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Abstract: Accurate visual tracking is a challenging research topic in the field of computer vision.
The challenge emanates from various issues, such as target deformation, background clutter, scale
variations, and occlusion. In this setting, discriminative correlation filter (DCF)-based trackers have
demonstrated excellent performance in terms of speed. However, existing correlation filter-based
trackers cannot handle major changes in appearance due to severe occlusions, which eventually
result in the development of a bounding box for target drift tracking. In this study, we use a set
of DCFs called discriminative correlation filter bank (DCFB) for visual tracking to address the key
causes of object occlusion and drift in a tracking-by-detection framework. In this work, we treat
thxe current location of the target frame as the center, extract several samples around the target,
and perform online learning of DCFB. The sliding window then extracts numerous samples within
a large radius of the area where the object in the next frame is previously located. These samples are
used for the DCFB to perform correlation operation in the Fourier domain to estimate the location
of the new object; the coordinates of the largest correlation scores indicate the position of the new
target. The DCFB is updated according to the location of the new target. Experimental results on
the quantitative and qualitative evaluations on the challenging benchmark sequences show that the
proposed framework improves tracking performance compared with several state-of-the-art trackers.
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1. Introduction

In recent years, numerous visual object tracking (VOT) algorithms have been developed to
overcome the limitations of VOT; these methods provide technical support for practical applications;
this topic is clearly a popular research direction in the field of computer vision, and it has important
applications in various areas, such as intelligent surveillance systems, human–computer interaction,
autonomous driving, unmanned aerial vehicle (UAV) monitoring, video indexing, and intelligent
traffic monitoring [1]. VOT is primarily used to estimate the position of a target in every frame
of each video sequence. Although a major breakthrough has been made in theoretical research,
the design of a robust tracking system encounters numerous difficulties in practical complex scenarios,
such as illumination variation, scale variation, occlusion, deformation, motion blur, rapid motion,
in-plane rotation, out-of-plane rotation, out-of-view condition, background clutter, and low resolution.
The existing algorithm based on discriminative correlation filters (DCFs) causes the bounding box to
deviate from the target when encountered with partial or full occlusion in complex scenarios. In this
study, we focus on the challenge posed by occlusions to object tracking. We address this limitation by
learning the discriminative correlation filter bank (DCFB) through the extracted samples of the current
frame and accurately estimating the location of the target in the next frame. Object tracking algorithms
are generally categorized as either in generation or discriminant mode. Generative trackers [2–4]
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perform tracking by searching for patches most similar to the target and have an effective appearance
model. Conversely, discriminative trackers [5–9] perform tracking by separating the target from the
background. In recent years, the existing DCF-based trackers [10–29] have demonstrated superior
performance in terms of speed on the OTB100 dataset [30]. These trackers are primarily used to learn a
DCF for locating the target in a new frame by means of the coordinates of the maximum correlation
response. An online update is then performed on the basis of the new location. The popularity of
correlation filters for object tracking is due to several important attributes [24,31]. First, the conversion
of the correlation operations in the time domain into element-wise multiplication in the Fourier
domain effectively avoids the convolution operation and reduces the time overhead. Correlation filter
tracking has achieved remarkable results in terms of this principle. Second, the correlation filters
can take advantage of the cyclic shift version of the sample for training. Third, the correlation
filters will consider the target context information to have more discriminative power than the
individual target appearance model. These advantages make DCF more suitable for visual tracking.
Nevertheless, existing DCF-based tracking algorithms have two major limitations. First, a single
tracker is prone to drift in the case of severe interferences, such as deformation, background clutter,
scale variation, and occlusion. Moreover, a single tracker cannot easily recover, which eventually
results in tracking failure. Second, the use of all samples to learn a single DCF cannot effectively
handle a major appearance change and thus cannot deal with partial or full occlusion well. We use a
set of DCFs called DCFB for visual tracking to address the key causes of object occlusion and drift in
a tracking-by-detection framework. Figure 1 shows the general overview of our proposed tracking
framework. By extracting several samples and treating the current position of the target as the center
α for the radius, the extracted samples are sufficient to cover the target itself for training the DCFB.
In the training step, each sample corresponds to a DCF in the DCFB, and the correlation operation
is performed in the frequency domain.The coordinates of the largest correlation scores indicate the
position of the target. The sliding window extracts numerous samples within a large radius γ of
the area where the object in the next frame was previously located. These samples are used for the
previously trained DCFB to perform the correlation operation in the Fourier domain to estimate the
new location of the object. The sample corresponding to the maximum response value is the target to
be tracked.

