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Abstract: Recently, sparse unmixing (SU) of hyperspectral data has received particular attention for
analyzing remote sensing images. However, most SU methods are based on the commonly admitted
linear mixing model (LMM), which ignores the possible nonlinear effects (i.e., nonlinearity). In this
paper, we propose a new method named robust collaborative sparse regression (RCSR) based
on the robust LMM (rLMM) for hyperspectral unmixing. The rLMM takes the nonlinearity into
consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse
property. The RCSR simultaneously takes the collaborative sparse property of the abundance and
sparsely distributed additive property of the outlier into consideration, which can be formed as
a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM) is
used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic
datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving
the hyperspectral SU problem compared with the other four state-of-the-art algorithms.

Keywords: hyperspectral data; outlier; robust collaborative sparse regression (RCSR); robust LMM
(rLMM); sparse unmixing (SU)

1. Introduction

Over the last few decades, hyperspectral imaging (HSI) has been receiving considerable
attention in different remote sensing applications such as spectral unmixing, object classification and
matching [1–5]. Due to insufficient spatial resolution of the imaging sensor and mixing effects of the
ground surface, mixed pixels are widespread in hyperspectral images, which leads to difficulties for
conventional pixel-level applications [6–8]. Therefore, spectral unmixing is an essential step for the
deep exploitation of hyperspectral image, which decomposes mixed pixels into a collection of pure
spectra signatures, called endmembers, and their corresponding proportions in each pixel, called
abundances [9,10].

When considering the problem of unmixing hyperspectral images, most of the literature in the
geoscience and remote sensing areas adopts the widely used linear mixing model (LMM) due to the
relative simplicity and straightforward interpretation. If the spectral endmembers are selected from
a library containing a large number of spectral samples available a priori [11,12], then finding the
optimal subset of signatures to best model the mixed pixel in the scene leads to a sparse solution [13].

Sparse unmixing (SU) assumes that the observed image can be formulated as finding the
optimal subset of pure spectral signatures from a prior large spectral library, and it can typically be
formulated as a linear sparse regression problem. To solve this problem, Bioucas et al. proposed
sparse unmixing by variable splitting and augmented Lagrangian (SUnSAL) [14], which ignores
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the spatial information. Iordache et al. proposed SUnSAL and total variation (SUnSAL-TV) [15]
to exploit the spatial information for SU, which can obtain better unmixing performance than
SUnSAL. In addition, some greedy algorithms have been developed for SU, such as the orthogonal
matching pursuit (OMP) [16] and subspace matching pursuit (SMP) [17]. Moreover, Iordache et al.
proposed collaborative SUnSAL (CLSUnSAL) [18], which improves the unmixing results by adopting
the collaborative (also called “multitask” or “simultaneous”) sparse regression framework. The
above-mentioned unmixing algorithms are all based on the commonly admitted linear mixing model
(LMM). However, the LMM may be not valid in many situations, for example, when there are
multi-scattering effects or intimate interactions, and nonlinear mixing models (NLMMs) provide an
alternative to overcoming the inherent limitations of the LMM [19,20].

NLMMs have been proposed in the hyperspectral image processing and can be divided into
two main classes [21]. The first class of NLMMs consists of physical models based on the nature of
the environment. These models include the bidirectional reflectance based model [22], Fan bilinear
model (FM) [23], generalized bilinear model (GBM) [24], modified GBM (MGBM) [25] and multilinear
mixing (MLM) model [26]. The second class of NLMMs allows for more flexible models for other
approximating physics-based models. These flexible models include the neural network model [27],
kernel model [28,29], post-nonlinear model [30] and so on. However, one major drawback of
these NLMMs is that they require a specific form of nonlinearity, which makes them limited in
practice [31]. Févotte et al. proposed the robust LMM (rLMM) [31] to overcome the above mentioned
problems, which does not require for specification of any analytical form of the nonlinearity. Instead,
nonlinearities are merely treated as outliers.

