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Abstract: This work presents a novel methodology to predict large magnitude earthquakes with
horizon of prediction of five days. For the first time, imbalanced classification techniques are applied
in this field by attempting to deal with the infrequent occurrence of such events. So far, classical
classifiers were not able to properly mine these kind of datasets and, for this reason, most of the
methods reported in the literature were only focused on moderate magnitude prediction. As an
additional step, outputs from different algorithms are combined by applying ensemble learning.
Since false positives are quite undesirable in this field, due to the social impact that they might cause,
ensembles have been designed in order to reduce these situations. The methodology has been tested
on different cities of Chile, showing very promising results in terms of accuracy.
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1. Introduction

As the magnitude of an earthquake increases, its destructiveness also does. The need to
predict an earthquake is particularly relevant when its magnitude is large. About one million
earthquakes of magnitude Ms = 2.0 occur annually across the world. However, there are only
seven recorded earthquakes with a magnitude equal to or greater than 9. The low frequency with
which large-scale earthquakes occur is an added difficulty for the study of their prediction, as modeled
in Gutenberg-Richter law.

In machine learning, this problem is widely known as imbalanced classification. A dataset is
imbalanced when there exists one class with one label to which the majority of instances belong to
(typically 70% or higher). Alternatively, a small number of instances are assigned to the other label
(minority), usually the one with higher interest [1]. When the dataset exhibits such data distribution,
standard classification algorithms, which search for a global performance, are not able to accurately
predict instances with minority presence in the dataset. That is, they tend to assign minority instances
to the label containing the majority of instances.

In the case at hand, the minority label is related to the occurrence of large magnitude earthquakes
and the goal is to predict if an earthquake of large magnitude will occur during the next five days.
In order to manage this problem, it is proposed a novel methodology based on algorithms specialized
in imbalanced learning. To carry out this methodology, datasets that collect the seismic activity of
several cities in Chile have been used. Furthermore, ensemble learning has been applied in order to
make more accurate predictions [2], as a result of combining the strengths of the different imbalanced
classifiers here analyzed.

The remainder of the paper is structured as follows. The state-of-the-art is reviewed in Section 2,
in which both general-purpose imbalanced classifiers and approaches particularly designed for
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earthquake prediction are discussed. Section 3 describes the proposed methodology, including the
algorithms evaluated and the ensembles generated. Results for different zones in Chile are reported
in Section 4. Finally, the conclusions drawn from this study are summarized in Section 5.

2. Related Works

The problem of earthquake prediction, especially big magnitude ones, has generated a great
number of approaches, from many different points of view [3].

Alimoradi and Beck [4] presented a method of data-based probabilistic seismic hazard analysis
(PSHA) and ground motion simulation, verified using previously recorded strong-motion data and
machine-learning techniques. It showed the benefits of applying such methods to strong-motion
databases for PSHA and ground motion simulation, particularly in large urban areas, where dense
instrumentation is available or expected.

The use of artificial neural networks (ANNs) has been extensively proposed in recent years [5].
In particular, the authors in [6] estimated the magnitude of the events recorded daily, showing as
the ANNs are a promising technique for earthquake prediction. It is also proved that ANN training on
the global data on earthquakes is much more effective for a local earthquake prediction, than an ANN
training on local data.

Other approaches, like [7], focus on preparing data-sets. In this case, a monitoring system
to prepare machine learning data-sets for earthquake prediction based on seismic-acoustic signals
is proposed due to the difficulty of making predictions given that kind of data. Using on-line
recordings of robust noise monitoring (RNM) signals of anomalous seismic processes (ASP) from
stations in Azerbaijan, an Earthquake-Well Signal Monitoring Software has been developed to construct
data sets.