Figure 1. Overview of the proposed DCFB-based visual tracking algorithm. The operator
⊙

is the
Hadamard product.
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The contribution of this study are as follows. First, we design a DCFB-based tracker with a set of
DCFs. Second, we treat the current location of the target as the center, extract several samples around
the target to ensure that the sample is sufficient to cover the target, and then perform online learning of
DCFB. Third, our algorithm is compared with several state-of-the-art correlation filter-based trackers
in terms of quantitative and qualitative evaluations on the OTB100 dataset.

The rest of this paper is organized as follows. Section 2 presents a summary of related studies.
Section 3 describes our proposed tracking framework. Sections 3.1 provides the baseline tracker.
Sections 3.2 and 3.3 present the DCFB framework and the DCFB tracking algorithm, respectively.
Section 4 provides the experimental evaluations and analysis. Section 5 concludes the paper.

2. Related Works

Research on correlation filter-based algorithms has been extensively conducted in recent years for
the development of VOT, and various correlation filter-based trackers are continuously being used in
the frequency domain for real-time visual tracking mainly due to the low computational overhead.
For these correlation filter-based tracking algorithms, the desired correlation output is designed as
a Gaussian distribution function whose peak coordinates indicate the center of the tracking target,
whereas a region other than the target produces a low response. Bolme et al. [10] developed the
first correlation filter-based tracking algorithm. This algorithm learns an adaptive correlation filter
using the minimum output sum of squared error (MOSSE) for object tracking. This MOSSE filter is
intended to minimize the total squared error between the desired and the actual correlation outputs on
grayscale samples and can be effectively calculated by fast fourier transformation (FFT) and pointwise
operations in the frequency domain. It has achieved real-time performance with a speed of several
hundreds frames per second.

The circulant structure with kernel (CSK) tracking algorithm [13] was proposed to adopt the
kernel trick to improve the efficiency of the correlation filter-based tracker. This algorithm uses
illumination intensity features for visual tracking. The kernelized correlation filters (KCF) tracking
algorithm [14] adopts the histogram of oriented gradients (HOG) feature instead of the illumination
intensity feature to further improve the performance of the tracker. The KCF tracking algorithm [14]
achieves excellent results in terms of speed on the OTB-2013 dataset [32]. For such algorithms,
negative samples are used to enhance the discriminative ability of the track-by-detection framework
while investigating the structure of the circular matrix to improve the tracking efficiency. Previous
studies [12,16–18,26,29,33–38] have developed the KCF algorithm to improve tracking performance.
However, the KCF algorithm cannot achieve online multiscale detection and updating. Discriminative
Scale Space Tracking (DSST) [11] and Scale Adaptive with Multiple Features (SAMF) [33] algorithms
address the shortcomings of KCF.

In VOT2014 [39], DSST and SAMF ranked first and second, respectively. The DSST algorithm
regards object tracking as two independent problems in terms of translation and scale estimations. First,
the HOG feature is used to train a translation correlation filter, which is responsible for detecting object
center translation and then to train another scale correlation filter to detect the object scale change.
fDSST [40] is an extended version of DSST. Danelljan et al. [40] performed feature compression and
scale filter acceleration through principal component analysis (PCA) dimensionality while tracking
performance and frame rate have been significantly improved. In the work, we adopt the DSST
algorithm as our baseline. Readers are referred to [11] for additional details about the DSST algorithm.