In this paper, to make the SU more flexible for all kinds of HSI unmixing in practice, we
propose a new SU method called robust collaborative sparse regression (RCSR) based on rLMM.
The RCSR simultaneously takes the collaborative sparse property of the abundance and the sparsely
distributed additive property of the outlier into consideration, which can be formed as a robust joint
sparse regression problem. The RCSR can be solved by the inexact augmented Lagrangian method
(IALM) [32].

The main contribution of this work lies in that we propose a new SU method named RCSR
based on the rLMM, which can be solved by the IALM. Experiments on both synthetic datasets and
real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the SU problem
compared with the other four state-of-the-art algorithms.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the related
work rLMM and describe the proposed RCSR for SU. In Section 3, we evaluate the performances of
the proposed RSUs and the other four state-of-the-art algorithms on the synthetic datasets and real
HSI, and conclude this paper in Section 4.

2. Robust Collaborative Sparse Regression

The LMM assumes that the spectral response of a pixel in any given spectral band is a linear
combination of all of the endmembers presented in the pixels at the respective spectral band. The
LMM can be written as follows:

y = Ax + n, (1)

where y denotes a D× 1 vector of observed pixel spectra in a hyperspectral image, with D denoting
the number of bands, A = [a1, ..., aD] ∈ RD×M denoting the endmember signatures, with M denoting
the number of endmembers, x ∈ RM×1 the abundance vector, and n the additive noise. The matrix
formulation of LMM can be written as follows:

Y = AX + N, (2)

where Y ∈ RD×B denotes the collected mixtures matrix, with B denoting the number of pixels,
X ∈ RM×B denotes the abundance matrix, and N ∈ RD×B the collected additive noise. The
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abundances have to obey two constraints, namely, abundance nonnegativity constraint (ANC) and
the abundance sum-to-one constraint (ASC), i.e.,

∑M
i=1 xi = 1,

xi ≥ 0, ∀i = 1, ..., M.
(3)

However, for real HSI applications, the ASC constraint does not always hold true in practice,
since signature variability is usually intense in HSI [16,33]. Therefore, the ASC constraint is not taken
into consideration.

In [34], it has been proved that the probability of recovery failure decays exponentially in the
number of channels, which demonstrates that multichannel sparse recovery is better than single
channel methods. In addition, the probability bounds still hold true even for a small number of
signals. In other words, for a real HSI, the number of endmembers is often much smaller than the
number of pixels, which makes the SU have more chances to succeed.

In SU, hyperspectral vectors are approximated by a linear combination of a “small” number of
spectral signatures in the library, and the number of columns are equal to the number of pixels, thus
the nonzero abundance lines should appear in only a few lines [35], which implies sparsity along the
pixels of an HSI. Since the collaborative (also called “simultaneous” or “multitask”) sparse regression
approach has shown advantages over the noncollaborative ones, i.e., the mutual coherence has a
weaker impact on the unmixing [18,34,36]. The “collaborative” means to impose sparsity among
the endmembers simultaneously for all pixels. The CLSUnSAL (also called collaborative hierarchical
lasso) imposes sparsity both at the group and individual level, which leads to a structured solution
as the matrix of fractional abundances contains only a few nonzero lines [18]. It is assumed that the
abundance has the underlying collaborative sparse property, which is characterized by the `2,1 norm,
and `2,1-norm is defined as follows:

‖X‖2,1 = ∑M
i=1

√
∑N

j=1 X2
ij. (4)

The `2,1 norm imposes sparsity among the lines of X, which can promote a small number of
nonzero lines of X. Since the pixels all share the same support, it is reasonable to enforce joint sparsity
among all the pixels, which can be characterized by the `2,1 norm. Therefore, mathematically, the
CLSUnSAL [18] can be written as follows:

min
X≥0
‖AX− Y‖F + λ‖X‖2,1. (5)

