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Abstract: Wind energy is increasingly considered one of the most promising sustainable energy
sources for its characteristics of cleanliness without any pollution. Wind speed forecasting is a vital
problem in wind power industry. However, individual forecasting models ignore the significance
of data preprocessing and model parameter optimization, which may lead to poor forecasting
performance. In this paper, a novel hybrid rk, Bts-ABBP (back propagation based on adaptive
strategy with parameters k and Bt) model was developed based on an adaptive boosting (AB)
strategy that integrates several BP (back propagation) neural networks for wind speed forecasting.
The fast ensemble empirical mode decomposition technique is initially conducted in the preprocessing
stage to reconstruct data, while a novel modified FPA (flower pollination algorithm) incorporating a
conjugate gradient (CG) is proposed for searching for the optimal parameters of the rk, Bts-ABBP
mode. The case studies of five wind power stations in Penglai, China are used as illustrative examples
for evaluating the effectiveness and efficiency of the developed hybrid forecast strategy. Numerical
results show that the developed hybrid model is simple and can satisfactorily approximate the actual
wind speed series. Therefore, the developed hybrid model can be an effective tool in mining and
analysis for wind power plants.

Keywords: sustainable energy; wind speed forecasting; ABBP mode; CGFPA algorithm;
data preprocessing

1. Introduction

Wind power has attracted much attention as a renewable energy source because it is a clean
form of energy that is free of contamination and has low operating costs. Wind speed forecasting
plays an important role in the security maintenance of running systems. Accurate and stable wind
power forecasting results can help identify patterns in wind speed fluctuation. Such results are the
pre-condition to making the right electric power operation decisions, allowing the power system
dispatching departments to adjust the scheduling plan in time and consequently reduce the influence
of wind power fluctuation on the effective powering of the grid [1]. It is undisputed that wind power
has gradually become a pillar in the electricity supply field in many places around the world. It is
indicates that in 2014, more than 50 GW of wind power capacity was added, meeting approximately
5% of worldwide electricity demand [2]. Approximately 10% or more of the power in a number of
countries, including Denmark, Portugal, the United Kingdom and Germany, is derived from wind.
Wind power has become the fastest growing renewable energy source, with increasingly mature
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technology and strong support of the Chinese government. In 2014, China reached a total wind power
capacity of 115 GW by adding 23.3 GW capacity, which is the largest amount a country has ever
added within one year [2]. However, due to the uncertainty and variability of wind energy, such as
ramp events, one of the major issues in wind power generation, characterized by sudden and large
changes (increases or decreases) in wind power [3,4], the quality of the generated electric energy and
the power system may be seriously affected when the wind penetration power exceeds a certain level.
In addition, to cope with the intermittent and random nature of wind power, sufficient backup power
is necessary to protect the normal power supply to users, which results in increases in the reserve
capacity of the power system, which in turn increases the operation cost [5]. The viewpoint that wind
power forecasting should be based on observed wind series forecasts rather than the outputs of wind
turbines has been widely acknowledged [6]. Thus, obtaining accurate wind speed forecasts has become
increasingly important [7].

In recent decades, many studies on wind speed prediction have been reported, which can be
divided into four categories [8]: (a) physical models; (b) statistical models; (c) spatial correlation
models; and (d) artificial intelligence models.

Each category of prediction models has its own characteristics [9–14]. Physical models can employ
the physical parameters, such as temperature, pressure and topography, to establish multi-variable
wind speed prediction model with advantages in long-term forecasting. Thus, it is usually developed
by meteorologists and is applied in large-scale area weather prediction [15–17]. The statistical model
always utilizes statistical equations to describe the potential changing law from wind speed samplings
to make prediction [18,19]. As for the spatial correlation model, the spatial relationship of wind speed
in different sites is taken into account. In some conditions, it can have a higher accuracy. However, it is
more complicated compared with the other kinds of models because it needs the detailed records of
sampling time and location information to establish a model [20,21]. With the development of artificial
techniques, some artificial intelligent prediction methods have been mushrooming, including Artificial
Neural Networks [21–27], fuzzy logic methods [20,28], support vector machine [29], Extreme Learning
Machine (ELM) [30,31] etc. For example, Salcedo-Sanz et al. [32] proposed an Evolutionary-SVM
algorithm for a problem of short-term wind speed forecast, where volutionary algorithms such
as Evolutionary Programming or Particle Swarm optimization are used to successfully obtain the
parameters of SVMs. The evolutionary-SVM approach obtained very high quality solutions to the
problem of short-term wind speed forecast from a wind farm in Spain. Ortiz-García et al. [33] proposed
an improvement to an existing wind speed prediction system, using banks of regression Support
Vector Machines (SVMr) for a final regression step in the system. Tests were carried out using real
data from several wind turbines on a wind farm in southeast Spain. A hybridization of the fifth
generation mesoscale model (MM5) with neural networks was presented the in [9] to tackle a problem
of short-term wind speed prediction. Meanwhile in the last years the Extreme Learning Machine
(ELM) approach has been successfully applied to wind speed prediction problems, including a novel
approach for short-term wind speed prediction presented by Salcedo-Sanz et al. [30]. The system
was formed by an extreme learning machine (ELM) and a coral reefs optimization (CRO) algorithm
which was used to carry out future selection to improve the ELM performance. Another approach was
also proposed by Salcedo-Sanz et al. [31] for short-term wind speed prediction. To improve the ELM
performance, a new hybrid bio-inspired solver that combines elements from the recently proposed
CRO algorithm with operators from the Harmony Search (HS) approach, gave rise to the CRO-HS
optimization technique.

To achieve higher forecasting accuracy, some signal processing algorithms, such as EMD
(Empirical Mode Decomposition) [34], EEMD (Ensemble Empirical Mode Decomposition)
algorithm [35] and FEEMD (Fast Ensemble Empirical Mode Decomposition) algorithms [36], were
employed in some of these hybrid models to process the original wind speed data. Wind speed
decomposition, which could decrease the non-stationary feature of the original wind speed data
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to forecasting performance indirectly, is one of the most effective processing algorithms for wind
speed prediction.

BP neural network [27] is a typical artificial neural network. It is essentially a mapping function
from input vector(s) to output vector(s) without knowing the correlation between the data. It can
implement any complex nonlinear mapping function proved by mathematical theories and can
approximate an arbitrary nonlinear function with satisfactory accuracy [37]. After learning the
data trends from historical data, BP can be used effectively to forecast new data. Ren et al. [27]
developed a wind-speed forecasting model based on a BP neural network. To obtain satisfactory
forecasting performance, PSO (particle swarm optimization) was applied to optimize the conventional
BP neural network, and an additional selecting algorithm was adopted to choose the optimal initial
input parameters.

Researchers have tried to enhance the forecasting accuracy of artificial neural networks by using
PSO and GAs (genetic algorithms) [38]. Studies have demonstrated that models optimized using
intelligent optimization algorithms outperform the forecasting performance offered by some single
artificial neural networks. However, the common intelligence optimization algorithms have some
inherent weaknesses, such as storage functions or knowledge memories. In 2012, Yang et al. [39]
proposed an effective novel optimal meta-heuristic algorithm, the flower pollination algorithm (FPA).
It is one of the most promising and efficient algorithms. Yang et al. tested the performance of the
FPA against two other algorithms, a GA and a PSO algorithm. The simulation results show that the
proposed FPA is very efficient and can outperform both the GA and PSO algorithm. The FPA has been
successfully utilized in several fields [40,41].