The part-based tracking methods [17,29,41,42] use correlation filter to show superior performance
in dealing with occlusion problems during tracking. However, target response adaptation tracking
algorithm [23] also achieves an amazing tracking performance in dealing with the occlusion scenarios
challenge. In [22], the authors first proposed such a tracking framework that the loss function consisting
of the target appearance model and training sample weight is optimized for solving occlusions.
Thereby, this adaptively reduces the number of corrupted samples for accurate tracking. In our work,
the proposed tracking framework is different from the above-mentioned algorithms, and embodies
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the following aspects: First, the target blocks used for training correlation filter are different in the
same frame. In our method, the sample instance instead of the target part to train the tracker; second,
the boundary effect brought by the sample cyclic shift makes the discrimination ability of the correlation
filter become weak and the detected target position is inaccurate in the next frame. Our approach does
not use approximate cyclic shift samples; third, the target positioning method is different in the next
frame. Our method is to find the maximum correlation response of the target sample rather than the
maximum of the joint confidence map of the target parts. A single correlation filter often has poor
discriminative ability under significant occlusion. Therefore, the proposed DCFB tracking framework
effectively solves the occlusion problems in tracking.

The recent advancement of the performance of the DCF-based tracking algorithm is driven by
the reduction of boundary effects [24,25,43] and the adoption of deep features [20,26–28]. When the
target moves rapidly and occlusion, the error samples produced by the boundary effect will cause
the correlation filter to be weakly discriminated, which results in tracking failure. Danelljan et al. [20]
recently introduced a continuous-domain formulation of the DCF called continuous convolution
operators tracking (C-COT), which enables integration of multiresolution deep-feature maps, leading
to top performance in the VOT2016 challenge [44]. The C-COT model is extremely complex that
it sacrifices the real-time capabilities of tracking in exchange for performance standards. Efficient
Convolution Operators (ECO) [28] algorithm is the accelerated version of C-COT that optimizes the
three aspects of model size, sample set size, and update strategy to achieve acceleration; the tracking
speed increases by 20 times compared to that of C-COT. The existing ECO algorithm is the best
correlation filter-based tracking algorithm in terms of performance.

Early DCF-based tracking methods [10–29] demonstrate excellent performance in terms of speed.
However, correlation filter-based tracking methods with deep features [20,26–28,36,45] have been
demonstrated to achieve remarkable performance. The low-level resolution of the deep feature is high,
and the high-level resolution has complete semantic information; the discrimination and invariance
of the feature are strong; thus, the tracking performance is evidently improved. The combination
of correlation filters and convolutional neural networks (CNN) provides a research opportunity for
improving tracking performance. In this work, we develop a novel DCF-based discriminative tracking
algorithm that performs tracking efficiently and effectively.

3. Our Tracking Framework

In this section, we present a visual tracking algorithm based on DCFB. In contrast with existing
DCF-based trackers [10–29] that independently learn a correlation filter on a set of observed sample
patches, the proposed DCFB-based tracking algorithm is calculated with an equal number of observed
samples, which are fully optimized to each target pixel in the frequency domain and improve tracking
performance. Our proposed tracking algorithm can also effectively address object occlusion, which is
a problem encountered in visual tracking. The proposed framework will be discussed in three parts.
The employed baseline tracker and DCFB are presented in Sections 3.1 and 3.2, respectively, and the
DCFB-based tracking algorithm is discussed in Section 3.3.

3.1. Baseline Approach

The correlation filter h is optimized by minimizing the following equation:

ε =

∥∥∥∥∥ d

∑
l=1

hl ∗ f l − g

∥∥∥∥∥
2

+ λ
d

∑
l=1

∥∥∥hl
∥∥∥2

, (1)

where d is the number of feature dimensions, g is the Gaussian function label, f is the training example,
and λ is the regularization term coefficient. The closed solution of Equation (1) is as follows:



Information 2018, 9, 61 5 of 14

Hl =
GFl

d
∑

k=1
FkFk + λ

. (2)

The updated plan is as follows:

Al
t = (1− η)Al

t−1 + ηGtFl
t ,

Bt = (1− η)Bt−1 + η
d
∑

k=1
Fk

t Fk
t

, (3)

where η is a learning rate parameter. The new position of the target is estimated by the maximum
correlation score y on the candidate patch z in a new frame. The maximum correlation score y is
computed as

y = F−1


d
∑

l=1
AlZl

B + λ

 . (4)

3.2. DCFB

Most DCF-based trackers traditionally trains a DCF on a set of observed sample patches in the
first frame. The position of the target is estimated in the sequential frames, and the DCF is updated
according to the new position of the target. However, once the target is partially or fully occluded in
these occlusion scenarios, a single correlation filter cannot easily manage the major changes in the
appearance of consecutive frames, which prevents the accurate updating of the trained correlation
filter. The accumulated error then causes the tracking bounding box to drift the target. We propose
a novel method with a group of trained DCFs called DCFB to address the key causes of object occlusion
encountered in visual tracking. Figure 1 illustrates the entire tracking procedure.