Another promising approach for the next generation of earthquake early warning system is based
on predicting ground motion directly from observed ground motion, without any information of
hypocenter. Ogiso et al. [8] predicted seismic intensity at the target stations from the observed ground
motion at adjacent stations, employing two different methods of correction for site amplification
factors: scalar correction and frequency-dependent correction prediction, being this last one more
accurate. Frequency-dependent correction for site amplification in the time domain may lead to more
accurate prediction of ground motion in real time.

Multi-step prediction is also present in literature. The authors in [9] proposed a multi-step
prediction method of EMD-ELM (empirical mode decomposition-extreme learning machine) to achieve
the short-term prediction of strong earthquake ground motions. The predicted results of near-fault
acceleration records demonstrate that the EMD-ELM method can realize multi-step prediction of
acceleration records with relatively high accuracy.

Bayesian networks (BNs) were used as a novel methodology in order to analyze the relationships
among the earthquake events in [10]. The authors proposed a way to predict earthquake from a new
perspective, constructing a BN after processing, which is derived from the earthquake network based
on space-time influence domain. Then, the BN parameters are learnt by using the cases which are
designed from the seismic data in the period between 1992 and 2012. At last, predictions are done for
the data in the period between 2012 and 2015, combining the BN with the parameters. The results
show that the success rate of the prediction including delayed prediction is about 65%.

In the context of the imbalanced learning, there are several approaches that have been recently
published addressing different problems. Li et al. [11] presented a method for identifying peptide
motifs binding to 14-3-3σ isoform, in which a similarity-based undersampling approach and
a SMOTE-like oversampling approach are used to deal with imbalanced distribution of the known
peptide motifs, contributing to create a fast and reliable computational method that can be used
in peptide-protein binding identification in proteomics research.

In [12] an optimization model using different swarm strategies (Bat-inspired algorithm and PSO)
is proposed for adaptively balancing the increase/decrease of the class distribution, depending on
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the properties of the biological datasets, which pretends to achieving the highest possible accuracy
and Kappa statistics as well. Tested on five imbalanced medical datasets, that are sourced from lung
surgery logs and virtual screening of bioassay data, results show that the proposed optimization model
outperforms other class balancing methods in medical data classification.

New re-sampling methods also appear in recent literature. A new oversampling method called
Cluster-based Weighted Oversampling for Ordinal Regression (CWOS-Ord) is proposed in [13] for
addressing ordinal regression with imbalanced datasets. It aims to address this problem by first
clustering minority classes and then oversampling them based on their distances and ordering
relationship to other classes’ instances. Results demonstrate that the proposed CWOS-Ord method
provides significantly better results compared to other methods based on the performance measures.

Another algorithm, K Rare-class Nearest Neighbour (KRNN) is proposed in [14], by directly
adjusting the induction bias of the k Nearest Neighbours (KNN). First, dynamic query neighbourhoods
are formed, and to further adjust the positive posterior probability estimation to bias classification
towards the rare class. Results showed that KRNN significantly improved KNN for classification
of the rare class, and often outperformed re-sampling and cost-sensitive learning strategies with
generality-oriented base learners.

The occurrence of a minority class has also been forecasted by means of imbalanced classifiers,
in the field of electricity [15]. The authors used different imbalanced approaches, combined with
certain resampling methods, to forecast outliers in data from Spain’s electricity demand. Reported
results confirmed the usefulness of their approach.

Imbalanced learning is present too on diagnosis of bearings, which generally plays an important
role in fault diagnosis of mechanical system. An online sequential prediction method for imbalanced
fault diagnosis problem based on extreme learning machine is proposed in [16], where under-sampling
and over-sampling techniques plays again an important role. Using two typical bearing fault diagnosis
data, results demonstrate that the proposed method can improve the fault diagnosis accuracy with
better effectiveness and robustness than other algorithms.

Moreover, there are other approaches that applied imbalanced techniques to different data types,
like images [17,18], which involve high dimensional data resulting on robustness methods to address
class imbalance.

