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Abstract: Computers are used in our everyday activities, with high volumes of users accessing
provided services. One-factor authentication consisting of a username and a password is the common
choice to authenticate users in the web. However, the poor password management practices are
exploited by attackers that disclose the users’ credentials, harming both users and vendors. In most
of these occasions the user data were stored in clear or were just processed by a cryptographic
hash function. Password-hashing techniques are applied to fortify this user-related information.
The standardized primitive is currently the PBKDF2 while other widely-used schemes include
Bcrypt and Scrypt. The evolution of parallel computing enables several attacks in password-hash
cracking. The international cryptographic community conducted the Password Hashing Competition
(PHC) to identify new efficient and more secure password-hashing schemes, suitable for widespread
adoption. PHC advanced our knowledge of password-hashing. Further analysis efforts revealed
security weaknesses and novel schemes were designed afterwards. This paper provides a review
of password-hashing schemes until the first quarter of 2017 and a relevant performance evaluation
analysis on a common setting in terms of code size, memory consumption, and execution time.
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1. Introduction

Attackers exploit the poor password management practises [1,2], exposing high volumes of
user-related data [3,4]. Such attack announcements [5] cause considerable economic losses to the
software vendor [6]. As the simple use of secure hash functions is not adequate either, specialized
password-hashing schemes (PHS) are suggested, such as PBKDF2 [7], Bcrypt [8], and Scrypt [9].
A study in mobile application security (i.e., on iOS and BlackBerry) reveals that most popular
applications provide low password protection [10]. The vast majority of them simply hash the
user data with SHA2 or MD5 while only a small number of them utilizes PBKDF2.

However, the progress in dedicated hardware devices and parallel computing [11] enables
computational feasible cracking [12,13]. Attacks on ASICs, FPGAs, and GPUs are now benefited with
a significant boost in disclosing the user information by testing many candidate passwords in parallel.
The most common PHS choices of PBKDF2 and Bcrypt offer little protection as they are susceptible in
parallel cracking [14–16].

Memory-hard PHSs are proposed as a countermeasure against such attacks. In parallel platforms,
the memory utilization by the parallel cores is bounded, as all components must gain access to it.
In dedicated hardware, the memory resources are considered expensive. The cracker is constrained
when a memory-demanding PHS is analysed as the volume of parallel password-guesses is limited.
Thus, the legitimate user determines the memory requirements and the hash iterations to deploy
secure and robust schemes. Scrypt implements this approach [17], deriving the parallel password
scrambling not much faster than performing it on single-core CPUs. Nevertheless, memory-hard PHSs
are vulnerable to other types of attacks. A spy process, running on the same device as the PHS, can,
in some cases, gather the memory-access pattern by measuring cache-timings [18]. This information
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enables and greatly speeds up parallel attacks with low memory for each core. As a huge block
of memory is allocated to compute the password-hash, it later becomes a “garbage” when the PHS
computations are completed. In garbage-collector attacks [19], the attacker obtains the secret data,
by collecting the memory content after the PHS termination.

The low variety of available solutions derived, in 2013, to the announcement of the Password
Hashing Competition (PHC) [20]. Initially, 24 more secure PHSs were proposed, with an overview
presented in [21]. Nine of them were further examined in the next round, in 2014, based on security,
simplicity, efficiency, and the extra features that they provided. In 2015, the winner and four other
finalists with special recognition were announced based on more precise security analysis and
performance evaluation.

The competition advanced our knowledge in password-hashing and enhanced a trend of
memory-hard functions, applied by the winner and most of the honourable finalists. After the
competition, the inner primitives of the winning design and the most popular finalists were better
analysed, revealing some weaknesses. A problem was found in building secure data-independent
memory-hard functions [22–25]. The affected PHC schemes were revisited and addressed the
aforementioned issues. A new scheme, called Balloon [24], was also proposed to counter the security
issues that arise. The Internet Engineering Task Force (IETF) [26] is now considering the latest version
of the winner for formal standardization.

This paper reviews the three mainstream solutions for password-hashing (PBKDF2, Bcrypt,
Scrypt), the nine PHC finalists and their latest versions, and the newer Balloon scheme, also providing
a relevant benchmark analysis. Implementations of totally 19 PHSs are evaluated on the same platform,
with the results being summarized on a unitary table. Section 2 presents the background theory
regarding password-hashing, its security perspectives and applications. Section 3 details the three
mainstream PHSs. Section 4 analyses the PHC results and the nine finalists. Section 5 discusses the
password-hashing status after the PHC and describes the Balloon scheme. Section 6 describes the
evaluation process and the methods that are used. Section 7 concludes this work.

2. Background Theory

This section is referred to the background theory of password-hashing, its usage, and
application settings.

2.1. Passwords

A password constitutes a user-memorable secret [27] that consists of a few printable characters.
Passwords are the common choice in computer systems for user authentication [28–30]. The system
stores the user’s identity and password for every account. Then, the user logins this data to authenticate
himself and access the service [31–33].

Another utilization of passwords is the generation of cryptographic keys. The Key-Derivation
Functions (KDF) [34] derive one or more cryptographic keys that are based on an input password.
Cryptographic keys are applied by encryption/decryption functions and KDFs are mainly utilized for
the encryption of session data [35,36].

The ordinary option for user-login services [27] are user-originated secrets of eight characters long
(8 bytes based on ASCII encoding). These passwords often exhibit low entropy and are susceptible
to attacks. The exhaustive-search method tests all the different character combinations and tries to
discover the actual password for an examined account. The attacker, then, accesses the account, similar
with its legitimate user. The user-drawn graphical passwords [37,38] may also suffer from low entropy,
as they provide 4–5 bytes of security on average [39,40].

The ordinary choice to provide protection against such attacks is key stretching. Cryptographic
hash functions [41,42] constitute a security primitive type that parses input of arbitrary size and
outcomes a digest of fixed length. In the password-hashing domain, the password is parsed to a hash
function which results an output of fixed length, which then acts as the password. Some attacks become
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computational infeasible as the result is longer than the original secret (e.g., 32 or 64 bytes). The hash
function is iterated a few times in order to further fortify the hashed password. Thus, an attack is
slowed down by a factor of 2n+m, where n represents the iterations’ count and m represents the output
length in bits. However, the user is also slowed down. The key stretching parameters are bounded by
the user’s tolerance to compute a robust hash password.

If many users possess the exact same passphrase, the hash results will be the same too. When one
of these passwords is exposed, the credentials of all users might be disclosed. Similarly, as one user can
apply the same secret in many accounts or use the same login platform (i.e., the Facebook social login
platform) for many applications [43], the disclosure of one of these accounts raises concerns about
the security of the rest involving services. Thus, a salt parameter is utilized (a small value, usually
consisting of 8 random bytes). During the creation of a new account, a random salt is generated
which is concatenated with the passphrase during hashing. The same secret produces different hashes
for different accounts and the correlation of simple hashed passwords that are generated by the
same passphrase is prevented. Ordinary, the salt is kept along with the hashed secret, in plaintext.
The authentication operation parses the salt and the password of a login procedure, and compares
the result with the stored password hash value to validate the user. Figure 1 illustrates this basic
PHS setting.