Similar to related studies [11,40,46,47], the DCFB filter can be designed as an objective function
for N training image blocks in a frame, which can be expressed as

h = arg min
h

1
N

N

∑
i=1

∥∥∥∥∥ K

∑
k=1

f k
i ⊗ hk − gi

∥∥∥∥∥
2

2

+ λ
K

∑
k=1

∥∥∥hk
∥∥∥2

2
, (5)

where N is the number of training samples in a frame, K is the number of feature channels, gi is the
desired correlation output associated with the training example fi , and λ is the regularization term
coefficient. The operator ⊗ is the time-domain correlation operation. A expression in the frequency
domain can be formulated as

H = arg min
1
N

N

∑
i=1

∥∥∥∥∥ K

∑
k=1

Fk
i � H̄k − Gi

∥∥∥∥∥
2

2

+ λ
K

∑
k=1

∥∥∥Hk
∥∥∥2

2
, (6)

where F, H, and G denote the Fourier transforms of f , h, and g, respectively. The operator
⊙

is the
Hadamard product, and H̄ is the complex conjugate of H.

This optimization problem can be solved efficiently in the frequency domain where it has the
following closed-form expression:

H =
1
N

N

∑
i=1

ḠiFi
K
∑

k=1
F̄k

i Fi
k + λ

. (7)



Information 2018, 9, 61 6 of 14

The online update program uses Equation (3). The correlation score y at the candidate sample z is
calculated as follows:

y = F−1 {H̄ � Z} . (8)

The new position of the target is estimated by the maximum correlation score y in a new frame.
The main idea of the DCFB-based tracking framework is to use a series of DCF to perform the

correlation operation with the same number of candidate samples in the frequency domain to find the
sample with the maximum correlation response because the center of the sample is the new location
of the target. Numerous candidate samples were obtained from the next frame in order to capture
effective the appearance of object target. Obviously, when target is partially occluded, the effective
appearance of the remaining visible samples can still provide reliable cues for tracking.

In the work, we adopt the DSST algorithm as our baseline tracker. During tracking, the baseline
tracker of each candidate sample has a response map, which is to say, each baseline tracker (DSSTs)
in the correlation filter bank will have a correlation response output, the correlation response of
the remaining visible sample when the occlusion occurs is the maximum value, and the correlation
response of other baseline trackers (DSSTs) value is relatively small, which can help predict the object
position by searching for the location of the maximal value of the map. Based on the newly detected
target position, we update and learn the baseline tracker again to locate the target in the next frame.
Due to the different search radius used to crop the samples in the current frame and the next frame,
the samples used for learning and testing are different. This is explained in Section 3.3. The parameter
values of the baseline trackers (DSSTs) in the correlation filter bank are the same, otherwise, the
tracking system model becomes very complicated in the training and updating phases, which directly
affects the performance of the tracker, and even increases the time overhead. Thus, the parameters are
fixed during tracking for all sequences.

3.3. Tracking Algorithm

In this section, we discuss the DCFB-based algorithm for visual tracking in detail.
At the training stage, `t(x0) is used to denote the location of target at the t-th frame, to crop out a set

of image patches within a search radius α centering at object location `t(x0) with Equation (9), and the
cropped image patches are then used to train the DCFB. The desired output of the candidate samples
is the Gaussian distribution function when the DCFB and the dense samples perform the correlation
operation in the frequency domain. The maximum score of the correlation output corresponding to
the coordinates indicates the location of the target `t(x0). Figure 2 shows an overview of the training:

Xα = {x : ‖`t(x)− `t(x0)‖ < α} . (9)

The location of the target is estimated according as follows:

x0 = arg max
x

(max(y1), max(y2), ..., max(yn)). (10)

At the testing stage, the new position of the target at the (t + 1)-th frame is estimated by using the
DCFB that has been trained in the previous frame.