In conclusion, imbalanced learning has been widely studied in the literature, particularly in
biology and clinical datasets. Additionally, a vast majority of approaches for earthquake prediction are
focused on events of moderate magnitude. But the use of imbalanced classification for predicting large
earthquakes is not reported in the state-of-the-art. It is then justified the need and novelty of using
these techniques in this research field.

3. Methodology

The methodology designed is carried out as follows: given a dataset, this is rebalanced by applying
a preprocessing algorithm. Then, a classification algorithm is applied to the rebalanced dataset in order
to obtain an accurate result. In this methodology, all the classifiers created in this first stage are named
as simple classifiers since they are created by using only one classification algorithm and one (or none)
preprocessing algorithm. This is only a nomenclature, since it is possible that some classification
algorithms used internally contain some preprocessing. Figure 1 illustrates the general procedure.

Figure 1. General flowchart of the proposed methodology.

As a first stage, the goal is to obtain as many simple classifiers as possible combinations between
preprocessing and classification algorithms exist.



Appl. Sci. 2017, 7, 625 4 of 12

The approaches proposed to solve imbalanced classification problems can be split into two
differentiated groups: algorithm-based approaches that design specific algorithms to deal with
the minority class, and data-based approaches, which apply a preprocessing step to try to balance
the classes before applying a learning algorithm [2]. In this work, a selection of representative methods
of the first group are firstly used, and thereafter, the algorithm with the best performance will be
combined with different preprocessing methods in order to improve the results of the predictions.

Table 1 shows both preprocessing and classification techniques that have been used. Due to
the good behavior exhibited in oversampling methods [2], a number of oversampling-based
preprocessing techniques greater than that ones based on undersampling has been tested. All these
techniques can be found in the KEEL open source java software project [19].

Table 1. Techniques of imbalanced classification.

Preprocessing Classification

Algorithm Type Reference Algorithm Reference

ADASYN Oversampling [20] AdaBoost [21]
ADOMS Oversampling [22] AdaBoostM1 [23]

ROS Oversampling [24] AdaBoostM2 [25]
Safe-Level-Smote Oversampling [26] Bagging [27]

SMOTE Oversampling [28] BalanceCascade [29]
SMOTE-ENN Oversampling [24] C45CS [30]

SMOTE-TL Oversampling [24] C-SVMCS [31]
SPIDER Oversampling [32] DataBoost-IM [33]

SPIDER2 Oversampling [26] EasyEnsemble [29]
CNN Undersampling [34] UnderBagging [35]

CNNTL Undersampling [36] UnderBagging2 [35]
TL Undersampling [36] UnderOverBagging [37]

Once all simple classifiers are created and evaluated, the best of them are selected so as to be
used in the second stage, where ensembles are generated. The selection criterion of the best simple
classifiers of a dataset consists in selecting the 15 classifiers with the highest Area Under the ROC
Curve (AUC) as long as these conditions are satisfied:

• The AUC is greater than 0.6 in order to avoid selecting bad classifiers that could hinder
the generation of good ensembles. In case of having less than 15 classifiers with an AUC greater
than 0.6, select only those fulfilling this criterion.

• There are not selected classifiers with equal AUC in order to avoid selecting identical classifiers that
would generate redundant ensembles. In case of having two or more classifiers with equal AUC,
randomly select only one of them and continue selecting the next classifiers with the highest AUC.

After having selected the best simple classifiers, the methodology generates the ensembles in
the second stage of the methodology so as to obtain classifiers which could improve the performance
of the simple classifiers.

Ensembles are developed to combine several classifiers’ outputs. In this sense, they can be
designed for two different purposes: (1) to increase sensitivity (2) to increase specificity. If option (1)
is desired then an OR ensemble is the most suitable one, since an “1” is predicted if at least one classifier
predicts an “1”. By contrast, if option (2) is desired then an AND ensemble must be applied. Given the
nature of the problem, the second option has been chosen for this work.