Figure 1. PHS generic scheme.

As the user-related information is kept as the service end, the provider might wish to upgrade
the security level (i.e., increase the hash size or the iterations of the PHS). Client-independent update
(CIU) of the hash password increases the security of the stored information without any knowledge
regarding the passphrase or the user’s involvement. CIU permits the seamless operation of the service
and retains the user’s convenience, becoming an imperative property of future PHSs.

The server load can become unmanageable in popular applications with high volume of users that
gain access simultaneously. The total effort can be balanced by server relief (SR) techniques that are
performed between clients and servers. Part of the password-hashing computations are performed by
the clients (e.g., the first hashing iterations) while the final steps and the user verification are performed
by the server.

2.2. PHS Security and Threat Model

Implementing a secure PHS is not a trivial task. There are several security issues that must be
considered during the designing phase.

First of all, the PHS must be cryptographically secure and offer the security properties of:

• Preimage resistance,
• Second preimage resistance, and
• Collision resistance

Additionally, the scheme should avoid other cryptographic weaknesses such as those present in
(some) Merkle-Damgard constructions, like length extension attacks and partial message collisions.

Except for these cryptographic features, the scheme must defend against time-memory trade-off
(TMTO) and lookup table attacks [44]. Mechanisms should be embodied that would render it
computational infeasible to perform precomputed lookup table generation, like rainbow tables.

Defense against CPU-optimized crackers is also vital. A robust PHS should be CPU-hard and
require significant amounts of CPU processing, in such a way that it cannot be optimized away through
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either software or hardware. For example, multi-core CPU optimized cracking should offer minimal
speed-up benefits to the attacker in contrast to those intended for validation by the legitimate user.

Similar considerations should be taken into account regarding hardware-optimized crackers.
The PHS must be memory-hard and require significant amounts of RAM in order to be infeasible to get
overcome by TMTO attacks. Thus, optimized cracking on GPU, FPGA, and ASIC should not benefit
the attacker against the legitimate validation of the targeted application.

Typically, attackers test high volumes of candidate passwords simultaneously, which is costly
when huge amounts of CPU and memory are required for each try. On the other hand, an ordinary
application processes only one password and the PHS consumption is configured based on the
service’s resources.

However, memory-demanding hashing can enable side-channel attacks, if the attacker can gain
access to the memory of the targeted device. Cache-timing attacks are commonly used to exploit
Scrypt [18]. Garbage-collector attacks [19] constitute an instance of a memory leak, relevant to
PHS security. In the main attack case, the adversary gains access to the device’s memory after the
termination of the PHS while in the case of weak garbage-collector attacks the secret (or a value
that is produced from it based on an efficient function) is maintained in the memory and is not
overwritten for a significant time-gap during the running time of the PHS. If the scheme is vulnerable
to garbage-collector attacks, it is likely to significantly reduce the effort of password cracking.

The PHC further highlighted the next design questions:

• Input-dependent, input-independent, or hybrid memory addressing? In input-dependent
indexing the timing information enables very fast password-searching and can be exploited
by side-channel attacks. On the other hand, in input-independent indexing the read addresses in
memory are known beforehand, deriving the time-space tradeoff attacks quite straightforward as
the cracker can precompute the missing block when it is needed.

• Is it better to fortify the result by passing over the memory more times, or fill higher amounts
of memory and being vulnerable to time-space tradeoffs? As there were no general tradeoff
tools to analyze the two defence strategies against these vulnerabilities or unified metrics that
could estimate the cost for an attacker, it was difficult to give a concrete answer.

• Which are the proper strategies to compute the input-independent addresses? Different
approaches that were considered secure were eventually found vulnerable to attacks.

• What is the proper size for a single block of memory? The spacial locality of modern cache
memories makes slower, in terms of cycles per byte, the reading of small and randomly-placed
blocks. On the other hand, the small amount of available long registers derives inefficient the
processing of larger blocks.

• Which are the features of the proper internal compression function when large blocks
are used? Can lightweight functions that implement simple mixing being used or do
we need cryptographically secure functions? Several of the candidate schemes simply
adopted iterative constructions, contributing against the appliance of cryptographically secure
compression functions.

• When multiple CPU cores are available, which is the proper strategy to utilize them? Parallel
hash function invocations without any interaction can be exploited by simple tradeoff attacks.

2.3. Applications

PHSs and KDFs can be applied in general purpose services on mainstream systems, web services,
and embedded applications. The different domains exhibit diverse properties that a PHS must
conformed to.

General purpose services process low volumes of infrequent login requests. The involved devices
(e.g., PCs) possess adequate computational resources, and the highest protection level becomes their
main target. The PHS and KDF primitives are important and the security is enhanced by tools that
detect widely-used passphrases or low-entropy secrets [45,46].
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On the other hand, web services must be able to process thousands of login requests
simultaneously. The authentication information for all these users is stored in the server, which must
serve high volumes of parallel sessions. Successful attacks at the server-end disclose mounts of data
for many clients, including the passphrases. The typical user possesses a small number of low-entropy
secrets which are used in many web services [47,48]. Online dictionary attacks with login histories are
also applicable here [49]. Thus, security issues arise not only for the vulnerable applications but for
other services as well which are used by exposed clients. This fact was a main concern for PHC and
rendered password-hashing as a main goal for web services. A service provider can further enhance
security against analysis of stolen data by applying CIU methods in order to periodically fortify the
protection level based on the attackers’ increasing computational capabilities and the technology
evolution. Nevertheless, the overall login procedure must be retained fast enough to conform to the
user’s tolerance and the communication protocol timings. The total computational requirements of
processing a single login request have to permit the uninterrupted service of many users while avoiding
DoS attacks. This balance among security and performance can be contributed by SR procedures that
establish a good tradeoff between the server and the clients.

Embedded systems are deployed in a wide variety of applications including Internet-of-Things
setting and cyber-physical systems [50–54]. The installed devices are resource-constrained in nature,
leading to lightweight implementations with small size and low production cost [55–60]. The security
becomes a prominent part of the whole functionality [61]. Defence mechanisms should provide
lightweight designs with low demands on memory and processing. Sensors or other ultra-constrained
devices [62–65] can grant only a few bytes or KBs of memory to achieve a moderate security level [66,67].
In contrast to web services, embedded devices ordinary store a limited volume of authentication-related
data. Session key-derivation is important, as the most common interaction includes device-to-device
short-term communication (e.g., in wireless sensor networks) [68–70]. Real-time specification checking
and built-in memory safety methods [71–74] are responsible for protecting the embedded applications
against garbage-collector attacks [19].