However, when solving large-scale and complex problems, the slow convergence of the individual
FPA is problematic. To accelerate convergence to the optimal solution, Tahani et al. [42] proposed a
hybrid FPA/SA algorithm that increases the global search and prevents the algorithm from being
trapped in local optimum solutions in order to maximize the reliability of the system and minimize its
cost. Other algorithms based on the FPA have been developed. Dubey et al. [43] presented a dynamic
multi-objective optimal dispatch approach for a wind–thermal system using a hybrid FPA that consists
of the FPA and an evolution (DE) algorithm such that their synergy and joint search capabilities are
fully exploited. The performance of the hybrid FPA was observed to be significantly superior to the
performances of the FPA and DE algorithms individually. In solving numerical problems [44], the
performances of feed-forward neural networks (FNNs) optimized by a FP-GSA outperform both the
FPA and GSA in terms of classification accuracy. Thus, the FPA could be considered as a potential
evolutionary algorithm to obtain better performance in diverse fields. In this paper, with the objective of
obtaining more accurate forecasting results, a new modified FPA based on the conjugate gradient (CG)
method is proposed to improve both exploration and exploitation capacities and to avoid compromised
searching due to the presence of local optima, thus improving the robustness of the FPA.

On the other hand, the hybrid forecasting approach is widely employed in wind-speed
forecasting to generate more accurate and more reliable wind-speed forecasting than individual
models. Liu et al. [45] proposed two hybrid models for wind-speed forecasting: FEEMD-MEA-MLP
and FEEMD-GA-MLP. The results demonstrate that among all the involved methods, the developed
FEEMD-MEA-MLP model offers optimal forecasting performance. In addition, it is indicated that the
fast ensemble empirical mode decomposition algorithm significantly improves the performance of the
artificial neural networks.

It can be observed from the above studies that the hybrid approaches always outperform the
single approaches in terms of forecasting performance. Hybrid modeling is therefore an effective
measure for obtaining high-precision wind-speed forecasts. To obtain more accurate and more stable
wind-speed forecasts, a novel hybrid forecasting model, the FEEMD-CGFPA-ABBP, is proposed in
this paper. This model combines the fast ensemble empirical mode decomposition technique and
the ABBP mode, which uses the adaptive boosting (AB) strategy on BP neural networks and the
hybrid optimization algorithm CGFPA, which consists of the FPA and the conjugate gradient (CG)
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method. Simulation results show that the hybrid model is an efficient and accurate approach for
wind-speed forecasting.

The main contributions of this research are summarized as follows:

(1) Due to the randomness and instability of wind series, a model based on the fast ensemble
empirical mode decomposition technique is utilized to adaptively address the original wind
speed series through decomposition into a finite number of intrinsic mode functions with a
similarity property to modeling.

(2) To overcome the drawbacks of the unstable forecasting results of the BP neural network, the
ABBP model combined with the AB strategy is considered a strong predictor in this paper for
wind-speed forecasting.

(3) A novel modified algorithm, the CGFPA, is developed in the wind-speed forecasting field that,
for the first time, chooses the parameter rk, Bts in the ABBP model for its better convergence
and higher-quality solutions in lower iterations compared with the FPA.

(4) Considering the skewness and kurtosis of the forecasting accuracy distribution, the forecasting
availability, and the bias-variance framework, the Diebold-Mariano test is proposed to validate
the accuracy and stability of the proposed model.

This paper is organized as follows. First, the concept of the models utilized in this paper, including
the fast ensemble empirical mode decomposition technique, AB strategy, BP neural network and a
modified optimization algorithm, the CGFPA, are outlined. Then, the modeling processes of the
methods mentioned above are introduced. Simulation results are then presented and analyzed. The
paper ends with an overall conclusion.

2. Methodology

In this section, the required individual tools will be presented concisely, including the fast
ensemble empirical mode decomposition technique, the BP neural network, the AB technique, the FPA
algorithm and the conjugate gradient method. The proposed hybrid approach will also be described
in detail.

2.1. Fast Ensemble Empirical Mode Decomposition

The fast ensemble empirical mode decomposition technique is the development of the empirical
mode decomposition and ensemble empirical mode decomposition techniques [46] (the details are
shown in Appendix A). However, the empirical mode decomposition technique exhibits a potential
mode-mixing problem that makes it unable to represent the characteristics of the original data. Wu
and Huang developed the ensemble empirical mode decomposition to overcome this problem [46].

2.2. Artificial Neural Network (ANN)

In recent years, ANNs have been successfully utilized in a variety of applications as one of the
most current artificial intelligence techniques [47,48]. In numerous neural network architectures,
the most prevalent training method is the feed-forward neural network with back propagation (BP)
training algorithm [27].

Theoretically, under the condition of appropriate weights and a reasonable structure, any
nonlinear continuous functions can be approximated by the BP neural network. The principle of the
BP neural network is to minimize the mean square error between the actual output value and that of
the network by using the error gradient descent algorithm. The details of BPNN can be found in [27].

2.3. Adaptive Boosting (AB) Strategy

The AB strategy is one of the most excellent boosting algorithms in the big data mining field. It
has a solid theoretical basis and has shown great success in practical applications [49]. Figure 1a shows
the structure of ABBP neural network and the details are shown in Appendix B.
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Figure 1. Structure of the (a) ABBP (back propagation based on adaptive strategy) and (b) CGFPA
(flower pollination algorithm and conjugate gradient) algorithm.

2.4. Optimization Algorithm-CGFPA

[k, Bt] is one of the most important factors directly influencing the calculation in the ABBP
mode, and it thus influences the performance of the models. In this part, a brief introduction to the
principles of the basic Flower Pollination Algorithm (FPA) and the Conjugate Gradient (CG) method is
introduced, followed by the strategy of the combined optimization algorithm CGFPA.

2.4.1. Flower Pollination Algorithm (FPA)

A novel metaheuristic algorithm named the Flower Pollination Algorithm (FPA) was developed
by Yang [50] in 2012 and was first used in wind-speed forecasts. The algorithm is inspired by the
biological process of flower pollination.

The conjugate gradient (CG) method is an effective method between the Newton algorithm (NA)
and the steepest descent algorithm (SDA) that overcomes the shortcomings of these two algorithms,
including the slow convergence of the SDA and the shortcomings of the NA in which the Hesse matrix
and inverse matrix must be stored and computed. The CG algorithm possesses advantages including
a fast convergence rate and secondary termination. [51]. The details of CG and FPA as shown in
Appendix C.

2.4.2. Modified Optimization Algorithm-CGFPA

The CG algorithm is carried out along a group of conjugate directions near the given point to
search. It has abundant optimization information of the local area that can be employed. It also has
a strong local search capability and is thus incorporated into the FPA algorithm to improve its local
search capability and to improve the convergence speed and accuracy.
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In every iteration of the CGFPA algorithm, the population position of a flower after updating is
not directly fed into the next iteration process. Instead, it structures a group of conjugate directions
giter` 1

i through linear combination by employing the gradient giter
i at Xiter

i multiplied by the conjugate
factor βiter and adding it to the negative gradient ´∇Fpxiter`1

i ) of that point. Upon searching in
this group of conjugate directions, the population position Xiter

i of the flower decreases sufficiently
within a predetermined number of iterations. The (iter + 1)th iteration is re-entered after obtaining the
position of the new population, and searching and updating continue, thus greatly enhancing the local
optimization capability of the algorithm. In summary, the CGFPA algorithm organically combines
the CG and the FPA algorithms to deliver strong global optimization and local searching capabilities.
Figure 1b shows the flow chart of the CGFPA algorithm.