These ensembles are the result of the intersection between the predictions of the simple classifiers
which intervene in the generation of them. The intersection of different predictions reduces the number
of false positives, that is, avoids to predict that a large earthquake will occur for the next five days
and it does not really occur. Obviously, a decrease of the large earthquakes properly predicted by
the classification technique is also expected (a sensitivity reduction) but, as discussed in [38], triggering
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a false alarm is quite an undesirable situation. Table 2 illustrates an example about how the prediction
is made when three models are considered. Only if all the three models agree in assigning a “1” to
the sample to be classified, “1” is assigned. In this case, “1” would mean that a large earthquake will
occur for the next five days.

Table 2. Illustrative example of the proposed ensemble, in order to reduce false positives.

Model 1 Model 2 Model 3 Ensemble

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

The ensembles generation is done in an iterative way. First, all ensembles from two simple
classifiers are generated; then, three simple classifiers are used to generate the ensembles and so until
either all existing ensembles from simple classifiers selected in the previous stage are generated or
an tensemble whose performance meets expectations it is found.

During the generation of ensembles, if the probability of correctly predicting a large earthquake
is equal to one for an ensemble then new ensembles are not generated from this one. Thus, generating
useless classifiers whose performance do not improve the best classifier found so far is avoided. It can
be noted that the main consequence of computing the final forecasting by using the intersection
of the predictions between some classifiers is to create more conservative classifiers with less false
positives and a higher probability of correctly predicting large earthquakes, in exchange of a less
number of large earthquakes properly predicted. Therefore, if an ensemble is generated from another
ensemble that predicts correctly large earthquakes with a probability of one, there is no room for
improvement and it is not possible to find a new ensemble that reduces the number of false positives
and increases this probability, making useless this generation.

After generating, evaluating and selecting the best ensembles, the methodology is concluded.
The flowchart describing the full methodology in shown in Figure 2.

Figure 2. Proposed methodology, based on imbalanced classifiers and ensemble learning.
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4. Results

This section reports all the achieved results, after application of the proposed methodology to
different Chilean datasets. First, the quality parameters used to assess the performance of the method
are described in Section 4.1. Second, Section 4.2 describes how data have been preprocessed and
generated, in order to efficiently process imbalanced datasets or, in other words, to process datasets
containing large earthquakes. Then, Sections 4.3–4.5 discuss the results obtained for the cities of
Santiago, Valparaíso and Talca, respectively.

4.1. Quality Parameters to Assess the Model

This section briefly summarizes the parameters used to assess the performance of the method.
First, it is defined what true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) mean in the context of earthquake prediction:

(1) TP. The methodology predicts that a large earthquake is occurring within the next five days and
it does occur.

(2) TN. The methodology predicts that a large earthquake is not occurring within the next five days
and it does not occur.

(3) FP. The methodology predicts that a large earthquake is occurring within the next five days but
it does not occur.

(4) FN. The methodology predicts that a large earthquake is not occurring within the next five days
but it does occur.

From all these statistics, several well-known measures can be calculated. In particular, sensitivity
(Sn), specificity (Sp), positive predictive value (PPV), negative predictive values (NPV), F-measure
or balanced F-score (F), Matthew’s correlation coefficient (MCC), geometric mean (GM) and AUC.
Their formulas are listed below:

Sn =
TP

TP + FN
(1)

Sp =
TN

TN + FP
(2)

PPV =
TP

TP + FP
(3)

NPV =
TN

TN + FN
(4)

F =
2 · PPV · Sn

Sn + PPV
(5)

MCC =
TP × TN − FP × FN√

(TN + FN)(TP + FP)(TP + FN)(TN + FP)
(6)

GM =
√

Sn · Sp (7)

AUC =
1 + Sn + FP/size(Dataset)

2
(8)