3. Mainstream Password-Hashing Schemes

The ordinary choice for implementing password protection are hash-based schemes. Keyed-hash
message authentication codes (HMACs) and cryptographic hash functions that process the password
and produce one or more secret keys, constitute the main mean to materialize KDFs. The current
solutions of PHSs and KDFs for mainstream applications include PBKDF2, Bcrypt, and Scrypt.

3.1. PBKDF2

Password-Based Key Derivation Function 2 (PBKDF2) [7] is the only standardized scheme
(RSA Laboratories’ Public-Key Cryptography Standards (PKCS) series (PKCS #5 v2.0) [75] and the
RFC 2898 [76]). TrueCrypt, OpenOffice, and CCMP of WPA2 embody the scheme for password-related
operations. PBKDF2 uses pseudo-random functions (PRF), commonly implemented by HMACs.
The ordinary internal hash option for the HMAC is the function SHA-256 [77]. The password and
the salt are parsed as inputs to the scheme. The salt hardens attacks with precomputed data, like
dictionary (test hundreds of likely possibilities to figure out the passphrase) [18] or rainbow-table
attacks (capability of utilizing tables with precomputed hashes) [19,78]. Its typical size is 8 bytes.

At first, the HMAC processes the password and the salt. Then, the data is processed several times
to produce the derived key. The recommended minimum number of iterations is 1000, but, as the
standard was established in 2000, it is not considered adequate today. In each iteration, the HMAC
parses the password and the last HMAC result. Then, the HMAC results are XORed. The outcome of
the XOR operation in the last round is the final hash. Figure 2 illustrates the PBKDF2 PHS.

One drawback is the efficient hardware-based cracking, as it can be developed as a compact
hardware implementation with low requirements in RAM. Thus, cheap brute-force attacks are feasible
on GPUs, FPGAs, and ASICs. GPU and FPGA attacks are presented in [14]. The fastest attacks can
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find out around the 65% of ordinary passphrases in about one week. Attacks on multi-FPGA systems
crack about 245,000 passwords per second [15].

Figure 2. PBKDF2 PHS with n iterations.

3.2. Bcrypt

Bcrypt [8] is adopted by the BSD operating system as the default PHS. It utilizes the Blowfish [79]
block cipher and, by default, is parses 56 bytes long passwords and results 24 bytes long hashes.
The number of iterations is a power of 2, which raises as the attacker’s computational power is
increased to provide sufficient protection against brute-force attacks. A salt value of 16 bytes harden
attacks that are based on rainbow-tables.

At first, the expensive Blowfish key schedule (EksBlowfishSetup) is initialized by a cost parameter,
the salt and the Blowfish encryption key. This function stores into the cipher’s S-boxes and subkeys
the π number. Totally, 18 subkeys are used which are derived, based on the encryption key.
The permutation-array (P-array) stores all these subkeys and are XORed with the encryption key.
The first element of the P-array (P1) are XORed with the relevant 32 bits of the encryption key, the next
P-array element (P2) is XORed with the next 32 bits of the key, and so forth. The key is utilized in cyclic
manner, when all its bits have been used, and restarts using bits from the initial position. The current
state of key-scheduling encrypts the 64 initial bits of the salt. The subkeys P1 and P2 are then substituted
by the encryption result, which is then XORed with next 64-bits of the salt. The outcome is further
encrypted with the new key-scheduling state and the ciphertext substitutes the subkeys P3 and P4.
The result is again XORed with the initial salt bits and the next encryption result substituting the
subkeys P5 and P6. The salt is also processed in a cyclic manner and this procedure continues until all
P-array entries have been substituted. Then, it proceeds in substituting the entries of the S-box in a
similar approach. The process outputs the new key schedule when the two last entries (S4[254] and
S4[255]) of the last S-box are substituted. This expansion operation is repeated 2cost times. In each
iteration the aforementioned process is performed two times, expanding blocks of zeros and the
internal state by the salt and the key respectively.

Then, a magic value, 24 bytes long, is encrypted 64 times by the cipher in ECB mode of
operation (BlowfishEncryptECB). Blowfish’s encryption is a Feistel network of 16-rounds and uses
large key-dependent S-boxes. The concatenation of the salt, the cost, and the result of the encryption
constitutes the final outcome. Figure 3 illustrates the Bcrypt PHS.

The scheme consumes 4KB of RAM and is slightly better in countering parallel cracking [9] than
PBKDF2. Nevertheless, the low memory consumption enables efficient FPGA attacks. In [16], several
energy-efficient and low-cost cracking settings are presented. The cheapest attack achieves 1207 cracks
per second with 99$ cost while the best attack finds out 20,583 passwords per second.
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Figure 3. Bcrypt PHS.

3.3. Scrypt

IETF examined, in 2012, the Scrypt [9] as an Internet Draft, announcing an informational RFC [80].
The scheme processes an arbitrarily large volume of memory and forms a memory-hard PHS. As main
internal components, Scrypt uses the stream cipher Salsa [81] and the PBKDF2. Other building blocks
of the scheme include the ROMix, BlockMix, SMix, and MFcrypt functions. ROMix computes a large
number of random values, and then, accesses them randomly in order to ensure that they are all stored
in RAM. In order to implement a memory-hard ROMix a hash function must be internally utilized that
satisfies some design criteria, like uniform distribution of output values, difficulty in iterating the hash
function quickly and no significant internal parallelism. BlockMix utilizes the version Salsa20/8 of the
cipher to build this functionality and it is embodied by the ROMix functions of Scrypt. The SMix is
composed of one or several ROMix functions and forms the mixing function of Scrypt. The number of
ROMix functions, called parallelization parameters – p, represents the time and space costs. MFcrypt is
the key-derivation function of the scheme. It applies the mixing function SMix and the PBKDF2 with
an HMAC that uses the SHA-256 hash function. Figure 4 illustrates the internal software components
of Scrypt.

Figure 4. Scrypt software components.

At first, MFcrypt parses the password and the salt. Then, the output is stored in the array B and
is mixed by the SMix. Each ROMix of the SMix processes a relevant block of B. The ROMix’s data
is parsed to the BlockMix and the Salsa cipher. The result all ROMixs along with the password are
processed by the MFcrypt, which produces the final hash. Figure 5 illustrates the Scrypt PHS.

In comparison with PBKDF2 and Bcrypt, Scrypt is the most resistant KDF to memory-related
vulnerabilities. Brute-force attacks on hardware platforms require 4000 and 20,000 times higher cost
than in Bcrypt and PBKDF2 respectively [9].

Attacks on GPUs are reported in [17]. When Scrypt takes about 1–10 ms to compute a
legitimate password, the cracking attack discloses 42,650–2333 hashes per second (H/s) respectively.
For higher computation settings, requiring 100–1000 ms, the attack’s effectiveness is greatly
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decreased to 49.06–0.37 H/s. However, DoS attacks on servers can exploit the demands for high
memory consumption while handling frequent authentication requests. Scrypt is also vulnerable to
garbage-collector [19] and cache-timing [18] attacks.