The pseudo-code of the CGFPA algorithm is summarized in Algorithm 1.

Algorithm 1: CGFPA (OPTIMIZE_CGFPA).

Parameters:
pswitch —the switch probability.
∇—the gradient operator (total differential in all direction of space).
N—the generation number of Xi.
iter—current iteration number.
Itermax —the maximum number of iteration.

1 /*Initialize a population of N flowers Xi (Xi = xi1,xi2, . . . ,xid) in random positions and initialize iter = 0.*/
2 /*Find the best solution Xbest

i .*/
3 while iter < Itermax do
4 for iÐ1 to N do
5 if rand< pswitch then
6 Do global pollination xiter

i . xiter`1
i “ xiter

i ` L˚pxbest
i ´ xiter

i q

7 Else
8 Do local pollination xiter`1

i . xiter`1
i “ xiter

i `U˚pxiter
j ´ xiter

k q

9 end if
10 /*Evaluate xiter

i , replace xiter
i by xiter`1

i if the newly generation is better.*/
11 end for
12 /*Update the current best solution xiter

i .*/
Calculate giter

i “ ∇Fpxiter
i q.

/*Calculate the gradient (search direction) giter
i .*/

/*Determined searching step αiter by utilize the line search method.*/
Let xiter`1

i “ xiter
i ` αitergiter`1

i and calculate giter`1
i “ ∇Fpxiter`1

i q.
13 iter = iter+1
14 end do
15 end while
16 return Xbest.

3. Hybrid FEEMD-CGFPA-ABBP Model

In this part of the paper, we present the hybrid model FEEMD-CGFPA-ABBP for use in short-term
wind-speed forecasting. First, the fast ensemble empirical mode decomposition technique will be
utilized to decompose original wind-speed signals into several IMFs and one residual item that
represents different frequency bands. The modified CGFPA algorithm will be employed to optimize
the parameter [k, Bt] of the ABBP mode. Thus, the CGFPA-ABBP mode will be established to forecast
each series after decomposition by the fast ensemble empirical mode decomposition technique, after
overcoming the instability of the individual BP neural network. Figure 2 shows the structure of the
proposed hybrid model. The sample data will be applied to train the ABBP mode. The pseudo-code of
the hybrid model is provided in Algorithm 2.
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Algorithm 2: FEEMD-CFFPA-ABBP (MODOL_HYBRID).

Input:
P—the input data matrix
Output:
T—the output data matrix

Parameters:
Ne—the ensemble number of trials.
α—the amplitude of added white noise.
M—the repeat times of trials
Θ—the critical point of updating the weight distribution.
k—the adjustment factor of the weight distribution.
Bt—the normalization factor.
(S, TFt, BTFt, BLFt)—the parameters of the BP neural network.
iterp—the number of weak predictors.
pswitch—the switch probability.
N—the generation number of Xi.
∇—the gradient operator (total differential in all spatial directions).
iter—current iteration number.
Itermax—the maximum number of iterations.

1 IMFj(t)ÐPREPROCESSING_FEEMD(ri(t));
2 /*Perform the following operations for each IMF.*/
3 /*Initialize the weight distribution of m training sample Dt(i) = 1/m, error rate εn = 0.*/
4 Sample normalization. xt = (xt ´ xmin)/(xmax ´ xmin).
5 /*Weak predictor forecasting. By selecting different BP network functions, construct different types of weak predictors.*/
6 for tÐ1 to iter do
7 net = newff (P,T,S,TFt,BTFt,BLFt).
8 /*Obtain the error rate εt of forecast series gt(x) and the distribution weights of the next weak predictor.*/
9 for iÐ1 to m do
10 Find a best value of [k, Bt] by using optimization algorithm.
11 Xbest

i ÐOPTIMIZE_CGFPA(Xi (Xi = xi1, xi2, . . . ,xid))
12 iter = iter + 1.
13 /*[k,Bt] = Xbest.*/
14 end do
15 end do
16 return gout (x).

3.1. Normalization and Preprocessing of Wind Speed Data

To enhance the wind speed accuracy of the ABBP mode, it is necessary to normalize the wind
speed data. The original wind speed data are normalized according to Equation (1).

Xscale, i “
Xi ´ Xmin, i

Xmax, i ´ Xmin, i
(1)

where, Xi represents the raw wind speed data; Xscale,i represents the normalization of the wind speed
data; and Xmax,i and Xmin,i represent the maximum and minimum of the wind speed data, respectively.

3.2. Choice of Fitness Function

In evaluating the performance of the short-term wind-speed forecasting model, the root mean
square error (RMSE) is used as the fitness function. The form of the function is shown in Equation (2),

fitness “

g

f

f

e

1
N

N
ÿ

i“1

pxi ´ x̂iq (2)

where N is the number of wind speed training samples; xi is the actual value of the wind speed; and x̂i
is the fitted value of the wind speed.
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combined with fast ensemble empirical mode decomposition and modified Flower Pollination
Algorithm and Conjugate Gradient) model.

4. Experimentation Design and Results

To validate the effectiveness of the proposed novel hybrid model, this section describes three
experiments based on comparisons with other models, with 10-min wind speed series at five different
wind power stations.

4.1. Study Area and Datasets

Much attention has been given to research and development on renewable energy due to its
high energy conversion and low pollution. As one form of renewable energy, wind-power generation
can develop rapidly because of advantages such as huge volume, regeneration, wide distribution
and no pollution. Wind energy is centralized in the northern, northwestern and eastern parts of
China. This research considers the case of the wind power station in Penglai, Shandong Province.
Figure 3 shows 10-min head wind speed data in January 2011 from five sites, including 1000 samplings
in every site, collected randomly from Penglai. These five groups of data will be employed in the
investigation of the forecasting performance. The 1st–900th samplings will be adopted as a training set
to build forecasting models, and the 901st–1000th samplings will be used as a testing set to validate
the models. The lateral data selection method is used to construct the training and testing sets [40].
The standard deviations are 2.38 (m/s), 3.02 (m/s), 2.58 (m/s), 2.37 (m/s) and 2.87 (m/s), respectively,
which implies that the wind-speed series fluctuates significantly with the minimum/maximum of
Sites 1–5, which are 2.05/16.10 (m/s), 1.96/17.56 (m/s), 2.26/4.86 (m/s), 2.65/12.34 (m/s) and
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3.61/16.55 (m/s), respectively. This result can be intuitively observed from the amplitude and
frequency of the series fluctuations, which can change from very high to low values, and vice versa.Sustainability 2016, 8, 235  9 of 24 
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Figure 3. Description of observations in Penglai, Shandong Province of China. (a) Location of the study
sites; (b) Original wind speed series from five sites.

4.2. Evaluation Criteria of Forecast Performance

Forecasting accuracy is an important criterion in the evaluation of forecasting models. In this
paper, we use four different evaluation criteria, including AE (average error), MAE (mean absolute
error), MSE (mean square error), MAPE (mean absolute percentage error) and ω (promotion rate
of forecasting capability). The forecast validation method chooses the model via the smallest AE,
MAE, MSE and MAPE, and ω is utilized to quantitatively compare the enhancement ability of the
strong predictor.