The position of the target `t(x0) of the previous frame is taken as the center to extract the samples
within a large search radius γ using Equation (11). We then search for the sample of the maximum
confidence map by using the already-trained DCFB with Equation (12). Figure 3 shows an overview of
the testing:

Xγ = {x : ‖`t+1(x)− `t(x0)‖ < γ} , γ� α, (11)

x∗ = arg max
x

(max(y1), max(y2), ..., max(yn)). (12)
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A new position of the target `t+1(x∗) is thus detected in the (t + 1)-th frame. Depending on the
new location of the target `t+1(x∗) at the (t + 1)-th frame , the tracking process will repeat the same
training and testing procedures.

Figure 2. Overview of the training process.

Figure 3. Overview of the testing process.

Algorithm 1 presents a summary of our tracking method. The algorithm consists of two parts,
namely, tracking and updating. During the tracking, the optimal candidate patch is obtained by
applying the maximum confidence function. During the updating, the detected new location of the
target and the correlation filter model are updated.

Algorithm 1 Our tracking method.
Input:
1. Testing sample set Xγ = {x : ‖`t+1(x)− `t(x0)‖ < γ}.
2. Previous position of the target `t(x0).
Output:
1. The sample with the maximum confidence as in Equation (12).
2. Current position of the target `t+1(x∗).
Tracking:
1. Crop out a set of candidate samples using Equation (11).
2. Find the sample with the maximum confidence as in Equation (12).
3. Set `t+1(x∗) to the new location of the target.
Updating:
1. Update target location.
2. Update correlation filter model.

4. Experiments

We evaluate the proposed tracking method with comparison to state-of-the-art trackers on the
OTB100 dataset [30], which contains 100 problematic image sequences. The details of implementation
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are presented in Section 4.1. This section mainly includes experimental settings, comparison of trackers,
and evaluation criteria. We then present the experimental results and analysis in Section 4.2.

4.1. Implementation

Our algorithm is implemented through MATLAB R2017a software platform (MathWorks, Natick,
MA, USA). All experiments are performed on an Intel 4 core i5-3470 3.20GHz CPU with 12 GB RAM.
The parameters are fixed during tracking for all sequences. The regularization parameter λ is set to
0.01, and the learning rate η is set to 0.025, which is equivalent to that of the DSST [11]. We use a search
radius α = 4 to crop the training samples at the current frame and γ = 30 to crop the testing samples
in the next frame. We set a large search radius γ to ensure that the effective feature of the target are
obtained when the target appears again for accurate localization. We use the HOG feature for image
representation. The feature vector is extracted using a cell size of 4× 4, and the number of orientation
bins are set to 9.

The performance of the proposed tracking algorithm is evaluated by comparing it with four
sophisticated tracking algorithms, namely, DSST [11], MEEM [7], STC [19], and KCF [14]. The results
on the performance of these trackers are either provided by the authors on their websites or obtained
through their raw codes with the default setting.

We present the results by using the one-pass evaluation (OPE) with precision and success plots.
The precision plot metric measures the rate of frame within a certain threshold. We report the precision
plot values at a threshold of 20 pixels for all the trackers. The success plot metric measures the overlap
ratio between the tracking bounding box and the ground-truth bounding box. This metric is defined
as area(BT∩BG)

area(BT∪BG)
, where BT and BG are the tracking bounding box and the ground-truth bounding box,

respectively. If the score is greater than 0.5, then the tracking is successful; a higher score indicates better
accuracy. We provide the success plot values at a threshold of 0.5 for all the trackers. The precision
and success plots present the mean results over the OTB100 dataset. Finally, we provide the results
of the quantitative and qualitative evaluations of the proposed tracking algorithm and the tracking
algorithms compared.

4.2. Experimental Results and Analysis

We performed quantitative and qualitative evaluations on the OTB100 dataset. We present the
evaluation results, which were obtained from 100 sequences and occlusion attribute sequences by
means of OPE with precision and success plots, respectively. The details are described below.