Figure 5. Scrypt PHS.

4. The Password Hashing Competition

The Password Hashing Competition (PHC) [20] evaluated 24 novel schemes [82] based on security,
flexibility, and performance. PHC advanced our knowledge in implementing efficient and secure
password-hashing. Nine schemes pass successfully the evaluation process of the first round.

All submissions are publicly available with no patent constraints. For input, they require at least:

• Passwords of any size between 0 and 128 bytes, regardless of the encoding
• Salt values of 16 bytes
• Output length of 32 bytes
• One or more cost parameters to configure time (t_cost) and/or memory demands (m_cost)

The schemes were assessed based on security, simplicity, and provided functionality.

4.1. Evaluation Criteria

The main security features that are now indispensable for a state-of-the-art PHS include collision
resistance, immunity to length extension, and random-looking output [20]. The candidate scheme
must limit the attacker’s benefit from optimized parallel cracking deployments (e.g., FPGA, ASIC,
GPUs, or multi-core CPUs), and counter the current set of password-hashing analysis and attacks e.g.,
time-memory tradeoffs and cryptanalytic attacks). It also must be resilient to side-channel attacks
(i.e., leakages and timing attacks) and the attacker must not be able to deduce any information about
the password’s length. The attacker model where a server is partially or fully compromised must be
taken into account.
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Regarding the design aspects, a new algorithm must be sound and easy to understand and
examined (e.g., symmetric and modular) in order to ease the security analysis and, therefore, enhance
the acceptability of the scheme. The PHC should be simple to implement, integrate in current
applications, test, and debug. While novel and original candidates are desirable, the utilization
of components from known primitives can be also applied in a limited degree. Documentation for the
algorithm and the software implementation should be sufficient and of good quality.

Despite the main password-hashing operation, a candidate should function as a robust KDF,
with CIU and SR also being considered important. The interactivity of the cost parameters for memory
and time must be effective enough, while an attacker must not be able to surpass the anticipated benefits.
Application-specific designs are also evaluated (e.g., client login, web authentication, embedded
systems, or key-derivation).

4.2. Finalists

The nine candidates that were finally selected among the first 24 schemes are: Argon [83]/
Argon2 [84], Battcrypt [85], Catena [19,86], Lyra2 [87], MAKWA [88], Parallel [89], POMELO [90],
Pufferfish [91], and Yescrypt [92]. Except from MAKWA and Parallel, all other finalists constitute
memory-hard PHSs. The finalists exhibit high diversity, which is beneficial as the different PHSs
cover a wide range of application settings (e.g., web services, KDF). Argon2 was the final winner.
Special recognition was given for four other finalists (Catena, Lyra2, MAKWA, Yescrypt). Catena
follows an agile framework approach and is resistant to side-channel attacks. Lyra2 has an elegant
sponge-based design and constitutes an alternative approach to side-channel protection. MAKWA
presents unique delegation features and factoring-based security. Yescrypt offers a rich feature set and
can easily replace Scrypt to existing systems. Battcrypt, Parallel, POMELO, and Pufferfish attract less
attention for the final selection process.

4.2.1. Argon/Argon2

Optimized for security, efficiency, and clarity, Argon is a safe and memory-hard hash function.
It operates as PHS, KDF, and for any other memory-demanding operation. A significant penalty is
imposed on the execution time for any decrease of the available memory by the attacker, safeguarding
against tradeoff vulnerabilities. A reduced version of the AES [93] block cipher’s round function with
5 iterations and a fixed-size key of 128-bit is used by Argon along with block permutation and XORs.
A t-byte permutation is applied, with the efficiency being linear to the time and memory costs. Argon
implements CIU and SR at the server.

The version Argon2 won the competition. It summarized the latest features for the memory-hard
designing of password-hashing functions. The original Argon could impose computational penalties
on any memory-reducing configuration and was recommended for the highest tradeoff resilience and
guaranteed prohibitive time. Argon2 was proposed for high performance and easy scale to arbitrary
number of parallel computing units.

Argon2’s design is simple and streamlined, aiming the efficient operation of multiple computing
units and the highest rate of memory filling, while countering tradeoff attacks. Two variants are
proposed which can fill in a fraction of second around 1 GB of RAM. Argon2d is faster with
data-dependent memory indexing. It is appropriate for cryptocurrencies or environments where
side-channel timing are not applicable. In Argon2i the memory is parsed more times to enhance
resilience to tradeoff attacks, thus, this version is slower than Argon2d. The memory addressing
is data-independent, which makes Argon2i more preferable for PHS and KDF operations. Security
analysis is detailed in [84,94].

Initially, the password and the salt are hashed, along with other parameters. The memory is
organized as a two-dimensional array, referred to as B. The size is determined by a cost parameter,
called parallelism degree p, where the rows are equal with p and columns are the total number of
memory blocks divided by p. The columns are then divided over 4 slices to enable block computation
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parallelism. The memory array is filled with a compression function, which takes as input an indexing
function. For Argon2i, the indexing is password and salt independent while for Argon2d the indexing
is password-dependent. A third hybrid variant of Argon2id [84] is also proposed that combines the two
approaches with some indexing being performed by data-dependent functions and the rest indexing
being performed by data-independent functions. The compression function utilizes the hash function’s
internal permutation process. Segments of the same slice can be computed in parallel. The operation
iterates for a variable number of passes. After the final iteration, the memory elements of the last
column are XORed. The result is hashed to obtain the final outcome. Figure 6 illustrates the Argon2
PHS for a single pass.

Figure 6. Argon2 PHS for a single pass.

For the reference implementation, Blake2b [95] is chosen as the hash function and its variant
BlaMka [87] as the compression function. BlaMka’s suitability for the password-hashing domain
was highlighted during the PHC and it was introduced by Lyra2. Argon2 can use up to 224 threads
in parallel.

However, after further analysis, the winning version of PHC was found vulnerable to practical
attacks when low-cost parameters were applied [22–25]. The memory blocks that were produced by
Argon2i after the second pass were replacing the blocks of formerly rounds instead of overwriting
them. Thus, a time gap elapsed between the last time that a block was used and the moment that it was
overwritten. The attacker could compute, with no increment in computational time, the single-pass
Argon2i and save more than a factor of four in space.

The scheme was revisited and effectively countered the attack. The overwriting operation was
replaced with XOR, which produced a low performance overhead. This strategy was applied only
to the vulnerable single-pass Argon2i. The remaining versions, where multiple passes process the
data, were secure as the blocks are maintained in memory until the overwriting operation. The current
1.3 version is considered for standardization under IETF [26].

4.2.2. Battcrypt

Battcrypt (Blowfish All The Things) targets server-side services and constitutes a simplified
version of Scrypt. For password-hashing, the Blowfish block cipher and the SHA-512 hash function are
utilized. The CBC mode of operation of Blowfish is applied as it is slow on GPUs, is well-studied, and
is implemented in PHP. Battcrypt’s security is retained even if Blowfish is found vulnerable to attacks.