AE “
1
N

N
ÿ

i“1

pxi ´ x̂iq (3)

MAE “
1
N

N
ÿ

i“1

|xi ´ x̂i| (4)

MSE “
1
N

N
ÿ

i“1

pxi ´ x̂iq
2 (5)

MAPE “
1
N

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

xi ´ x̂i
xi

ˇ

ˇ

ˇ

ˇ

ˆ 100% (6)

where x and x̂ represent the actual value and forecasting value, respectively, and N is the total number
of data used for the performance evaluation and comparison.

ωptq “
ˇ

ˇ

ˇ

ˇ

error1 ´ error2ptq
error1

ˇ

ˇ

ˇ

ˇ

ˆ 100% (7)

where

error1 “
1
N

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

xpiq ´ x̂spiq
xpiq

ˇ

ˇ

ˇ

ˇ

ˆ 100% (8)
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error2ptq “
1
N

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

xpiq ´ x̂tpiq
xpiq

ˇ

ˇ

ˇ

ˇ

ˆ 100% (9)

where, x̂s is the forecast value utilizing a strong predictor, and x̂t is the forecast value using the tth
weak predictor.

4.3. Experimental Setup

In this section, the experiments are divided into three parts: Experiment I, Experiment II and
Experiment III. In Experiment I, the performance of the FEEMD-ABBP model is compared with the
ABBP mode to confirm the significance of the fast ensemble empirical mode decomposition technique in
wind-speed forecasting. In Experiment II, the performance of the hybrid ABBP mode is compared with
10 individual BP neural networks to improve the forecasting accuracy and generalization capability of
the individual neural network. In Experiment III, the proposed hybrid model FEEMD-CGFPA-ABBP
is compared with other forecasting models, namely, FEEMD-ABBP, ABBP, the conventional BP neural
network and the ARIMA model. To confirm the universality of the proposed model, Experiment I,
Experiment II and Experiment III are validated at five different sites.

All algorithms are operated on the following platform: 3.20 GHz CPU, 8.00 GB RAM, Windows 7,
and MATLAB R2012a. The experimental parameters are shown in Table 1. Meanwhile, taking into
account randomness factors and ensuring that the final results are reliable and independent of the
initial weights, we carry out each experiment 50 times and then take the average value.

Table 1. Experimental parameter settings.

Model Experimental Parameters Default Value

BP neural network Neuron number of the input layer 4
Neuron number of the hidden layer 9
Neuron number of the output layer 1

Learning velocity 0.1
Maximum number of training 1200
Training requirement precision 0.00002

FEEMD-CGFPA-ABBP Iteration time 50
Learning rate 0.05

Training requirement accuracy 0.00002
Maximum generation 10,000

Population size 50
P 0.8

Convergence tolerance 10´6

Maximum generation of CGFPA 5

4.3.1. Experiment I: Results of Data Preprocessing

Many methods such as empirical mode decomposition, ensemble empirical mode decomposition
and fast ensemble empirical mode decomposition are available to enhance the forecasting performance
of wind speed series. In this paper, we utilize the fast ensemble empirical mode decomposition
technique, which combines the fast ensemble empirical mode decomposition with a series of selected
computational parameters to guarantee good time performance when addressing the original wind
speed series in the data preprocessing stage. In the fast ensemble empirical mode decomposition stage,
the wind speed series is decomposed into seven IMFs and one residue. Figure 4 shows the original
wind speed series and its subsequences with their frequency by the fast ensemble empirical mode
decomposition technique for the five sites. Table 2 shows the results of the FEEMD-ABBP and ABBP
models in terms of four criteria, AE, MAE, MSE, and MAPE. Figure 5 shows the detailed forecasting
results of the FEEMD-ABBP and ABBP models. Figure 4, Table 2 and Figure 5 indicate the following:
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(1) The extracted IMFs are graphically indicated to illustrate the order of frequency from highest
the lowest. The high- and low-frequency entries are given in the first few and last few IMFs,
respectively. The former represent high noise or time variation in the original wind speed series,
while the latter represent long-period IMFs. In addition, the shifting residue, the last component,
generally represents the trend of the wind speed series. It can be clearly determined that the
sub-series (IMF7) with the lowest frequency indicates that the major fluctuation of the raw wind
speed series is highly similar to the original wind speed series.

(2) When processing the original series using the fast ensemble empirical mode decomposition
technique, different characteristic information can be extracted at different scales, leading to the
strong regularity and simple frequency components of each IMF. The local fluctuations of the
original series can also be fully captured using this method. Moreover, because of the similar
frequency characteristics of each IMF, it is beneficial to reduce the complexity and enhance the
efficiency and accuracy of the ABBP forecasting model.

(3) The bold entries in Table 2 indicate the values of AE, MAE, MSE and MAPE that are the
smallest among the FEEMD-ABBP and ABBP models. In this model comparison, it can be
clearly observed that the fast ensemble empirical mode decomposition technology employed
on the ABBP model performs better than the single ABBP model at all five sites. The MAPEs
achieved by the FEEMD-ABBP model at the five sites are 3.2354%, 3.3234%, 4.2093%, 3.7402% and
3.754%, representing decreases of 1.2912%, 1.2432%, 0.6224%, 1.1648% and 0.6972%, respectively.
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Figure 4. Results of fast ensemble empirical mode decomposition at five sites. Overall, the
FEEMD-ABBP model outperforms the ABBP model by offering better experimental results at all five
sites. The results illustrate the reasonableness and effectiveness of the fast ensemble empirical mode
decomposition technique when applied in the data preprocessing stage in wind-speed forecasting.
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Table 2. Forecasting results of FEEMD-ABBP and ABBP models for five sites.

Model Evaluation Criteria
Sites

Site 1 Site 2 Site 3 Site 4 Site 5

FEEMD- ABBP AE (m/s) 0.0852 0.1864 0.1099 0.1744 0.1200
MAE (m/s) 0.1487 0.3786 0.2267 0.2646 0.2312
MSE (m/s) 0.0302 0.1803 0.0707 0.0895 0.0663

MAPE (m/s) 3.2354 3.3234 4.2093 3.7402 3.7540

ABBP AE (m/s) 0.1075 0.2902 0.1494 0.1905 0.1169
MAE (m/s) 0.2029 0.5442 0.2594 0.3459 0.2764
MSE (m/s) 0.0544 0.376 0.0853 0.1640 0.1034

MAPE (m/s) 4.5266 4.5666 4.8317 4.9050 4.4512
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4.3.2. Experiment II: Strong Predictor (ABBP Model) vs. Weak Predictors

Because the traditional BP neural network usually encounters defects such as easily falling into
local minima and low forecasting precision, we employed the AB strategy integrated into the BP neural
networks as a strong predictor to enhance the forecasting accuracy generalization ability of the neural
network. First, the AB strategy preprocesses the historical data and initializes the distribution weights
of the test data. Second, it selects different hidden layer nodes, node transfer functions, training
functions and network learning functions to construct weak predictors of the BP neural networks and
then repeatedly trains the sample data. In the end, the AB strategy was employed to combine the
different BP neural networks to form a new strong predictor.

