to: |∆QPV, k| ≤
√

S2
max − SP2

k , ∀k ∈ H (13b)

where β is a tuning parameter that determines the shrinkage of ∆QPV, and thus controls the minimum
required number of PV inverters instead of all integrated PV generators to regulate system voltage
deviation. The constrained LASSO method predicts ∆QPV in a permitted range as well as the
constrained least-square method. The effectiveness of the constrained LASSO method on voltage
regulation in PV integrated power systems is analyzed under various power generation and allocation
patterns of PV.
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4. Benchmark Analysis of the Proposed Method

The 39-bus and 57-bus power systems were taken as benchmark examples to analyze the
performance of voltage regulation schemes. The 39-bus and 57-bus power systems consist of different
network topologies, initial system parameters, and size of consumer power demands. The 39-bus
power system is generally representative of the New England power system, with 10 generators,
46 branches, 29 consumer buses, and large size of power demands allocated among consumer
buses [25]. The 57-bus power system represents a simple approximation of the American power
system, with seven generators, 80 branches, 50 consumer buses, and relatively small size of consumer
power demands sited among consumer buses [26]. The analysis results of the two systems were
compared to evaluate the performance of the LASSO method which resulted in similar tendencies in
the effects of voltage regulation. The 39-bus power system is mainly chosen to demonstrate the results;
the basic information of this system is shown in Figure 1a. Figure 1b shows the associated benchmark
data. The buses from 1 to 29 are consumer buses, where the blue bars indicate real power demand
and the yellow bars are for reactive ones. The buses from 30 to 39 are generator buses, the red bars are
for real power generation and the black bars are for reactive ones. Using the power flow Equation (1),
we can compute the voltage of each bus as shown in Figure 1c. Note that this is computed under the
absence of PV generation. The voltage profile would change in the presence of PV generators, and we
will analyze its influence in the following subsections.

4.1. Performance Indices

Before discussing the analysis results, we introduce three indices—MSE, VSM and RP—to evaluate
the performance of control schemes. MSE is for the precision of voltage regulation, VSM is for the
voltage stability margin and RP is for the control cost.

4.1.1. Mean Square Error of Voltage Magnitudes

In order to measure the achievement of voltage regulation, we first introduce the mean square error.
Let Vref be the reference voltage, and VPV be the resulting voltages in the presence of PV generators
and with voltage regulation under consideration. The mean square error of voltage magnitudes, MSE
for short, is given as:

MSE =
1
n

n

∑
i=1

(VPV, i −Vref, i)
2 (14)

less MSE implies better performance in voltage regulation .

4.1.2. Voltage Stability Margin with Continuation Power Flow Method

Apart from the mean square error of voltage magnitudes, voltage stability margin is induced to
evaluate the voltage stability and system capability of PV integration in a power system with/without
reactive power control schemes. This value is computed with the continuation power flow method.

The continuation power flow method solves power flow solutions with respect to continuous
power change, which characterizes voltage stability with a P–V nose curve starting at some base point
to the voltage stability limit (critical point) [27,28]. Assume x ≡ (Θ, V), the continuous power flow,
CPF for short, could be described as a function of x:

f (x, λ) = g(x)− λb = 0 (15)
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where g(x) represents base power flow at the starting point, λ is a continuous parameter which
expresses the continuation process of power variation in CPF, and b is one vector of power transfer.
While PV power flows into the power system, the elements of b could be composed as:

b =

[
Ptarget − Pbase

Qtarget −Qbase

]
=

[
Pg − (Pd − PPV)− (Pg − Pd)

Qg − (Qd −QPV)− (Qg −Qd)

]
=

[
PPV

QPV

]
(16)

where Pbase, Qbase and Ptarget, Qtarget are the vectors of base power injection and target power injection
in the power system. The effects of PV real and reactive power integration on voltage stability could
be analyzed by varying the value of PPV and QPV. An example of nose curve at one bus i is shown in
Figure 2, which expresses the relation between voltage magnitude and power injection at the bus; Pcp, i
is the voltage stability limit (critical) point, Pop, i is the current operating point.
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Figure 1. Information of a benchmark example: the 39-bus power system.
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Figure 2. P–V nose curve: It illustrates the relation between voltage magnitude change and real power
variation at one bus. λ represents the continuous variation of real power at the bus, which can be
transformed into real power injection at this bus.