The plain passwords are used only once. At first, the password and the salt are hashed two
times by the SHA-512. The result is called key. The key is utilized for the initialization of the Blowfish
cipher and the data. The memory is initialized by encrypting the data with the Blowfish in CBC
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mode. Then, Blowfish overwrites m_cost × t_cost times the internal state, based on indices that re
password-dependent. The result along with the key are hashed two times, producing the final hash.

The m_cost parameter configures the memory consumption and the t_cost parameter determines
the processing time. The approach is suitable for web applications with small memory amounts
being processed at each hash upgrade. The scheme is slower on GPUs than on CPUs. Battcrypt can
parallelize on CPU two or three calculations of the underlying block cipher that could approximately
double the speed. It can also implements SR and CIU, if the configuration parameters (i.e., t_cost,
m_cost, output size) and the salt are publicly available.

The scheme is more efficient than Bcrypt as it executes around 0.752% to 1.726% less Blowfish
blocks [85]. Under the same PHP environment, it performs two times more processing work than
Bcrypt [85].

However, Battcrypt was found vulnerable to weak garbage-collector attacks when an attacker
had access to the target machine memory (the secret is maintained in internal memory and is not
overwritten) [96]. The key value is used in three phases for initializing the Blowfish, initializing the
internal state, and the production of the final hash, where it is overwritten for the first time. The main
effort of Battcrypt is given in the processing phase. The time-window of one iteration of the outer loop
last long enough for an adversary with known salt to launch an attack.

4.2.3. Catena

Catena targets multiple application settings, like multi-core CPUs, embedded systems,
and user-database backup. The design is a composed cryptographic operation that utilizes a
cryptographic hash function, and the algorithm is easy to understand and simple to understand.
The scheme is instantiated by a cryptographic hash function and implements the graph-based structure
(G, λ)-Bit-Reversal Graph (BRG), where λ represents the number of stacks of the inner structure
(t_cost), the garlic g is the memory cost (m_cost), and G = 2g. Figure 7, illustrates the Catena’s BRG
component, where ui

j are the graph’s edges.

Figure 7. An (8, 1) Bit-Reversal Graph.

The version of Catena v3 was submitted for the final evaluation. State-of-the-art results
regarding memory-hard PHS were embodied for the memory-initialization process and the internal
functions for memory-hard processing, randomization, and compression. The new version introduced
two instantiations with different memory-hard functions. Catena-Dragonfly was based on BRG
and Catena-Butterfly utilizes a stack of (G, λ)-Double-Butterfly Graphs (DBG). Catena-Dragonfly
overwrites the internal memory 2λ + 1 times at minimum and Catena-Butterfly makes at minimum
2(λ × (2log2(G)− 1)) + 1 passes.

The defender can choose any strong hash function to initiate the PHS. A reduced round variant of
Blake2b, called Blake2b-1 [19], is proposed as the underlying hash function.

Thorough security analysis is provided with proofs, with the reference submission being
well-documented. The pebble-game approach [19] is used for to examine time-memory tradeoffs.
The offered security properties include indistinguishability from random, resilience to side-channel
attacks, lower bounds on the time-memory tradeoffs, and preimage security. Password scrambling on
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ASICs, FPGAs, and GPUs is penalized with high computational demands. Theoretic effective attacks
under realistic parameters on the data-independent memory-hard primitives are presented in [23].

It implements CIU by raising the m_cost and t_cost values. For the SR functionality, the client
computes most of the processing, with the server performing the last iteration. Catena also operates as
a keyed password-hashing module by XORing the result of the unkeyed version with the hash of the
the cryptographic key, the user ID, and the m_cost.

4.2.4. Lyra2

Lyra2, the updated version of Lyra, uses the new trend of hash functions with sponge structure.
The Blake2b and BlaMka hash functions were selected for the reference implementation in a
duplex sponge structure. The software implementation is simple and strictly sequential to prevent
parallel attacks.

The internal state consists of a large matrix, called M, that is maintained in RAM during the
processing phase. The m_cost parameter determines the matrix’s size by defining the number of
rows R and columns C. Moreover, the optional parameter basil is applied as an extra salt and prevents
collisions of ordinary salt and password combinations.

At setup, the memory matrix is initialized. The state S of the sponge hash function is initialized by
absorbing the salt and the password. Then, the hash function fills the matrix’s rows by squeezing and
duplexing the contents of the previous rows. Starting from the last element of each row, the function
parses the context of the current element and the element of the opposite position in the next row.
Figure 8, illustrates the memory read and write operations during setup.

Figure 8. Lyra2 setup phase.

A time consuming procedure, called wandering phase, overwrites memory data. The t_cost
parameter determines the volume of matrix elements that are overwritten. Each half of the matrix
visitation loop increases depth by one. An inverted tree-like dependence graph is constructed during
the execution process. The hash function absorbs the last column that is visited and squeezes the
final hash.

Thorough analysis is presented in the reference submission. The scheme tries to maintain the
internal state in RAM during processing, prevent parallel attacks, and make non-invertible the key
that is derived.

The performance is improved when the memory matrix is stored in the volatile memory. Lyra2p is
an alternative version that enables the multi-core processing for the defender, increasing the attacker’s
cost. Security analysis for Lyra2p is also provided [87].
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4.2.5. MAKWA

MAKWA applies modular squaring to implement PHS and KDF functionality. The algorithm
operates on big numbers, like the asymmetric cipher RSA [97]. Nonetheless, when a trusted entity
knows the factors of the modulus, MAKWA does not need to compute the prime factors, avoiding the
computational demanding processing. The scheme uses the NIST standardized HMAC_DRBG with
SHA-256 [98] as a deterministic KDF. The memory consumption level is fixed, with the cost parameters
affecting only the processing time. MAKWA’s strength is derived by a high number of squarings
modulo a composite integer n. The password is processed two times during the initialization phase
of the scheme’s state, which is further processed in the work phase by squarings modulo n. Figure 9
illustrates the MAKWA PHS.

Figure 9. MAKWA PHS.

Delegation is one of the main operations of MAKWA and is based on the private key procedure
of RSA and the blind signatures. The SR functionality implements this feature, offloading the bulk
of processing cost to an external untrusted entity. Other operations that are supported by MAKWA
include password escrow and offline hash upgrade.

The security claims of MAKWA are based on the relevant analysis on RSA regarding the feasibility
of launching attacks on ASICs, FPGAs, and CPUs. The scheme accomplishes the design goals and is
resilient to these attacks. Optimization results on GPU and CPU are reported in [99].