The function of the BP neural network constructed in MATLAB is net = newff (P, T, S, TFt, BTFt,
BLFt). Here, P represents the input wind speed data matrix, T represents the output wind speed data
matrix, S represents the nodes of the hidden layer, TFt represents the node transfer function, BTFt

represents the training function, and BTFt represents the network learning function. Upon adjusting
the parameters, including S, TFt, BTFt, and BLFt, different types of BP weak predictors were constructed.
In Experiment II, ten BP neural networks were employed to form the weak predictor series.

Table 3 indicates the promotion rate of the forecasting capability by using the strong predictor
compared with the ten weak predictors. From Table 3, compared with the forecasts of the ten weak
predictors at the five data sites, there are significant improvements for the strong predictor forecasts.
For example, at Site 1, theω of the strong predictor compared with that of weak predictors 1 through
10 is increased by 36.3386%, 35.2563%, 40.2408%, 31.1205%, 20.4267%, 18.3870%, 33.0996%, 33.5240%,
32.4778% and 25.7482%, respectively. The values in bold represent the largest ω among the ten weak
predictors. The largest ω in the Sites 1 through 5 were 40.2408%, 34.9932, 70.6485%, 60.5825% and
86.1126%, respectively. Over all, the strong predictor ABBP mode has the best performance at all
five data sites. There is no weak predictor that offers a low MAPE value at any of the five sites.
Meanwhile, the ABBP mode is more stable than the other weak predictors. Experiment II indicates
the rationality and effectiveness of the ABBP mode based on the AB strategy for application in
wind-speed forecasting.

Table 3. Promotion rate of forecasting capability using a strong predictor.

Site
Promotion Rate of Forecasting Capabilityωp%q

ωp1q ωp2q ωp3q ωp4q ωp5q ωp6q ωp7q ωp8q ωp9q ωp10q

Site 1 36.3386 35.2563 40.2408 31.1205 20.4267 18.3870 33.0996 33.5240 32.4778 25.7482
Site 2 23.0712 31.4124 34.9932 22.0215 25.3227 23.1669 29.1917 24.1436 30.2869 25.4095
Site 3 52.3192 61.4874 47.4144 59.7580 76.4501 61.2227 70.6485 50.1049 49.1766 42.7902
Site 4 43.3198 51.3352 53.5042 60.5825 48.1239 42.3182 49.9652 48.6674 55.7053 44.2340
Site 5 86.0674 80.3252 77.3724 86.1126 80.3361 85.7961 69.6470 81.5168 78.4243 63.8969

4.3.3. Experiment III: Forecasting Comparison Results

In this part, the proposed hybrid model FEEMD-CGFPA-ABBP is compared with other forecasting
models, namely, the FEEMD-ABBP, ABBP, conventional BP neural network and ARIMA models. In
addition, to further evaluate the proposed hybrid model, FEEMD-ELM and FEEMD-SVR is utilized to
compare. The results indicate in Tables 4 and 5 and Figure 6:

(1) The AE, MAE, MSE and MAPE values are calculated for the forecasts, and the corresponding
results are compiled and presented in Table 4. The values in bold represent the AE, MAE,
MSE, and MAPE values that are the lowest among all the forecasting models at the five sites.
It can be clearly seen that the proposed hybrid model has the highest accuracy at all wind
farm sites, with MAPE values of 2.4976%, 2.2495%, 2.2785%, 2.4397% and 2.3483% at Sites 1
through 5, respectively.
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(2) To compare the different performances between two forecasting models, the improvement
accuracy is used, which is defined as

IEC “
EC1 ´ EC2

EC1
ˆ 100% (10)

where EC is the value of one of the forecasting performance evaluation criteria AE, MAE, MSE or
MAPE. EC1 and EC2 denote the values of the evaluation criterion generated by the compared
models (FEEMD-ABBP, FEEMD-ELM, FEEMD-SVR, ABBP, BP neural network, and ARIMA) and
the proposed hybrid model. Table 5 shows the corresponding improvement of the proposed
model. From Table 5, compared with the other forecasting models among all five sites, there
are significant improvements for the proposed model forecast. For example, at Site 2, the
FEEMD-CGFPA-ABBP model leads to 11.9941%, 18.6508%, 2257.8947%, 3589.362%, 62.2130%
and 77.009% reductions in AE, 31.0846%, 35.0349%, 23.6241%, 28.5597%, 71.2193% and 80.0101%
reductions in MAE, 51.0923%, 69.649%, 26.8657%, 36.8195%, 91.9141% and 96.1417% reductions
in MSE, and 32.3128%, 41.4833%, 20.9092%, 23.4968%, 70.5879% and 79.9484% reductions in
MAPE in comparison to FEEMD-ABBP, FEEMD-ELM, FEEMD-SVR, ABBP, BP neural network
and ARIMA, respectively. Additionally, the maximum decreases in MAE, MSE and MAPE for the
proposed hybrid model among all five sites are 82.3511%, 96.7654% and 86.8612%, respectively.

(3) Figure 6 illustrates the evaluation criterion values of the forecasts offered by the proposed hybrid
model and that offered by the other models among the five sites. It is clearly indicated that the
FEEMD-CGFPA-ABBP model can provide high and stable forecasting accuracy.

Table 4. Evaluation criteria of five forecasting models at five sites.

Site Evaluation Criteria
Models

FEEMD-CGFPA-ABBP FEEMD-ABBP FEEMD-ELM FEEMD-SVR ABBP BP ARIMA

Site 1

AE (m/s) 0.0652 0.0852 ´0.017 ´0.0187 0.1075 0.1538 0.3126
MAE (m/s) 0.1262 0.1487 0.1410 0.1615 0.2029 0.3740 0.5422
MSE (m/s) 0.0218 0.0302 0.0253 0.0298 0.0545 0.1930 0.3733
MAPE (%) 2.4976 3.2354 2.7360 2.7669 4.5266 7.9524 11.6348

Site 2

AE (m/s) 0.1640 0.1864 ´0.0076 ´0.0047 0.2902 0.4340 0.7134
MAE (m/s) 0.2609 0.3786 0.3416 0.3652 0.5442 0.9066 1.3054
MSE (m/s) 0.0882 0.1803 0.1206 0.1396 0.3760 1.0905 2.2854
MAPE (%) 2.2495 3.3234 2.8442 2.9404 4.5666 7.6482 11.2185

Site 3

AE (m/s) 0.0602 0.1099 ´0.0066 ´0.0068 0.1494 0.2155 0.3122
MAE (m/s) 0.1218 0.2267 0.1582 0.1691 0.2594 0.5331 0.6358
MSE (m/s) 0.0197 0.0707 0.0259 0.0299 0.0853 0.3699 0.5618
MAPE (%) 2.2785 4.2093 2.9943 3.0380 4.8317 9.9003 11.9585

Site 4

AE (m/s) 0.0922 0.1744 ´0.0227 ´0.0230 0.1905 0.4120 0.5521
MAE (m/s) 0.1711 0.2646 0.2093 0.2247 0.3459 0.6555 0.9086
MSE (m/s) 0.0396 0.0895 0.0460 0.0537 0.1640 0.5676 1.0972
MAPE (%) 2.4397 3.7402 2.8666 2.8800 4.9050 9.4724 12.8022

Site 5

AE (m/s) 0.0699 0.1200 ´0.0189 ´0.0210 0.1169 0.4211 0.3741
MAE (m/s) 0.1472 0.2312 0.1794 0.1912 0.2764 0.6464 0.8339
MSE (m/s) 0.0289 0.0663 0.0332 0.0381 0.1034 0.5399 0.8939
MAPE (%) 2.3483 3.7540 2.6311 3.1857 4.4512 10.4892 13.7014

Table 5. Improvement of accuracy of hybrid model compared with other forecasting models at five sites.