In this study, the voltage stability margin is designed as the relative distance between the PV
power integration limit point, Pcp, i and current system operating power, Pop, i, over the current system
operating power, Pop, i. The sum of this value in the power system is defined as the whole system
voltage stability margin here, which is described as:

VSM =
n

∑
i=1

Pcp, i − Pop, i

Pop, i
(17)

clearly from its definition, VSM takes a non-positive value. Therefore, the performance would be better
if VSM becomes smaller (or |VSM| becomes larger).

4.1.3. Net Absolute Reactive Power Generation

Finally, an index is designed to evaluate control cost. The RP is defined as the sum of absolute
reactive power generation at all inverters, namely:

RP =
K

∑
k=1
|QPV, k| (18)

less RP implies better performance. The decrease of RP is expected by using the constrained LASSO
instead of the constrained least-square method, thanks to the sparsity of the optimizing solution. This
will be verified in the next subsection.

4.2. Results

Based on the indices defined above, the effectiveness of voltage regulation schemes was analyzed
by comparing difference among three cases (without any reactive power control, the constrained
least-square method and the constrained LASSO method). The authors also compared two patterns of
PV assignment conditions: one is to uniformly distribute PV generators to all the consumers, the other
is to distribute PV generators in proportion to the consumer demands. Note that, in the following
analyses, the reference voltage Vref is set as the voltage profile in the absence of PV generators.
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4.2.1. Uniform Distribution of PV Generators

In this case, the amount of real PV power generation at each bus is determined as follows. First,
the total real power generation by PV is fixed, in terms of its share ratio to the total consumer demands
(ranging from 5% to 45% in this case). Second, the total amount of PV generation is divided into small
pieces, say a PV piece. (For example, if the total amount is 100 p.u. and the amount of a PV piece is
0.2 p.u., then there will be 500 PV pieces. ) Third, each PV piece is randomly assigned to one of the
consumer buses, under uniform probabilistic distribution. The resulting PV power generation at a
consumer bus is the sum of all the PV pieces assigned to the bus.

Two examples are shown in Figure 3. Figure 3a shows a case where PV power generation is 10%
of the net real power demand, while Figure 3b shows a case where it is 30% of the demand. The blue
bars show PV power generation at each bus, the green bars show reactive power generated by the
least-square control method, and the magenta ones show reactive power generated by the LASSO
method. We roughly notice that there are less magenta bars than green ones. This suggests that the
LASSO method requires fewer reactive inverters than the least-square method.
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Figure 3. Examples of PV power generation at consumer buses with uniform distribution of PV
generators at consumer buses of the 39-bus power system. Net real power generation of PV is 10%
and 30% of the net real power demand at consumer buses respectively, and the corresponding reactive
power set point of PV inverters computed with the constrained least-square method and constrained
LASSO method. (a) Net PV real power generation is 10% of the net real power demand at consumer
buses; (b) Net PV real power generation is 30% of the net real power demand at consumer buses.

Let us go into a more detailed analysis. The share ratio of the net PV generation amount to
the consumer demands was scanned, ranging from 5% to 45%. For each choice of the share ratio,
random distributions were repeated 5 times. The averages of the corresponding indices (MSE, VSM
and RP) over five trials are shown in Figure 4. The average MSE of voltage in Figure 4a shows that
voltage magnitude varies severely with respect to the increase of PV power integration when no
voltage regulation is applied to the PV inverters. Meanwhile, the constrained least-square method and
constrained LASSO method control voltage deviation effectively compared with the no control case.
The average VSM in Figure 4b shows that the voltage stability of the 39-bus power system decreases
with respect to the growth of PV generation, although the PV inverter reactive power control with
the constrained least-square and constrained LASSO method results in the improvement of system
voltage stability compared with the no control case. In addition, the results in Figure 4a,b explain that
the constrained least-square method and constrained LASSO method show very similar effectiveness
on voltage regulation. However, the net absolute reactive power generation from PV, with respect
to the increasing PV power generation plotted in Figure 4c, shows that voltage regulation with the
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constrained LASSO method results in less reactive power generation from PV inverters than with the
constrained least-square method. In other words, the constrained LASSO method succeeds in selecting
the minimum required number of PV inverters to control voltage variation, while maintaining the
same effectiveness on voltage regulation as the constrained least-square method.
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(b) Average VSM
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Figure 4. Uniform distribution of PV generators at consumer buses of the 39-bus power system. Real
power generation from one PV: 0.2 p.u.; Fixed net real power generation by PV, in terms of its share
ratio to net consumer demands, snap results of share ratio ranges from 5% to 45%; MSE of voltage:
Mean square error of voltage from the reference voltage; VSM: Voltage stability margin which evaluates
the voltage stability and system capability of PV integration at the current system operating point; RP:
Net absolute reactive power generation from PV inverters.