4.2. Datasets Description and Generation

The target zones are those introduced in [38]. In it, the authors studied four regions in Chile:
Santiago, Valparaíso, Talca and Pichilemu. However, before applying the methodology to all datasets,
they must be analyzed in order to select only those which could be useful for the application of
imbalanced classifiers. Note that the class indicates whether an earthquake with magnitude larger than
a preset threshold is occurring within the next five days (label “1”) or not (label “0”). In the original
work, the authors set this threshold so that datasets were not imbalanced.
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Therefore, first of all and for every dataset, it is shown in Table 3 the total number of cases, as well
as positive and negative cases from each one of them. Besides, it is shown the ratio of positive cases
over total cases, which determines how imbalanced the dataset is. Mx, with x = 4, 5, 6, 7 means
that the class has been assigned considering magnitudes greater than x. For instance, Pichilemu_M4
indicates data from the region of Pichilemu, with binary classes showing magnitudes larger than 4.0.

Table 3. Imbalance ratio for all datasets initially considered.

Datasets Total Positives Negatives Imbalance

Pichilemu_M4 343 211 132 61.52%
Pichilemu_M5 343 122 221 35.57%
Pichilemu_M6 343 8 335 2.33%
Pichilemu_M7 343 6 337 1.75%

Talca_M4 204 69 135 33.82%
Talca_M5 204 7 197 3.43%
Talca_M6 204 0 204 0
Talca_M7 204 0 204 0

Santiago_M4 480 21 459 4.38%
Santiago_M5 480 0 480 0
Santiago_M6 480 0 480 0
Santiago_M7 480 0 480 0

Valparaíso_M4 979 166 813 16.96%
Valparaíso_M5 979 42 937 4.29%
Valparaíso_M6 979 0 979 0
Valparaíso_M7 979 0 979 0

Second, some datasets are discarded. In particular, all datasets without positive cases are
discarded. Additionally, all datasets which are not imbalanced (positive cases <15%) are discarded
as well.

As the evaluation technique used is the standard holdout, with 66% of cases in training set
and 34% of cases in test set, it is shown in Table 4 how positive and negative cases are distributed
in training and test sets, respectively, for every dataset.

Table 4. Positive and negative cases distribution in training and test sets with 66–34%.

City
Training (66%) Test (34%)

Total Positives Negatives Total Positives Negatives

Pichilemu_M6 228 8 220 115 0 115
Pichilemu_M7 228 6 222 115 0 115

Talca_M5 136 7 129 68 0 68
Santiago_M4 320 9 311 160 12 148

Valparaíso_M5 652 7 645 327 35 292

All datasets without positive cases in the test set are discarded, remaining only two datasets to
which the proposed methodology can be applied (Santiago_M4 and Valparaíso_M5). In order to use
some of the discarded datasets and enlarge the experimentation, it is shown in Table 5 how positive
and negative cases would be distributed if an alternative holdout (50% of cases in training set and
50% of cases in test set) would be used on all those discarded datasets.
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Table 5. Positive and negative cases distribution in training and test sets with 50–50%.

City
Training (50%) Test (50%)

Total Positives Negatives Total Positives Negatives

Pichilemu_M6 172 8 164 171 0 171
Pichilemu_M7 172 6 166 171 0 171

Talca_M5 102 2 100 102 5 97

Considering this new distribution, one of the three previously discarded datasets can be eventually
used (Talca_M5). Finally, Table 6 shows the selected datasets and which evaluation technique has been
used for each one.

Table 6. Selected datasets with size for training and test sets.

City M4 M5 M6 M7

Pichilemu – – – –
Santiago 66–34% – – –

Talca – 50–50% – –
Valparaíso – 66–34% – –

Please note that all processed datasets will be available upon acceptance.

4.3. Santiago M4

Table 7 shows the fifteen selected classifiers that satisfy the selection criterion (combination of
preprocessing and classifier algorithms with AUC greater than 0.6).

Table 7. Fifteen imbalanced classifiers with Area Under the ROC Curve (AUC) > 0.6 in Santiago.