Site Evaluation Criterion
IECp%q

FEEMD-ABBP FEEMD-ELM FEEMD-SVR ABBP BP ARIMA

Site 1

AE (m/s) 23.4742 483.5294 448.6631 39.3488 57.6073 79.1427
MAE (m/s) 15.1259 10.4965 21.8576 37.7902 66.2501 76.7211
MSE (m/s) 27.8250 13.8340 26.8456 59.9822 88.7101 94.1632

MAPE (m/s) 22.8048 8.7135 9.7329 44.8246 68.5938 78.5337
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Table 5. Cont.

Site Evaluation Criterion
IECp%q

FEEMD-ABBP FEEMD-ELM FEEMD-SVR ABBP BP ARIMA

Site 2

AE (m/s) 11.9941 2257.8947 3589.3617 43.4770 62.2130 77.0090
MAE (m/s) 31.0846 23.6241 28.5597 52.0548 71.2193 80.0101
MSE (m/s) 51.0923 26.8657 36.8195 76.5499 91.9141 96.1417

MAPE (m/s) 32.3128 20.9092 23.4968 50.7407 70.5879 79.9484

Site 3

AE (m/s) 45.2218 1012.1212 985.2941 59.7168 72.0808 80.7218
MAE (m/s) 46.2769 23.0088 27.9716 53.0581 77.1543 80.8458
MSE (m/s) 72.1813 23.9382 34.1137 76.9516 94.6863 96.5019

MAPE (m/s) 45.8686 23.9054 25.0000 52.8414 76.9850 80.9462

Site 4

AE (m/s) 47.1522 506.1674 500.8696 51.6149 77.6235 83.3040
MAE (m/s) 35.3134 18.2513 23.8540 50.5232 73.8924 81.1634
MSE (m/s) 55.7549 13.9130 26.2570 75.8552 93.0221 96.3900

MAPE (m/s) 34.7698 14.8922 15.2882 50.2596 74.2435 80.9427

Site 5

AE (m/s) 41.7288 469.8413 432.8571 40.1675 83.3896 81.3023
MAE (m/s) 36.3466 17.9487 23.0126 46.7615 77.2311 82.3511
MSE (m/s) 56.3732 12.9518 24.1470 72.0441 94.6444 96.7654

MAPE (m/s) 37.4465 10.7484 26.2862 47.2446 77.6125 82.8612
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Figure 6. Comprehensive evaluation of forecasting models at five sites. (a) Comparison of MAPE
value of five sites using seven different models; (b) Improvement accuracy of proposed hybrid model
compared with other six forecasting models; (c) Forecasting result and actual values for the five
sites. Overall, the proposed hybrid FEEMD-CGFPA-ABBP model provides the best performance
among all the forecasting models at all five data sites. The minimum MAPE values offered by
the other forecasting models are all larger than that of the FEEMD-CGFPA-ABBP model. The
proposed hybrid model is also more stable than the others considered in this paper. Experiment
III indicates that the FEEMD-CGFPA-ABBP model is a rational and effective model for application in
wind-speed forecasting.



Sustainability 2016, 8, 235 16 of 25

By comparison with the forecasting models employed here, it can be concluded that the proposed
FEEMD-CGFPA-ABBP model can obtain more information reflecting the real wind-speed fluctuations,
leading to a better wind-speed forecasting performance at the five wind farm sites in Penglai,
Shandong Province. Therefore, the proposed hybrid model provides an option for 10 min wind-speed
forecasting and should be taken into consideration when searching for the best 10 min wind-speed
forecasting model.

5. Discussion

In this section, tests related to the proposed hybrid model that would affect the forecasting
performance are discussed. We first present an evaluation metric, namely, the forecasting availability,
to analyze and evaluate the quality of the wind-speed forecasting. The bias-variance framework is
then utilized to evaluate the effectiveness of the forecast models. Furthermore, hypothesis testing is
employed to examine the forecasting performance.

5.1. Forecasting Availability

The forecasting availability can be measured not only by the square sum of the forecasting error
but also by the mean and mean squared deviation of the forecasting accuracy. In certain practical
circumstances, the skewness and kurtosis of the forecasting accuracy distribution needs further
consideration, so the forecast availability is presented to solve this problem.

The 1st-order forecasting availability is the expected forecasting accuracy sequence, and the
2nd-order forecasting availability is the difference between the expectation and the standard deviation
of the forecasting accuracy sequence. We use the forecasting availability to evaluate the wind-speed
forecasts [52]. Table 6 shows that the 1st-order and 2nd-order forecasting availabilities offered by the
proposed hybrid model FEEMD-CGFPA-ABBP outperform those of the other models at the five sites.
For example, at Site 1, the 1st-order forecasting availabilities offered by the hybrid model, FEEMD-ABBP,
FEEMD-ELM, FEEMD-SVR, ABBP, BP neural network and ARIMA are 0.9750, 0.9676, 0.9701, 0.9687,
0.9547, 0.9205 and 0.8837, respectively, while their 2nd-order values are 0.9618, 0.9457, 0.9534, 0.9523,
0.9214, 0.8651 and 0.8143. Thus, the hybrid model is a more valid model than the others.

Table 6. Forecasting availability of five different forecasting models at five sites.

Site Order
Forecasting Availability

FEEMD-CGFPA-ABBP FEEMD-ABBP FEEMD-ELM FEEMD-SVR ABBP BP ARIMA

Site 1
1st-order 0.9750 0.9676 0.9701 0.9687 0.9547 0.9205 0.8837
2nd-order 0.9618 0.9457 0.9534 0.9523 0.9214 0.8651 0.8143

Site 2
1st-order 0.9775 0.9668 0.9709 0.9681 0.9543 0.9235 0.8878
2nd-order 0.9644 0.9480 0.9554 0.9512 0.9310 0.8820 0.8247

Site 3
1st-order 0.9772 0.9579 0.9663 0.9621 0.9517 0.9010 0.8804
2nd-order 0.9633 0.9318 0.9466 0.9412 0.9264 0.8504 0.8093

Site 4
1st-order 0.9756 0.9626 0.9672 0.9632 0.9510 0.9053 0.8720
2nd-order 0.9604 0.9420 0.9499 0.9459 0.9208 0.8511 0.8055

Site 5
1st-order 0.9765 0.9625 0.9671 0.9637 0.9555 0.8951 0.8630
2nd-order 0.9631 0.9431 0.9531 0.9502 0.9292 0.8415 0.7935

5.2. Bias-Variance Framework

The bias-variance framework [53] is utilized to estimate the models’ accuracy and stability, which
are important in evaluating the effectiveness of the wind-speed forecasting models. The error attributed
to bias is taken as the difference between the forecasts of the proposed model and the observed value.
The error attribute to variance is taken as the variability of the forecasting results.

Let xi ´ x̂i be the difference between the actual value xi and the forecasting value x̂i. The

expectation of the forecasting value over all the forecasting data is Epx̂q “
1
N

N
ř

i“1
x̂i, and the expectation
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of the observed value is x “
1
N

N
ř

i“1
xi, where N is the number of data for comparison. The bias-variance

framework is decomposed as follows:

Epx̂´ xq2 “ E rx̂´ Epx̂q ` Epx̂q ´ xs2

“ E rx̂´ Epx̂qs2 ` rEpx̂q ´ xs2

“ Varpx̂q `Bias2px̂q
(11)

Biaspx̂q demonstrates superior forecast accuracy in the model. Similarly, a smaller Varpx̂q indicates
superior stability.