However, the CLSUnSAL is based on the LMM, and the LMM may be not valid when there are
multi-scattering effects, and NLMMs provide an alternative to overcoming the inherent limitations
of the LMM [19]. Févotte et al. proposed the rLMM to make the blind unmixing of HSI more flexible
to analyze a large variety of remotely sensed scenes, which takes the possible nonlinear effects into
consideration, and the nonlinearities are merely treated as outliers [31]. As for the blind unmixing
of HSI, the endmember signatures A and the abundance matrix X are both unknown. However, for
SU of HSI, the endmember signatures A are selected from a library containing a large number of
spectral samples available a priori, and only the abundance matrix X is unknown. Until now, the
rLMM has been not yet used for SU of HSI. In addition, the superiority of rLMM over LMM has been
demonstrated in [31].

The rLMM assumes that the spectral response of a pixel in any given spectral band is
approximated by a linear combination of all of the endmembers present in the pixel at the respective
spectral band and the additive outlier [31]:

y = AX + e + n, (6)
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where e denotes the outlier term (accounting for nonlinearity). The matrix formulation of rLMM can
be written as follows:

Y = AX + E + N, (7)

where Y ∈ RD×B denotes the collected mixtures matrix, with B denoting the number of pixels,
X ∈ RM×B denotes the abundance matrix, E ∈ RD×B denotes the collected outlier, and N ∈ RD×B the
collected additive noise.

Févotte et al. [31] proposed a blind nonlinear hyperspectral unmixing method named robust
nonnegative matrix factorization (rNMF) based on the rLMM, and the outliers are treated as sparsely
distributed, which can also be characterized by the `2,1 norm. Mathematically, the rNMF [31] can be
written as follows:

min
A≥0,X≥0

D(Y|AX + E) + λ‖E‖2,1, (8)

where D(A|B) = ∑ij d(aij|bij) is used to measure the dissimilarity, and d(x|y) is either the squared
Euclidean distance or the Kullback–Leibler divergence. Blind unmixing of HSI aims at obtaining
the endmembers and corresponding fractional abundances, knowing only the collected mixing
spectral data. Thus, the endmember signatures A and the abundance matrix X are both unknown.
For sparse unmixing of HSI, the endmember signatures A are selected from a library containing a
large number of spectral samples available a priori, and only the abundance matrix X is unknown.
The main difference lies in the endmember matrix A; for blind unmixing, the endmember matrix
A is generally assumed to represent the pure materials present in the HSI. However, for sparse
unmixing, the endmember matrix A relies on the existence of spectral libraries usually acquired in
the laboratory, some of the endmembers in the spectral library are pure materials not present in the
HSI. Mathematically, when we just specify A as the same spectral library and put a sparse constraint
on the abundance matrix X, the sparse unmixing problem is a simpler version of the blind sparse
unmixing problem.

To better pursue the outlier in rLMM, which has the underling sparsely distributed additive
property, we also adopt the `2,1-norm to impose group sparsity, which has the advantage of rotation
invariant compared with the `1 norm [37,38]. Therefore, mathematically, the proposed RCSR based
on the rLMM can be written as follows:

min
X≥0,E≥0

‖AX + E− Y‖F + λ‖X‖2,1 + α‖E‖2,1, (9)

where ‖.‖F represents the matrix Frobenius norm, and λ and α are two regularization parameters.
Since the rLMM is a generalization of LMM, thus the proposed RCSR is a natural extension of
CLSUnSAL with an additional outlier term, which makes the collaborative SU of HSI more robust
for outliers.

The optimization problem Equation (9) can be solved by the IALM [32]. By adding the auxiliary
matrix P ∈ RM×N , the problem in Equation (9) can be reformulated as follows:

min
X≥0,E≥0

‖AP + E− Y‖F + λ‖X‖2,1 + α‖E‖2,1,

s.t. X = P.
(10)

Thus, the augmented Lagrangian function can be formed as follows:

L(X, E, P) = ‖AP + E− Y‖F + λ‖X‖2,1 + α‖E‖2,1+

Tr(ΛT(X− P)) +
µ

2
‖X− P‖2

F,
(11)

and then we apply the alternating minimization scheme to update the seven variables P, X, E, Λ, µ,
i.e., update one of the five variables with the others fixed. To update P, we solve
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Pk+1 = arg min
P
L(Xk, Ek, P)

= arg min
P
‖AP + Ek − Y‖F +

µ

2
‖Xk − P + Λk/µ‖2

F,

= (2ATA + µI)−1[2AT(Y− Ek) + µXk + Λk].