Index Preprocessing Classifier TP FP TN FN Sn Sp PPV NPV F AUC MCC GM

1 SMOTE NNCS 12 57 91 0 1 0.62 0.17 1 0.53 0.81 0.33 0.78
2 OSS OverBagging 8 23 125 4 0.67 0.85 0.26 0.97 0.64 0.76 0.34 0.75
3 SMOTE_TL NNCS 10 51 97 2 0.83 0.66 0.16 0.98 0.53 0.74 0.27 0.74
4 Safe_Level_SMOTE NNCS 11 67 81 1 0.92 0.55 0.14 0.99 0.47 0.73 0.24 0.71
5 OSS OverBagging2 8 33 115 4 0.67 0.78 0.20 0.97 0.58 0.72 0.27 0.72
6 OSS SMOTEBagging 8 34 114 4 0.67 0.77 0.19 0.97 0.58 0.72 0.26 0.72
7 OSS UnderOverBagging 8 35 113 4 0.67 0.74 0.19 0.97 0.57 0.72 0.26 0.71
8 None NNCS 12 91 57 0 1 0.39 0.12 1 0.38 0.69 0.21 0.62
9 CPM OverBagging2 8 46 102 4 0.67 0.69 0.15 0.96 0.52 0.68 0.20 0.68

10 SPIDER2 UnderBagging 7 35 113 5 0.58 0.76 0.17 0.96 0.55 0.67 0.21 0.67
11 CNNTL OverBagging2 9 63 85 3 0.75 0.58 0.13 0.97 0.47 0.66 0.17 0.66
12 CNN UnderBagging2 7 39 109 5 0.58 0.74 0.15 0.96 0.54 0.66 0.19 0.66
13 None BalanceCascade 9 64 84 3 0.75 0.57 0.12 0.97 0.46 0.66 0.17 0.65
14 OSS RUSBoost 12 102 46 0 1 0.31 0.11 1 0.33 0.66 0.18 0.56
15 AHC EasyEnsemble 6 30 118 6 0.50 0.80 0.17 0.95 0.56 0.65 0.19 0.63

Average 9 51.33 96.67 3 0.75 0.65 0.16 0.97 0.51 0.70 0.23 0.68

It stands out that the NNCS and the Bagging classifiers are present in almost all selected simple
classifiers, and OSS in preprocessing algorithms. Nevertheless, these classifiers show a very low PPV.
Therefore, the need of accomplishing the next step, ensembles generation, is justified. Ensembles with
better metrics are shown in Table 8.

It can be seen that PPV and Sp have improved markedly compared to simple classifiers,
reaching values greater than 0.7 for the best ensemble. Global measures like F-Value and MCC
have experimented a good improvement as well. Actually, average values for these parameters are
above 0.7 and 0.5, respectively. In contrast, Sn has worsened (as expected) and GM is slightly lower
(0.67 vs. 0.68), but still satisfactory.
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Table 8. Ensembles generated for Santiago.

Ensemble TP FP TN FN Sn Sp PPV NPV F AUC MCC GM

4, 5, 7, 8, 10, 11, 12, 14, 15 5 2 146 7 0.42 0.99 0.71 0.95 0.75 0.70 0.52 0.64
1, 4, 8, 10, 11, 14, 15 6 3 145 6 0.50 0.98 0.67 0.96 0.77 0.74 0.55 0.70

2, 4, 5, 7, 8, 11, 12, 14, 15 5 3 145 7 0.42 0.98 0.63 0.95 0.73 0.70 0.48 0.64
2, 4, 5, 7, 8, 10, 11, 12, 14 6 4 144 6 0.50 0.97 0.60 0.96 0.76 0.74 0.52 0.70

Average 5.50 3 145 6.50 0.46 0.98 0.65 0.96 0.75 0.72 0.52 0.67

4.4. Valparaíso M5

In this case, only seven simple classifiers have an AUC higher than 0.6. Such algorithms are
shown in Table 9.