Table 7 shows that the absolute values of the biases of the other models are larger than those
of the FEEMD-CGFPA-ABBP model, which reveals that the proposed model is more accurate. The
variance results demonstrate that the hybrid model is more stable. Thus, it is clear that the proposed
hybrid model has a higher accuracy and stability in wind-speed forecasting and that it performs much
better than the individual models in forecasting.

Table 7. Bias-variance and Diebold-Mariano test of five different models for the average value of
five sites.

Model
Bias-Variance

Diebold-Mariano Statistic Dt
Bias Var

FEEMD-CGFPA-ABBP 0.0539 5.8145 ˆ 10´3 -
FEEMD-ABBP 0.1084 7.8065 ˆ 10´3 1.978135 **
FEEMD-ELM 0.0781 6.6987 ˆ 10´3 1.690754 **
FEEMD-SVR 0.0911 6.9275 ˆ 10´3 1.710435 **

ABBP 0.2611 1.4426 ˆ 10´2 2.663514 *
BP 0.3001 6.3582 ˆ 10´2 2.980389 *

ARIMA 0.4015 8.9901 ˆ 10´2 3.115281 *

* is the 1% significance level; ** is the 5% significance level.

5.3. Test of Hypothesis

The test of hypothesis is a statistical inference method different from the exploratory data analysis,
which may have no hypotheses defined beforehand. The test is applied to determine under what
circumstance a trial would result in a null hypothesis rejection under a level of significance defined
beforehand. Commonly, a dataset obtained by an idealized model is compared against a dataset
achieved by sampling. The comparison is considered statistically significant in case the relationship
between the datasets would be the null hypothesis, which is unlikely to occur based on the significance
level. By using hypothesis testing, we can quantify our level of confidence that the difference is real.

In this part, we examine the efficiency of the proposed hybrid model by applying one of the
hypothesis tests, namely, the Diebold-Mariano test [54]. The hypothesis test is defined as

H0 : E
”

Lpε1
t q
ı

“ E
”

Lpε2
t q
ı

H1 : E
”

Lpε1
t q
ı

‰ E
”

Lpε2
t q
ı

where L(¨) is the loss function, two popular versions of which are MAE and MSE, and ε1
t and ε2

t are
the forecasting errors of the two competing forecasts.

The Diebold-Mariano statistic is convergent in distribution in a normal distribution, which,
based on parameter Dt, is expressed as Dt “ Lpε1

t q ´ Lpε2
t q. Comparing the absolute value of the

Diebold-Mariano statistic with that of the critical value zα/2 of the standard normal distribution
N(0,1), the null hypothesis will be rejected if the Diebold-Mariano statistic falls outside the interval
[´zα/2, zα/2], where α represents the significance level, considering the difference between the
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forecasting ability of two types of model to be significant. Table 7 shows the Diebold-Mariano
value based on the MAE loss function. The result indicates that the Diebold-Mariano values of the
FEEMD-ABBP, the FEEMD-ELM and the FEEMD-SVR models are larger than the upper limits at the
5% significance level, and the Diebold-Mariano values of the ABBP, BP and ARIMA models are all
larger than the upper limits at the 1% significance level. This result also indicates that the proposed
hybrid model is significantly superior to other models, as the upper limits at the different significance
levels are smaller than the Diebold-Mariano statistics in all cases. Thus, it is obvious that the proposed
hybrid FEEMD-CGFPA-ABBP model significantly outperforms the other four models. Consequently,
although the proposed hybrid model is not simple, it is able to satisfactorily approximate the actual
wind speed, and it can be an effective tool in mining and analysis for wind power plants.

6. Conclusions

Today, power systems face growing challenges in maintaining a secure and reliable energy supply.
Wind energy is gradually become one of the fastest growing clean and renewable energy sources
for power generation. To integrate wind energy into the power system, it is important to forecast
wind power generation. Wind speed is affected by various environmental factors, so wind speed data
present high fluctuations, autocorrelation and stochastic volatility, and it is difficult to forecast wind
speed using a single model. In this paper, we proposed a novel hybrid FEEMD-CGFPA-ABBP model
based on AB strategy and CGFPA algorithm. Through the analysis, the conclusions are as follow:

(1) The BP neural network can handle data with nonlinear features, and the AB strategy integrated
with BP neural networks is adopted to overcome the uncertainty of the outcomes that can be
attributed to the randomness of the initialization of the BP neural networks.

(2) The modified CGFPA algorithm is utilized to optimize the parameters in the ABBP mode.
(3) The experimental study of the wind-speed forecasting in five sites in Penglai, Shandong Province,

China, effectively proves that the proposed hybrid model has higher precision and stability than
FEEMD-ABBP, ABBP and other forecasting models.

Thus, the proposed FEEMD-CGFPA-ABBP model, which has high precision, is a promising model
for use in the future. This hybrid model can also be applied in many other fields, such as tourism
demand, product sales, power load, and traffic-flow forecasting.
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Appendix A

Appendix A1. Empirical Mode Decomposition

Definition 1. Time series x(t) can be decomposed and expressed using the formula

xptq “
n
ÿ

i“1

IMFiptq ` rnptq (A1)

where IMFi (t), (i = 1,2, . . . ,n) represents the intrinsic mode functions (i.e., local oscillation) decomposed
by empirical mode decomposition, and rn (t) is the nth residue (i.e., local trend).

Definition 2. The stoppage criterion is defined as

SDj “

T
ÿ

t“0

ˇ

ˇhi,j´1ptq ´ hi,jptq
ˇ

ˇ

2

“

hi,j´1ptq
‰2 (A2)
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The sifting process stops when a pre-given value is larger than SDj. The process of decomposition
is over when the value of SDj is between 0.2 and 0.3.

The pseudo-code of the empirical mode decomposition technique is provided in Algorithm A1.

Algorithm A1: Empirical Mode Decomposition (PREPROCESSING_EMD).

Parameters:
δ—a random number between 0.2 and 0.3.
T—the series length.

1 /*Initialize residue r0(t) = x(t), i = 1, j = 0; Extract local maxima and minima of ri´1(t).*/
2 for j = j + 1 do
3 for iÐ1 to n do
4 while (SDj < δ) do
5 Calculate the upper envelope Ui (t) and Li (t) by cubic spline interpolation.
6 Mean envelope mi (t) = [Ui (t) + Li (t)]/2; the ith component ri (t) = ri´1(t) ´ mi (t).
7 /*ri,j(t) = hi(t); m i,j(t) be the mean envelope of ri,j(t).*/
8 end while
9 Calculate ri,j (t) = ri,j´1(t) ´ mi,j´1(t)
10 /*Let jth IMF as IMFi(t) = ri, j(t).*/
11 /*Update the residue ri(t) = ri´1(t) ´ IMFi(t).*/
12 end do
13 end do
14 return x(t)

Appendix A2. Ensemble Empirical Mode Decomposition

Definition 1. The corresponding IMF ensemble empirical mode decomposition based on empirical
mode decomposition is expressed as

IMFjptq “
1

Ne

Ne
ÿ

i“1

cijptq (A3)

where Ne is the ensemble number and cij(t) is the jth IMF of the ith added noise series.
Definition 2. The influence of the added white noise can be determined by the rule

εn “
ε

?
Ne

(A4)

where εn is the standard deviation of the error, defined as the difference between the corresponding
IMFs and the input signals, and ε is the amplitude of the added white noise.