(12)

To update X, we solve

Xk+1 = arg min
X≥0
L(X, Ek, Pk+1)

= arg min
X≥0

λ‖X‖2,1 +
µ

2
‖X− Pk+1 + Λk/µ‖2

F,
(13)

whose solution is the well-known vect-soft threshold [39], applied independently to each row r of the
update variable as follows:

Xk+1(r, :) = max(vect-soft(ζ(r, :),
λ

µ
), 0), (14)

where ζ = Pk+1 − Λk/µ, and vect-soft(b, τ) denotes the row-wise application of the
vect-soft-threshold function g(b, τ) = b max{‖b‖2−τ,0}

max{‖b‖2−τ,0}+τ
. To update E, we solve

Ek+1 = arg min
E≥0
L(Xk+1, E, Pk+1)

= arg min
E≥0

α‖E‖2,1 + ‖APk+1 + E− Y‖F,
(15)

which can be also solved by the well-known vect-soft threshold [39]

Ek+1(r, :) = max(vect-soft(γ(r, :),
α

2
), 0), (16)

where γ = Y−APk+1. To sum up, the detailed procedure for solving the proposed RCSR is listed in
Algorithm 1.

Algorithm 1: Solving (9) with IALM
Input: Y, A;
Output: X̂, Ê;

1 Initialize X0, E0, P0 Λ0, λ, α, ρ µ, µmax = 106, k=0;
2 while ‖X− P‖∞ > ε do
3 Pk+1 = (2ATA + µI)−1[2AT(Y− Ek) + µXk + Λk] ;
4 Compute Xk+1 by (14);
5 Compute Ek+1 by (16);
6 Λk+1 = Λk + µ(Xk+1 − Pk+1);
7 µ = min(ρµ, µmax);
8 k = k + 1;
9 end

10 return X̂ = Xk+1, Ê = Ek+1.

The IALM is a variation of the exact augmented Lagrangian method, and its convergence
has been studied for at most two blocks (i.e., unknown matrix variables) [40]. For our problem
Equation (8), there is no guarantee for the convergence in theory, and ε is an error threshold.
Furthermore, the IALM is known to generally perform well in reality [40]. In practice, when we
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choose the parameters appropriately, it can be observed that the proposed RCSR convergences before
the maximum iteration is reached.

3. Experiments

In this section, we first carry out simulated experiments to demonstrate the advantages
of the proposed RCSRs compared with four algorithms based on the LMM, i.e., SUnSAL [14],
CLSUnSAL [18], OMP [16] and SMP [17]. To evaluate the performance of different HSI SU algorithms,
the signal-to-reconstruction error (SRE) [16] is adopted to measure the power between the signal and
error, which is defined as follows:

SRE = 10log10

(
‖X‖2

F

‖X− X̂‖2
F

)
, (17)

where X and X̂ are the actual and estimated abundance, respectively. Generally speaking, larger SRE
means better hyperspectral sparse unmixing performance.

3.1. Experimental Results with Synthetic Data

We use the spectral library randomly selected from the United States Geological Survey
(USGS) digital spectral library (Available at: http://speclab.cr.usgs.gov/spectral-lib.html), which has
224 spectral bands uniformly ranging from 0.4 µm to 2.5 µm, and contains 498 spectral signatures
of endmembers. We generate the synthetic HSI based on the LMM [16], FM [23], GBM [24] and
MGBM [25], and the latter three models are nonlinear unmixing models.