4.2.6. Parallel

Parallel password based key derivation function (PPBKDF) is proposed for low-memory setting.
It is optimized for parallel execution and is not a memory-hard scheme. The design is compact with
constant and low memory requirements. Parallel has a simple design and remains as collision resistant
as the internal hash function. The reference submission uses the SHA-512 and offers CIU and SR.
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The password and the salt are hashed twice, producing a key parameter. For each sequential
round, the working memory is initialized with zeros. Then, it is processed by data-independent rounds
which can be executed in parallel. In each iteration the data is hashed with the two loop counters and
the key. At the end of each sequential round the key is updated by double hashing the key and the
working memory, and is truncated for the next round. When all rounds are finished the key is further
truncated, producing the final hash. Figure 10 illustrates the Parallel PHS.

The attacker-defender ratio (password scrambling results on parallel cores to relevant results on a
single core) is considered 1 with any benefits for the attacker, benefiting the defender too. However,
the key value is not overwritten at the processing procedure and Parallel is found vulnerable to weak
garbage-collector attacks when the attacker has access to the target machine memory [96].

Figure 10. Parallel PHS.

4.2.7. POMELO

POMELO’s design is simple and the implementation is easy. POMELO functions on 8-byte words
and utilizes three state update functions H(S, i), F(S, i), and G(S, i, j), where S is the internal state
and i and j are the memory access indices. H constitutes a simple non-linear feedback function, with
F, and G implementing simple random memory access over data. The three functions safeguard
the scheme against single instruction multiple data (SIMD), low memory, and preimage exploits.
The t_cost value configures the computational complexity and the m_cost parameter adjusts the
memory size. The password is used only during the initialization of the internal state and is overwritten
3 · 2t_cost + 2 times on average, countering garbage-collector attacks. The scheme remains efficient
even when a significant amount of memory is reserved and retains security against cracking by GPUs
or dedicated hardware. Also, the deployment of CIU is straightforward.

However, POMELO produces lower randomness properties. The H function implements
random-memory indexing that is based on the password, which enables cache-time attacks [96]. As a
result it does not function as a KDF. This main disadvantage restricts its selection once compared with
the rest schemes. POMELO 2 [90] enhances randomness and enables the implementation of a secure
POMELO-KDF. It derives keys of arbitrary length from a password and a salt by iterating POMELO.

4.2.8. Pufferfish

Pufferfish is built upon is inspired by Bcrypt and uses HMAC-SHA-512 and Blowfish.
The extended version of the cipher is utilized which operates on 8-byte words and uses
password-dependent and dynamic S-boxes of arbitrary size. This extension is embodied on Bcrypt
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with minimum changes in the scheme. Pufferfish also implements KDF and SR functionality and offers
variable-length output.

At the generation phase of the password-hash, the main processing memory is a two-dimensional
array of 25+m_cost elements of 512-bits long that is accessed in a regular basis. The password is hashed
at the beginning and the result is overwritten 25+m_cost + 3 times. Moreover, the state word that
contains the password hash is overwritten 2t_cost times, providing protection against garbage-collector
adversaries. The m_cost value raises the memory consumption by log2 KB while the t_cost value raises
the complexity by log2 iterations.

In comparison with Bcrypt, the scheme is faster on CPUs and slower in GPUs. Moreover, Pufferfish
inherits the GPU resistance of Bcrypt.

The security features of the extended cipher version have not been validated. Nevertheless,
Pufferfish remains secure as long as HMAC and SHA-512 remain unbroken.

4.2.9. Yescrypt

Yescrypt resembles Scrypt, improving the protection level. It operates as KDF and offers CIU
and SR. The scheme provides more choices for parallel programming at instruction and thread
level. The reference implementation supports OpenMP [100] and applies SIMD. Yescrypt extends the
ROMix algorithm by using the Scrypt’s random-read lookup table (RAM) that writes the memory
elements in a sequential manner, along with an optional read-only lookup table (ROM) that is pre-filled.
For processing, the scheme can use a custom pwx-form algorithm instead of the Salsa20/8 in Scrypt or
even inter-mix these two components.

The processing time can be raised without increasing the memory consumption. The security
analysis resembles the relevant results on the underlying components of PBKDF2, HMAC,
and SHA-256, like in Scrypt. The scheme fortifies protection against attacks on ASICs, FPGAs,
and GPUs.

Security analysis is reported in [92,96]. When the attacker can gain access to the system’s
memory, Yescrypt is vulnerable to weak and mainstream garbage-collector attacks under specific
input parameters [96].

The overall functionality is managed via bit flags. When no flag is specified, the mode of operation
is compatible with Scrypt and the scheme is vulnerable to the relevant attacks. The flag YESCRYPT_RW
changes the memory management strategy from write once, read many to read-write, and overwrites,
at least partially, the lookup table in RAM using random-memory accesses. Thus, the scheme
may be vulnerable to garbage-collector attacks if the whole memory is not overwritten. The flag
YESCRYPT_WORM enhances the Scrypt compatibility mode by enabling pre- and post-hashing.
A minimal version of the scheme is called before the full Yescrypt and if the setted parameters (the ratio
of memory size and the number of threats running in parallel) overwrite the password significantly
fast, the scheme is resistant against garbage-collector attacks.

5. The Day after the PHC

This section discusses the status of the password-hashing domain after the PHC. The security
level is improved and the danger of parallel cracking attacks is reduced. However, security analysis
reveals several weaknesses. The PHC finalists are revisited and a new scheme is also proposed.

5.1. Resistance to Parallel Cracking Attacks

As aforementioned in the introductory sections above, dedicated hardware devices enable efficient
password-cracking attacks, deriving the common solutions insecure. PHC tended to counter these
issues. All finalists harden attacks on dedicated hardware by design.

Table A1 summarizes the GPU measurements of several password-hashing schemes that are
referred in the literature. Efficient attacks on simple hashing schemes, like the ones that utilize only
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SHA1, SHA2, SHA3 or HMAC, can achieve 794–113 MH/s. The standardized scheme PBKDF2
increases security with 424–219 KH/s and Bcrypt reduces further the attack rate to 2.8 KH/s.

When the memory-hard Scrypt is applied with sufficient memory consumption, the parallel attack
can be limited to 0.37 H/s. The winner Argon2 can achieve up to 0.04 H/s while Lyra2, which is
one of the most efficient memory-hard finalists, reduces the guessing time of parallel GPU attacks
to 0.0018 H/s.

As is evident, the memory-hard schemes can drastically slow down attackers and the PHC
proposals can provide even higher security. Similar results can be found for other platforms that enable
parallel cracking, like FPGAs and ASICs [14–16].

5.2. Acceptability and Security Issues

After the completion of the PHC and the announcement of the winner, Argon2 attracted all the
attention as the state-of-the-art scheme for password-hashing. Several designers started developing
the scheme in different programming languages and platforms, such as C++/C#, Java, Ruby, Python,
and Nodejs. Most implementations were offered through cryptographic libraries [101] or are provided
by password management tools [46].