Table 9. Seven imbalanced classifiers with AUC > 0.6 in Valparaíso.

Index Preprocessing Classifier TP FP TN FN Sn Sp PPV NPV F AUC MCC GM

1 CNN UnderBagging 27 107 185 8 0.77 0.63 0.2 0.96 0.54 0.70 0.25 0.70
2 CNN EasyEnsemble 30 151 141 5 0.86 0.48 0.17 0.97 0.46 0.67 0.21 0.64
3 SMOTE NNCS 30 155 137 5 0.86 0.47 0.16 0.96 0.45 0.66 0.20 0.63
4 Safe Level NNCS 29 151 141 6 0.83 0.48 0.16 0.96 0.46 0.66 0.19 0.63
5 CNNTL BalanceCascade 32 177 115 3 0.91 0.39 0.15 0.97 0.41 0.65 0.20 0.60
6 Borderline NNCS 25 142 150 10 0.71 0.51 0.15 0.94 0.46 0.61 0.14 0.61
7 TL NNCS 26 157 135 9 0.74 0.46 0.14 0.94 0.43 0.60 0.13 0.59

Average 28.43 148.57 143.43 6.57 0.81 0.49 0.16 0.96 0.46 0.65 0.19 0.63

NNCS algorithm is present in 4 out of the 7 selected classifiers. In general, Sp is low and PPV is
very low. Best generated ensembles are shown in Table 10.

Table 10. Ensembles generated for Valparaíso.

Ensemble TP FP TN FN Sn Sp PPV NPV F AUC MCC GM

1, 2, 3, 4, 6 17 29 263 18 0.48 0.90 0.37 0.94 0.67 0.69 0.34 0.66
1, 2, 3, 4, 5, 6 16 28 264 19 0.46 0.90 0.36 0.93 0.66 0.68 0.33 0.64

1, 3, 4, 6 18 32 260 17 0.51 0.89 0.36 0.94 0.67 0.70 0.35 0.68
1, 2, 3, 5, 6 19 34 258 16 0.54 0.88 0.36 0.94 0.67 0.71 0.36 0.69
1, 3, 4, 5, 6 17 31 261 18 0.49 0.89 0.35 0.94 0.66 0.69 0.33 0.66

1, 2, 3, 6 20 37 255 15 0.57 0.87 0.35 0.94 0.67 0.72 0.36 0.71
1, 2, 4, 6 17 32 260 18 0.49 0.89 0.35 0.94 0.66 0.69 0.33 0.66
1, 3, 6 21 40 252 14 0.60 0.86 0.34 0.95 0.67 0.73 0.37 0.72

Average 18.13 32.88 259.13 16.88 0.52 0.89 0.36 0.94 0.67 0.70 0.35 0.68

PPV and Sp, measures which are very low in simple classifiers, have improved in the ensembles
(almost 100% and 150% improvement, respectively). Global measures are better in general too, being
MCC the one with higher improvement (from 0.19 to 0.35). Only Sn has worsened, which was
an expected behavior due to the restrictive nature of the ensembles generated. Although the ensembles
have improved the simple classifiers, PPV must still be improved for this dataset. Current 0.36 is much
better than former 0.16 but it is still somewhat low.

4.5. Talca M5

Table 11 shows the fifteen selected classifiers following the selection criterion described in Section 3.
Overall, simple classifiers obtained quite good measures, except for PPV, which is a critical measure
in the matter at hand. This is due to the high FP/TP rate reached.
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Table 11. Fifteen imbalanced classifiers with AUC > 0.6 in Talca.