4.2.2. On-Demand Distribution of PV Generators

As opposed to the previous case, the authors consider the non-uniform, weighted distribution
of PV generators, meaning that PV generators are only assigned to consumer buses with real power
demand. In this case, the real power generation of PV at each bus is proportional to the consumer real
power demand at the bus, where the PV/demand ratio is equal at each PV-enabled bus. The share
ratio also ranges from 5% to 45%. The authors name this case as on-demand distribution of PV power
generators. The corresponding indices (MSE and RP) are shown in Figure 5. The net absolute reactive
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power generation from PV results in smaller value with the constrained LASSO method than with the
constrained least-square method in Figure 5b. The constrained LASSO method shrinks the amount
of inverter reactive power generation in the case of the on-demand distribution of PV generators.
However, MSE of voltage varies severely with respect to the increase of PV real power generation in
Figure 5a. The main reason is the validity of the linearization technique employed while formulating
the control schemes. The linearization of power flow Equation (1) induces computing error to the
voltage regulation process, and the reactive power constraint shown in Equation (7) accumulates this
error when the number of PV-enabled buses declines. In the 39-bus power system, the number of
PV-enabled consumer buses decreases in the on-demand case, since there is no power demand at some
of the consumer buses. Consequently, the potential voltage regulation points of PV inverters became
fewer, which impacted the precision of voltage regulation (MSE) to a certain extent. However, the
authors consider that proper reference voltage design may suppress the computing error and improve
the performance of MSE; a comprehensive study on this topic is left for future work.
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Figure 5. On-demand distribution of PV power generators at each consumer bus of the 39-bus power
system. PV is assigned only at consumer buses with real power demand. The real power generation of
PV at each bus is proportional to the consumer real power demand at the bus, where the (PV/demand)
ratio is equal at each PV-enabled bus; snap results of the share ratio range from 5% to 45%; MSE of
voltage: Mean square error of voltage from the reference voltage; RP: Net absolute reactive power
generation from PV inverters.

Besides the 39-bus power system, the authors also conducted the same above-mentioned analyses
on an IEEE benchmark power system, called the 57-bus power system. The net absolute reactive power
from PV generators in the uniform distribution case and on-demand case is shown in Figure 6, which
demonstrates the same characteristics as the 39-bus power system. Thus, the authors conclude that the
constrained LASSO method with `1-norm penalty performs sparse optimization of reactive power
generation on voltage regulation in a power system with PV generation.
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Figure 6. Net absolute reactive power generation from PV inverters with the constrained least-square
method and the constrained LASSO method in the 57-bus power system. (a) In case of uniform
distribution of PV generators; (b) In case of on-demand distribution of PV generators.

5. Conclusions

In this study, the authors concentrated on voltage regulation with reactive power control in
a power system with high and random PV generation. A constrained linear model was derived
describing voltage magnitude change and PV inverter reactive power change. The constrained LASSO
method was adapted based on the constrained linear model to optimize the set point of reactive power.
The `1-norm penalty in the constrained LASSO method contributed to the selection of the least essential
PV inverters to minimize system voltage variation. For comparison, the same optimization problem
was formulated with the conventional least-square method. The net absolute reactive power generation
of PV inverters (RP), voltage stability margin (VSM) and mean square error of voltage magnitude
(MSE) were computed to evaluate the optimization results of the constrained LASSO method and the
constrained least-square method. Analyses were conducted on benchmark examples of the 39-bus
power system and 57-bus power system, and the authors succeeded in obtaining sparse solutions for
distributed reactive power control, which enabled the selection of the minimum required number
of inverters for voltage regulation without losing control performance. To further improve voltage
regulation quality, the proper design of the reference voltage in the control schemes, comparison of
other types of local control schemes for inverters (while some of them were examined in our previous
works), and the expansion of the operating range due to linearization approximation, are left for
future research.
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