4.2.1. Quantitative Evaluation

Figure 4 depicts the overall evaluation results of the proposed tracking algorithm and the other
four trackers compared. Among the trackers, the proposed tracking algorithm exhibits excellent
performance in terms of distance precision (DP) and overlap success.

As shown in Figure 5, our approach performs favorably on DP and overlap success in terms
of occlusion video attributes annotated in the OTB100 dataset. Our tracking algorithm generally
outperforms the comparison trackers in terms of robustness and performance mainly because the large
number of extracted candidate samples can traverse the appearance changes of the target to capture the
target effectively. Existing DCF-based trackers are generally used to train a DCF on a set of observed
sample patches with multifeature channels. However, once the target is partially or fully occluded
in these occlusion scenarios, a single correlation filter can hardly manage consecutive frames with
major appearance changes, which prevents the trained correlation filter from being accurately updated.
The accumulated error then causes the tracking bounding box to drift the target. The proposed tracking
algorithm uses DCFB to perform correlation operation in the Fourier domain with dense prediction
samples. Therefore, the position of the target can be correctly identified.
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Figure 4. Precision and success plots over all sequences using OPE on the OTB100 dataset. The average
score on DP at 20 pixels for each tracker is shown in the legend of the precision plot. The legend of the
success plot contains the area-under-the-curve (AUC) score for each tracker.

Figure 5. Precision and success plots of OPE during occlusion. The legend contains the AUC score for
each tracker.

Tables 1 and 2 present the mean results on our proposed tracking algorithm and comparison
trackers on the 100 benchmark sequences and occlusion sequences, respectively. Our tracking algorithm
outperforms the state-of-the-art algorithms in terms of tracking occlusion. Considering that this study
mainly aims to address occlusion, our proposed tracking algorithm is considered to have relatively
robust performance during tracking. However, the speed is a drawback.

Table 1. Comparison with state-of-the-art trackers on the OTB100 dataset. The results are presented
in terms of mean overlap precision (OP) (%) at an overlap threshold of 0.5, DP (%) at a threshold of
20 pixels, and fps. The optimal results are highlighted in bold.

Metrics Ours DSST MEEM KCF STC

Mean OP 67.7 53.5 61.8 54.5 31.4
Mean DP 78.6 69.3 77.8 68.8 50.7
Mean fps 1.2 15 24 107 148

Table 2. Comparison with state-of-the-art trackers on the occlusion sequences. The results are presented
in terms of mean OP (%) at an overlap threshold of 0.5, DP (%) at a threshold of 20 pixels, and fps.
The optimal results are highlighted in bold.

Metrics Ours DSST MEEM KCF STC

Mean OP 64.3 47.1 58.4 49.9 27.4
Mean DP 74.1 61 73.5 61.5 43.3
Mean fps 1.2 15 24 107 148
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4.2.2. Qualitative Evaluation

We present a qualitative evaluation of our proposed approach in comparison with four
state-of-the-art trackers (i.e., DSST [11], MEEM [7], STC [19], KCF [14]) from the literature in terms of
eight challenges of occlusion sequences in Figure 6. Tracking results show that our tracking algorithm
exhibits relatively robust performance in these partially or fully occluded sequences.

The tracking bounding box of the DSST and STC algorithms drift, which result in tracking
failure when target objects undergo significant appearance change due to heavy occlusion (Basketball
and Jogging1) and rapid motion (coke and Soccer). The proposed approach generally demonstrates
robustness in these occlusion sequences and performs well in tracking objects throughout the sequence.