The pseudo-code of the ensemble empirical mode decomposition technique is provided in
Algorithm A2.
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Algorithm A2: Ensemble Empirical Mode Decomposition.

Parameters:
Ne—the ensemble number of trials.
α—the amplitude of added white noise.

1 /*Obtain series ri(t) by adding white noise series N = {n1, n2, . . . , nNe} to series y(t).*/
2 for j = j + 1 do
3 for iÐ1 to n do
4 ri (t) = y(t) + αni (t).
5 cij(t)ÐPREPROCESSING_EMD(ri ( t ) );
6 /* Repeat M trials.*/
7 end do
8 end do
9 Calculate the corresponding IMFs of the decomposition IMFj(t)
10 return IMFj(t)

Appendix A3. Fast Ensemble Empirical Mode Decomposition

The pseudo-code of the fast ensemble empirical mode decomposition technique is provided in
Algorithm A3.

Algorithm A3: Fast Ensemble Empirical Mode Decomposition (PREPROCESSING_FEEMD).

Parameters:
Ne—the ensemble number of trials.
α—the amplitude of added white noise.
M—the number of repeats of each trial

1 foreach timesÐ1 to M do
2 /*Obtain series ri(t) by adding white noise series N = {n1, n2, . . . , nNe} to series y(t).*/
3 for j = j + 1 do
4 for iÐ1 to n do
5 ri (t) = y(t) + αni (t).
6 cij(t)ÐPREPROCESSING_EMD(ri ( t ) );
7 /*sampling data at some points of series ri(t).*/
8 end do
9 end do
10 end for
11 Calculate the corresponding IMFs of the decomposition IMFj(t)
12 return y(t) =

řn
j IMFjptq

Appendix B

Appendix B1. Adaptive Boosting (AB) Strategy

Definition 1. The main goals of the AB strategy are to (1) Establish weak predictors with the same
weight given to each test sample; (2) Adjust the test sample weights according to the results of the
forecasting precision. The sample weights of low forecasting accuracy are strengthened, and those of
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high forecasting accuracy are abated; (3) After constant adjustment, we end up with a group of weak
predictor sequences and their weights; the weak predictor series are combined into a strong predictor.

Definition 2. The error rate of each weak predictor’s forecast gt (x) is expressed as

εt “

m
ÿ

i“1

Dtpiq (A5)

where εt and Dt (i) represent the error rate and the weight distribution, respectively, and m is the
training sample number.

Definition 3. The test sample weight after adjustment is

Dtpiq “

#

kDtpiq σ ą Θ
Dtpiq σ ď Θ

(A6)

Dt`1piq “
Dtpiq

Bt
(A7)

where k represents the adjustment factor of the weight distribution, Bt represents the normalization
factor, and σ is the training error. Θ is set as 10´4.

Definition 4. The strong predictor is

goutpxq “
iter
ÿ

t“1

"ˆ

log
1
ε2

t

˙

¨ gtpxq
*

{

iter
ÿ

t“1

ˆ

log
1
ε2

t

˙

(A8)

where iter is the number of weak predictors.

Appendix B2. ABBP Mode

The algorithm of the ABBP mode is outlined as Algorithm B1.

Algorithm B1: ABBP (PREDICT_ABBP).

Input:
P—the input data matrix
Output:
T—the output data matrix

Parameters:
Θ—the critical point of updating the weight distribution.
k—the adjustment factor of weight distribution.
Bt—the normalization factor.
(S, TFt, BTFt, BLFt)—the parameters of BP neural network in MATLAB.
iter —the number of weak predictors

1 /*Initialize the weight distribution of m training sample Dt(i) = 1/m, error rate εn = 0.*/
2 Sample normalization. xt = (xt ´ xmin)/(xmax ´ xmin).
3 /*Weak predictor forecasting. By selecting different BP network functions, construct different types of weak predictors.*/
4 for tÐ1 to iter do
5 net = newff (P,T,S,TFt,BTFt,BLFt).
6 /*Obtain the error rate εt of forecast series gt(x) and the distribution weights of the next weak predictor.*/
7 for iÐ1 to m do
8 /*Adjustment of test sample data weights.*/

Dt`1(i) = Dt (i) / Bt.

Dtpiq “

#

kDtpiq,σ ą Θ
Dtpiq,σ ď Θ

9 /*Output strong predictor function.*/
10 end do
11 end do
12 return gout (x)
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Appendix C

Appendix C1. Flower Pollination Algorithm (FPA)

Definition 1. (1) Global pollination process: Biotic pollination is a cross-pollination process that
can be regarded as global, as the movement of pollinators carrying pollen occurs via Lévy flights;
(2) Pollination behavior: The process of abiotic or self-pollination is the source of local pollination;
(3) Flower constancy: The constancy of the flower is equal to the probability of reproduction, which is
proportional to the similarity of the flowers involved; (4) p P [0,1] is the switch probability, which is
utilized to control the local and global pollination.

Definition 2. Formulate the algorithm as follows:
(1) The global pollination process and flower constancy are represented as

xiter`1
i “ xiter

i ` L˚pxbest
i ´ xiter

i q (A9)

where xiter
i is pollen i at iteration iter and xbest

i is the best solution. L* represents Lévy flights, which are
used to represent the movements of the pollinators. The Lévy distribution represents the strength of
the pollination. λ is the distribution factor and ranges from 0.3 to 1.99 [37]. The Lévy distribution is
represented as

L˚ „
λΓpλqsinpπλ{2q

π
¨ s´p1`λq ps ě s0 ą 0q (A10)

In Equation (A10), Γ (λ) is the standard gamma function. s is indicated in Equation (A11), where
rnd1 and rnd2 are two random numbers obeying a Gaussian distribution.

s “
rnd1

|rnd2|
1{λ

; rnd1 „ Np0, σ2q, rnd2 „ Np0, 1q (A11)

σ2 “

"

Γp1` λq

λΓ rp1` λq{2s
¨

sinpπλ{2q
2pλ´1q{2

*1{λ
(A12)

(2) The local pollination process and flower constancy are represented as:

xiter`1
i “ xiter

i `U˚pxiter
j ´ xiter

k q (A13)

where, xiter
j and xiter

k are pollen from different flowers of a plant of the same family. U* obeys a uniform
distribution over [0, 1].

(3) According to Ref. [38], we set the best value of the switch probability pswitch to be equal to 0.8.

Appendix C2. Conjugate Gradient

Definition 1. The basic idea of the CG algorithm is to combine the conjugate with the SDA,
constructing a group of conjugate directions by utilizing the gradient at a given point. That is, when
the dimension of a function is g, it is necessary to produce g search directions that are linearly
independent and mutually conjugated. The search direction is expressed as

giter`1
i “

#

´giter
i iter “ 0

´giter
i ` βitergiter´1

i iter ě 0
(A14)

where the factor of the conjugate is

βiter “
||∇Fpxiter

i q||2

||∇Fpxiter´1
i q||

2 (A15)
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where, F(x) is the objective function, g0
i “ ∇Fpx0

i q.
This method has the characteristics of a second termination (i.e., it will reach the minimum point

after limited iterations when used in a secondary convex function).
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