On the other hand, the rest PHC schemes sank into oblivion and, in most cases,
no implementations were further developed except from the competition’s reference ones.
Among them, only Lyra2 was implemented in Nodejs [102] and Catena was deployed on embedded
systems with constrain computational capabilities [103].

Meanwhile, Argon2 was submitted for standardization to IETF and further security analysis were
conducted [26]. The results soon revealed weaknesses on the winner that enabled practical attacks,
especially for the Argon2i variant [22–25]. Some of these studies concerned the designing of secure
memory-hard functions and the results may also effected some of the other finalists, like Catena [23].

Thus, a newer scheme, named Balloon, was proposed that offered the proper resistance to these
attacks [24]. The scheme is detailed in the subsection below.

The fact that Argon2 has been revisited several times since its selection, concerns about its early
adaptation. As aforementioned, the scheme was revisited and enhanced protection, overcoming the
Balloon security [25]. Thus, Argon2 is still considered the state-of-the-art scheme since it overcame the
security issues, as it is mentioned in the subsection below.

5.3. Balloon PHS

Balloon is a data-independent memory-hard PHS that provides higher security than the first
version of Argon2i. Balloon is based on random sandwich graphs [22,104]. The t_cost parameter
determines the number of rounds of computation and can be increased to enhance security without
affecting the memory requirements. The m_cost parameter indicates the number of fixed-sized blocks
of the hash function’s working space, as in Scrypt.

Balloon utilizes a standard cryptographic hash function, like Blake2b or BlaMka, as a subroutine.
The working space is a large memory buffer divided into contiguous fixed-sized blocks (same size with
the hash function output). The scheme operates in three steps. At first, the memory is filled up with
pseudo-random bytes that are generated by repeatedly invoking the hash function over the password
and the salt. In the second step, a mixing operation is performed t_cost times over the pseudo-random
bytes in memory. The m_cost represents the total size of the buffer in memory. The content of a block i
is the hash result of the block (i-1) mod m_cost. In the third step, the last block of the buffer is extracted,
representing the final hash result.

The scheme is easy to implement. It is efficient and matches or outperforms the fastest relevant
PHC schemes, like Argon2i and Catena, when the same hash function is utilized.

Balloon can provide second-preimage and collision resistance in a straightforward manner.
The analysis in [25] shows that the latest version of Argon2 significantly upgrades security and
provides better resistance to the attack than Balloon.
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6. Materials and Methods

In this section, the examined PHS are evaluated based on the general functionality that they
offer and a common test-bed suite. The most appropriate of them are proposed for different
application settings.

6.1. General Features

The general properties and the main features of the examined PHSs are analysed in this
subsection. Table A2 (see Appendix B) sums up the attributes of the three mainstream PHSs, the
nine PHC finalists, and Balloon in terms of the core cryptographic components, the internal memory
demands as recommended by their designers, the offered functionality, and the latest attack and
cryptanalysis results.

The core cryptographic components for a PHS include hash functions and symmetric ciphers.
SHA512 and SHA1 are the most commonly utilized hash functions that are used by four and three
schemes respectively. The hash functions BlaMka and Blake2b are adopted by two PHSs and SHA256
is chosen in on scheme. Blowfish and AES block ciphers are used in three and one scheme respectively,
while the Salsa stream cipher is utilized by two schemes. The PHC proposals depend on the
well-studied AES, Blowfish, Salsa, SHA256, SHA512, Blake2b, and SHA1.

Regarding the internal state demands, four PHSs can consume less resources than Bcrypt
(4KB) and only three PHSs consume high amounts of memory as Scrypt (about 1 GB). MAKWA,
Parallel, and Yescrypt have neglectable demands. The internal states for Balloon, Battcrypt, Catena,
and Pufferfish require a few KBs-MBs to operate with Argon/Argon2, Lyra2, and POMELO being able
to process GBs of data.

Two of the main targets of PHC include the PHS and KDF operations. While a finalist, POMELO
is not a KDF and does not offer SR. The rest finalists implement PHS, KDF, and SR. Argon/Argon2,
Battcrypt Catena, Lyra2, Parallel, POMELO, and Yescrypt provide CIU, while MAKWA also supports
password escrow and offline hash upgrade. Balloon works only as PHS and KDF.

6.2. Results—Software Benchmark

The software benchmark is performed on a PC running the 64-bit version of Windows 8.1 Pro
with Intel Core i7 at 2.10 GHz CPU and 8 GB RAM. PBKDF2, Bcrypt, Scrypt, the nine PHC finalists,
and Balloon are executed on cygwin. The C implementations of PBKDF2 by CyaSSL [105], Bcrypt by
openwall [106], and Scrypt-1.1.6 by Tarsnap [107] are installed. For the PHC schemes, the submitted
reference and optimized implementations [82] are examined. For Balloon the reference implementation
is included. The schemes are assessed over the same benchmark suite for hashing 1000 passwords,
measuring the code size, memory consumption, and processing time. Table A3 (see Appendix C)
details the benchmark results, using the default values for password, salt, and output size, and the
indicative t_cost and m_cost values as reported by each scheme. In real settings, these parameters are
determined by the user (e.g., the password length) or the application designer (e.g., the salt and the
output sizes). Nevertheless, the default values reflect to some design considerations of the scheme
designers and they are included for completeness. Also, the default sizes that are proposed by most
schemes intuitively indicate the minimum options that should be supported by a feature application.

The password length is determined by the user and affects the entropy of the hash outcome.
In Balloon and the majority of the finalists (eight PHSs), the default password length is 8 bytes as in
Scrypt. Bcrypt sets the password to 12 bytes and PBKDF2 to 24 bytes. Argon/Argon2 use 32 byte
passwords, which is the longest proposal.

A randomly produced salt obstructs the correlation of hashed passwords that are derived from the
same secret. By default, Battcrypt uses the shortest salt that is 4 bytes long. Balloon and PBKDF2 double
the salt to 8 bytes. Most of the finalists (seven PHSs) apply 16 byte salts as Bcrypt. Argon/Argon2 and
Scrypt utilize the longest 32 bytes salt.
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The initial input passphrase is stretched in all schemes. The final result is safeguarded from
vulnerabilities on low-entropy or short secret values by longer output hashes. On the other hand,
the processing for producing large hashing outcomes slows down the user. Bcrypt outputs 54 bytes
hashed passwords with Argon/Argon2 and Balloon resulting 32 bytes. The rest PHC schemes output
64 bytes, similarly with Scrypt and PBKDF2.

The PHC introduces the cost parameters for time and memory (t_cost and m_cost) in order to
configure the different schemes. No specific norm is imposed for assigning specific cost values. Thus,
each candidate adopts its own convention based on its design structure, with the range values varying
from one scheme to another.

The segment of the consistent memory that is required for a software implementation is defined
by the size of the executable code. PBKDF2, Bcrypt, Battcrypt, Catena, and Yescrypt are appropriate for
constrained devices (low requirements in RAM with less than 36KB of ROM) as they exhibit the most
lightweight implementations. Argon/Argon2, Lyra2, MAKWA, Parallel, POMELO, and Pufferfish
produce moderate code sizes (67–110 KB). Scrypt results large code sizes followed by Balloon and the
optimized implementation of Pufferfish that produce the largest implementations (398–430 KB).