We tune the compared SUnSAL and CLSUnSAL to their best performances by using different
regularization parameters: 10−5, 10−4, 10−3, 10−2, 10−1 and 1. The maximum number of iterations
and error tolerances of SUnSAL and CLSUnSAL are set to 1000 and 10−6, respectively. For OMP, we
set the correct number of endmembers as the input parameter. For SMP, we set the given threshold
δ = 10−3. For the proposed RCSR, the performance is tuned to the best by setting λ and α to the
following parameters: 10−5, 10−4, 10−3, 10−2, 10−1 and 1. The maximum number of iterations and
error tolerances of RCSR is set to the same as those of SUnSAL and CLSUnSAL. To avoid unnecessary
deviation, we repeat the simulations 10 times to obtain the mean SREs.

The synthetic HSIs all have 100 × 100 pixels using endmembers randomly chosen from the
USGS library, and all of the abundance fractions are generated following the Dirichlet distribution,
which satisfy the ANC. The obtained datacubes are then contaminated by Gaussian white noise and
correlated noise with different signal-to-noise ratio SNR = 10 log10(‖Y‖2

F/‖N‖2
F). Figure 1 shows the

performance of SRE as a function of the number of endmember under Gaussian white noise when the
SNR is 10 with the LMM, FM, GBM and MGBM, respectively. It can be easily seen from Figure 1 that
the proposed RCSR generally obtains the best SRE. In addition, the performances of most algorithms
tend to get worse as the number of endmembers increase, which is due to the fact that the spectral
signatures in the spectral library is usually highly correlated. To test the performances of different
algorithms at high SNR, Figure 2 shows the performance of SRE as a function of the number of
endmembers under Gaussian white noise when the SNR is 50 with the LMM, FM, GBM and MGBM,
respectively. It is shown that the RCSRs all have the best SRE, and the RCSR generally performs
better than CLSUnSAL when the SNR is 50 with the three nonlinear models, which demonstrates
that the RCSR is more robust for outliers than CLSUnSAL. Compared with Figure 1, the SREs in
Figure 2 are generally higher than those in Figure 1, which indicates that the level of noise has a large
impact on the final performance of SU. In addition, we study the level of noise on the performance
of SU of HSI. Figure 3 shows the performance of SRE as a function of SNR under Gaussian white
noise when the number of endmembers is four with the LMM, FM, GBM and MGBM, respectively.
It can be seen that the RCSR obtains the best SRE at some time, and SMP and CLSUnSAL sometimes
obtain the best SREs. However, the performances of RCSR are much more stable than those of
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SMP and CLSUnSAL. Moreover, Figure 4 shows the performance of SRE as a function of SNR
under Gaussian white noise when the number of endmembers is 20 with the LMM, FM, GBM and
MGBM, respectively. From Figure 4, it can be observed that the RCSR has comparably good SREs
with CLSUnSAL. In addition, when the SNR is 10, the performances of RCSR is obvious better than
CLSUnSAL, which demonstrates that the RCSR is more robust for noise than CLSUnSAL.
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Figure 1. Performance of SRE as a function of the number of endmember under Gaussian white noise
when the SNR is 10 with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.
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Figure 2. Performance of SRE as a function of the number of endmembers under Gaussian white noise
when the SNR is 50 with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.
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Figure 3. Performance of SRE as a function of SNR under Gaussian white noise when the number of
endmembers is four with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.
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Figure 4. Performance of SRE as a function of SNR under Gaussian white noise when the number of
endmembers is 20 with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.
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Since it is hard to calibrate the hyperspectral data obtained from an airborne or
spaceborne sensor, the noise and the spectra in real hyperspectral imaging applications are
usually low-pass type, which makes the noise highly correlated [16]. Thus, it is very
necessary to conduct experiments when the obtained datacubes are contaminated by correlated
noise. The synthetic HSI has 100 × 100 pixels, and all of the abundance fractions are
generated following the Dirichlet distribution, which satisfy the ASC. The obtained datacubes
are then contaminated with correlated noise, and we generate the correlated noise with the
correlated noise function available at: http://www.mathworks.com/matlabcentral/fileexchange/
21156-correlated-Gaussian-noise/content/correlatedGaussianNoise.m. Figures 5 and 6 show the SU
results contaminated by correlated noise when the SNR is 10 and 50, respectively. Figures 7 and 8
show the SU results contaminated by correlated noise when the number of endmembers is 4 and 20,
respectively. From Figures 5–8, it can be deduced that the RCSR can obtain the best SRE in most
circumstances. In addition, the RCSR has comparably good results with CLSUnSAL at high SNRs,
and the RCSR can better handle the outliers than CLSUnSAL. Moreover, SMP sometimes obtains the
best SREs. However, the performances of RCSR are much more stable than those of SMP.
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Figure 5. Performance of SRE as a function of the number of endmembers under correlated noise
when the SNR is 10 with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.
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Figure 6. Performance of SRE as a function of the number of endmembers under correlated noise
when the SNR is 50 with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.
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Figure 7. Performance of SRE as a function of SNR under correlated noise when the number of
endmembers is 4 with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.
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Figure 8. Performance of SRE as a function of SNR under correlated noise when the number of
endmembers is 20 with the (a) LMM; (b) FM; (c) GBM and (d) MGBM.