Figure 6. Qualitative evaluation of our approach in comparison with four state-of-the-art trackers.
Tracking results for eight challenges of occlusion sequences (Basketball, Bolt, coke, David3, Faceocc1,
Jogging1, Soccer, and Woman) from the OTB100 dataset are shown. Our approach outperforms the
state-of-the-art trackers in these occlusion scenarios.
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4.2.3. Experiment Analysis

The experiment in this work focused only on the benchmark OTB100 dataset [30]. Although the
proposed approach demonstrates robustness in these sequences, it was not tested on the VOT2016
datasets [44]; this gap will be addressed in future work. The correlation filter bank tracking framework
designed in our work is mainly that a part of the baseline trackers can effectively obtain the feature of
the target visible parts when the occlusion occurs, so as to achieve the purpose of accurate tracking.
The baseline trackers in the correlation filter bank are the same; otherwise, a large number of different
parameters will be configured in the online training and updating stage, which will directly affect
the tracking performance and increase the time overhead. Therefore, the parameters are fixed during
tracking for all sequences. After estimating the position of the target in the test frame, the baseline
tracker is again trained and updated according to the new target position. Thus, the samples of
retraining the baselines are not the same. Our proposed approach does not address scale variation
and requires further study in terms of model updates. This study aims to achieve effective object
tracking in the context of occlusion challenging scenarios. Once the target is fully occluded, it will
lead to inaccurate estimation of the position and cause drift problem, which is also a difficult problem
to be solved in long-time tracking. In order to solve the problem of recovery in the case of tracking
failure, the next step will be to study the occlusion detection model. Moreover, to ensure that the
target is within the bounding box between consecutive frames, a large number of candidate samples
are obtained with a large search radius, resulting in relatively heavy computational overhead and
eventually sacrificing the speed in exchange for tracking performance.

5. Conclusions

In this study, we present the framework of the DCFB-based tracking algorithm that incorporates
multiple correlation filters into the training and testing stages. Experiments on the OTB100 dataset
show that our approach improves tracking performance in contrast with several state-of-the-art
trackers. Our proposed algorithm performs well in terms of DP and overlap success in the context of
occlusion scenarios (Figure 5). Our work also has several limitations in terms of scale variation and
real-time tracking. Incorporating an advanced scale estimation approach [11] into our current tracking
framework can address scale variation throughout the tracking process. The main reason for slow
tracking is that dense candidate samples obtained within a large search radius for multiple correlation
operations in the frequency domain results in heavy computational overhead when the test frame
comes. In future work, we will study how to select important samples from dense candidate samples
in reducing the computational overhead to improve tracking speed. Another research direction is to
investigate efficient feature fusion strategies used for the framework of the DCFB for visual tracking.
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27. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Convolutional Features for Correlation Filter Based Visual
Tracking. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW),
Santiago, Chile, 7–13 December 2015; pp. 621–629.

28. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 6931–6939.

29. Liu, S.; Zhang, T.; Cao, X.; Xu, C. Structural Correlation Filter for Robust Visual Tracking. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
27–30 June 2016; pp. 4312–4320.

30. Wu, Y.; Lim, J.; Yang, M.H. Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015,
37, 1834–1848.

31. Ma, C.; Xu, Y.; Ni, B.; Yang, X. When Correlation Filters Meet Convolutional Neural Networks for Visual
Tracking. IEEE Signal Process. Lett. 2016, 23, 1454–1458.

32. Wu, Y.; Lim, J.; Yang, M.H. Online Object Tracking: A Benchmark. In Proceedings of the 2013 IEEE Conference
on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.

33. Li, Y.; Zhu, J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration. In Proceedings of
the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 254–265.

34. Mueller, M.; Smith, N.; Ghanem, B. Context-Aware Correlation Filter Tracking. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 1387–1395.

35. Zhang, T.; Xu, C.; Yang, M.H. Multi-task Correlation Particle Filter for Robust Object Tracking. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 4819–4827.

36. Choi, J.; Chang, H.J.; Yun, S.; Fischer, T.; Demiris, Y.; Choi, J.Y. Attentional Correlation Filter Network for
Adaptive Visual Tracking. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4828–4837.

37. Wang, M.; Liu, Y.; Huang, Z. Large Margin Object Tracking with Circulant Feature Maps. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 4800–4808.

38. Chen, S.; Liu, B.; Chen, C.W. A Structural Coupled-Layer Tracking Method Based on Correlation
Filters. In Proceedings of the International Conference on Multimedia Modeling, Reykjavik, Iceland,
4–6 January 2017; Springer: Cham, Switzerland, 2017; pp. 65–76.



Information 2018, 9, 61 14 of 14
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