Index Preprocessing Classifier TP FP TN FN Sn Sp PPV NPV F AUC MCC GM

1 ADASYN NNCS 5 7 93 0 1 0.93 0.42 1 0.78 0.97 0.62 0.96
2 CPM C45CS 5 19 81 0 1 0.81 0.21 1 0.62 0.90 0.41 0.90
3 ADASYN Bagging 5 21 79 0 1 0.79 0.19 1 0.60 0.89 0.39 0.89
4 ADASYN UnderOverBagging 5 23 77 0 1 0.77 0.18 1 0.59 0.88 0.37 0.88
5 ADASYN OverBagging 5 23 77 0 1 0.77 0.18 1 0.59 0.88 0.37 0.88
6 SPIDER2 NNCS 4 15 85 1 1 0.85 0.21 0.99 0.62 0.82 0.36 0.83
7 CPM NNCS 4 18 82 1 1 0.82 0.18 0.99 0.60 0.81 0.32 0.81
8 SMOTE-TL EasyEnsemble 4 24 76 1 1 0.76 0.14 0.99 0.55 0.78 0.27 0.78
9 NCL UnderBagging 3 5 95 2 1 0.95 0.38 0.98 0.71 0.78 0.44 0.76

10 SMOTE BalanceCascade 3 6 94 2 1 0.94 0.33 0.98 0.69 0.77 0.41 0.75
11 Borderline-SMOTE UnderBagging2 3 7 93 2 1 0.93 0.30 0.98 0.68 0.77 0.39 0.75
12 NCL Bagging 3 8 92 2 1 0.92 0.27 0.98 0.66 0.76 0.36 0.74
13 TL NNCS 5 49 51 0 1 0.51 0.09 1 0.42 0.75 0.22 0.71
14 RUS BalanceCascade 3 11 89 2 1 0.89 0.21 0.98 0.62 0.74 0.31 0.73
15 CPM AdaBoost 3 12 88 2 1 0.88 0.20 0.98 0.61 0.74 0.29 0.73

Average 4 16.53 83.47 1 1 0.83 0.23 0.99 0.62 0.82 0.37 0.81

Once simple classifiers with good performance are identified (AUC > 0.6), ensembles composed
of two simple classifiers are generated. It has been found that some ensembles reported no FP nor
FN. Obviously, this fact leads to perfect values for all the considered quality measures, and therefore,
new ensembles with a bigger number of simple classifiers have not been generated. These results are
shown in Table 12. In short, although simple classifiers exhibited good performances, they are not
considered reliable enough classifiers because of their low PPV. Ensembles generation have solved this
problem, reaching perfect classification with some ensembles.

Table 12. Ensembles generated for Talca.

Ensemble TP FP TN FN Sn Sp PPV PPV F AUC MCC GM

1, 2 5 0 100 0 1 1 1 1 1 1 1 1
2, 3 5 0 100 0 1 1 1 1 1 1 1 1
2, 4 5 0 100 0 1 1 1 1 1 1 1 1
2, 5 5 0 100 0 1 1 1 1 1 1 1 1
2, 8 4 0 100 1 0.80 1 1 0.99 0.95 0.94 0.89 0.90
1, 9 3 0 100 2 0.60 1 1 0.98 0.90 0.87 0.77 0.78

Average 4.5 0 100 0.5 0.9 1 1 0.99 0.98 0.97 0.96 0.95

5. Conclusions

Large magnitude earthquake prediction has been addressed in this work by means of imbalanced
classifiers and ensemble learning. As a case study, four cities of Chile (Santiago, Valparaíso, Talca and
Pichilemu) have been analyzed, and new imbalanced datasets have been created, using as target label
if a large earthquake is occurring or not within the next five days. During the generation of the new
datasets, it was found that data from Pichilemu could not be used and, therefore, its study has not been
done. Achieved results show meaningful improvement in the three remaining cities when compared
to previous works, especially in terms of specificity and PPV. The main limitation of the study carried
out is the size of the datasets used, being highly desired to use catalogs with longer historical data for
further analysis. Future work is directed towards the generalization of the method, whose promising
performance has been reported, by its application across different seismic zones of the world.
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