From Figures 1–8, it can be observed that when fixing the SNR and the number of endmembers,
the variation of SRE is small with regard to four different unmixing models, which is due to the fact
that the energy of the linear mixing part is much bigger than that of the outlier.

3.2. Experimental Results with Real Data

The real dataset used in our experiment is the most benchmarked dataset for hyperspectral
unmixing, which was captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over a Cuprite mining district in June 1997 in the state of Nevada. The mineral map of the cuprite
image is available at http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif. Some spectral bands
(1–2, 104–113, 148–167 and 221–224) have been removed due to noise corruption and atmospheric
absorption, leading to P = 188 spectral bands ranging from 0.4 µm to 2.5 µm with a nominal
bandwidth of 10 nm. The false color image is shown in Figure 9, which is the size 250× 191.

Figure 9. False-color image of the AVIRIS Cuprite dataset.

Since the minerals of the Cuprite are all included in the USGS library, we adopt a subset of
the USGS library as the spectral library for the SU of Cuprite, which contains 240 members. We
set the regularization parameters of SUnSAL and CLSUnSAL to 10−3 and 10−1, respectively. The
maximum number of iterations and error tolerances of SUnSAL and CLSUnSAL are set to 1000 and
10−5, respectively. For OMP, we set the correct number of endmembers as the input parameter. For
SMP, we set the given threshold δ = 10−3. For the proposed RCSR, the regularization parameters λ

and α are set to 10−1 and 10−1, respectively. The maximum number of iterations and error tolerances
of RCSR are set to the same as those of SUnSAL and CLSUnSAL. Figure 10 shows the fractional
abundance maps estimated by RCSR and the other four compared SU methods using the subimages
of the AVIRIS Cuprite dataset. It can be clearly seen from Figure 10 that the visual performances of
fractional abundance using the RCSR and the other four compared SU methods are very consistent
with each other.
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Figure 10. Fractional abundance maps estimated by different unmixing methods using the subimage
of the AVIRIS Cuprite dataset.
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4. Conclusions

In this paper, we propose an RCSR for SU of HSI, which is based on the rLMM. The RCSR
takes the possible nonlinear effects (i.e., outliers) into consideration, which exploits the collaborative
sparse property of the abundance and sparsely distributed additive properties of the outliers. The
RCSR can be formed as a robust joint sparse regression problem, which can be solved by the
IALM. Experiments on both synthetic datasets and real hyperspectral images demonstrate that the
proposed RCSR is efficient for solving the hyperspectral unmixing problem compared with the other
four state-of-the-art algorithms.

Super resolution based SU is a recently developed spectral unmixing approach, in the future, we
will consider how to apply the proposed SU model to the hyperspectral face image to super-resolve
a high-resolution face [41].
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