The processing time and the RAM usage determine the runtime requirements of a software
implementation. The execution time and RAM space are derived by the input parameters that are
indicated by the designers of each scheme for secure and efficient operation. Thus, for example, some
schemes are not suggested for low memory consumption or fast processing due to security issues
while others are not proposed for high memory usage due to low performance.

The not RAM-hard PHSs are PBKDF2, Parallel, and MAKWA. PBKDF2 and Parallel need
neglected RAM with MAKWA requiring low RAM levels as Bcrypt. From the rest RAM-hard PHSs,
Battcrypt, Lyra2, and Pufferfish require low to moderate memory. Yescrypt also takes low to moderate
RAM (44 KB–16.46 MB) along with ROM-hard primitives. Balloon operates with moderate memory
consumption settings. Argon/Argon2 and POMELO can operate with low to high RAM settings while
Catena consumes moderate to high RAM.

Speed is affected by the processing capabilities of the system and constitutes a main feature for
choosing software implementations. The computational time that it is required to produce a password’s
hash has to conform to the defender’s tolerance and the communication protocol’s thresholds.

MAKWA, Parallel, and Yescrypt need a few ms to produce the outcome, followed by Bcrypt
and Scrypt that require moderate timings (a few secs). The remaining PHSs, provide higher
degree of adaptability. Battcrypt, Catena, Lyra2, and POMELO takes low to moderate timings
while Argon/Argon2, Balloon, PBKDF2, and Pufferfish support the full range from low to high
execution time.

6.3. Discussion

In this section, the properties of the three mainstream PHSs, the PHC schemes, and the newer
Balloon are analysed. The examined PHSs cover a high variety of different settings and alternative
designs. These PHSs are compared in terms of provided functionality and performance. Then, the least
competitive solutions are indicated and the most secure and suitable primitives are proposed for
different application environments.

As with the design diversion, Argon/Argon2, Balloon, Battcrypt, Catena, Lyra2, POMELO,
Pufferfish, and Yescrypt prefix RAM-hardness. From these schemes, only Argon/Argon2, Lyra2,
and POMELO process high volumes of memory, like Scrypt. The non RAM-hard schemes are
MAKWA and Parallel. MAKWA consumes a constant amount of memory and operates on big
number computations like RSA. Parallel imposes computational hardness and is more efficient than
the related PBKDF2.
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Argon/Argon2, Battcrypt, Catena, Lyra2, Parallel, and Yescrypt implement the full functionality
of PHS, KDF, SR, and CIU. MAKWA and Pufferfish provide PHS, KDF, and SR while Balloon offers
PHS and KDF operations. POMELO is the only finalist that can not function as a secure KDF and
supports only PHS and CIU.

The most well-documented PHSs in terms of security are Catena and Lyra2 while Argon/Argon2,
Balloon, and MAKWA are also analysed. Battcrypt, Parallel, and Yescrypt do not provide proofs for
the claimed security. The protection level for Pufferfish is not fully validated while POMELO does not
support the KDF operation as it produces lower randomness properties.

The code size of the examined PHSs is depicted in Figure 11. Bcrypt, Battcrypt, Catena, PBKDF2,
and Yescrypt result the most lightweight implementations (less than 18 KB RAM and less than
36 KB ROM) and are appropriate for constrained embedded devices, like sensors. Argon/Argon2,
Lyra2, MAKWA, Parallel, POMELO, and Pufferfish produce moderate code sizes with Scrypt taking
about the double code resources. The optimized Pufferfish exhibits a large code-footprint for slightly
better speed than the reference version and Balloon exhibits the largest code size.

Figure 11. The code size of PBKDF2, Bcrypt, Scrypt, the nine PHC finalists, and Balloon.

The most efficient schemes are recorded based on the processing time that is needed for similar
amounts of memory. The speed to memory measurements of the finalists are depicted in Figure 12
for different levels of RAM usage (Table A2). The most efficient memory-hard schemes are Lyra2,
Yescrypt, Catena-BRG, Balloon, Argon2i, and Argon2d, followed by Catena, POMELO, Battcrypt,
Argon, and Pufferfish. The most efficient non RAM-hard scheme is Parallel, followed by MAKWA.

Here, the core drawbacks for some of the finalists are summarized based on the security-related
results and the analysis above. PBKDF2 and Bcrypt are exploited by low-cost parallel password
crackers. Scrypt is vulnerable to cache-timing attacks with relative concerns regarding weak
garbage-collector attacks affecting Battcrypt and Parallel as well as some configuration settings of
Yescrypt. POMELO can not function as KDF due to low randomness properties—a main design goal
for PHC—which obstructed its final selection. Similarly, as Pufferfish’s security features are not fully
validated, security concerns arise.

For typical RAM-hard schemes, Argon2, Lyra2, Catena, Yescrypt, Balloon, and Battcrypt are the
best choices. They are efficient PHSs and KDFs based on speed and memory consumption. This makes
them suitable for general purpose applications. Moreover, the three Argon2, Lyra2, and Catena
implement the full functionality and are documented and well-analysed. Argon2 and Lyra2 function
well on the web domain and offer server-side implementations. Battcrypt resembles Scrypt’s operation
and targets server-side applications. Catena and Yescrypt produce low memory usage and code sizes,
making them appropriate for constraint environments and embedded devices. Yescrypt can also
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replace Scrypt to existing systems. Lyra2 can operate on high amounts of memory more efficiently
than Scrypt and can be deployed by applications for hashing hard-disk files or database backups.

Parallel is one of the fastest PHSs and the most appropriate non RAM-hard proposal for web
services and general applications. The scheme takes advantage of the computational capabilities of
modern CPUs and is optimized for parallel execution while implementing the full functionality.
MAKWA uses similar amounts of memory as Bcrypt and it is two to four magnitudes faster.
The security is better analysed and documented than Parallel and the scheme can replace Bcrypt
in general password-hashing environments.

Figure 12. PHS—Speed to RAM comparison.
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7. Conclusions

The maintenance of user passwords is an important factor related to the provided security
of a service. Security breaches on popular services have revealed high volumes of user
information, damaging the providers’ credibility. The poor password-hashing practices and the
limited robust solutions led the international cryptographic community to conduct the Password
Hashing Competition (PHC). The result was a small portfolio of novel and secure proposals for
password-hashing and key-derivation. This paper provides a comparative analysis among the
currently available solutions until the first quarter of 2017. Password-hashing schemes are reviewed
with software implementations of totally 19 schemes being evaluated under a common platform.
The general properties of each scheme are analysed and a benchmark analysis is held. The best
schemes that excel are notified, in terms of the overall security and efficiency, and are mapped in
different types of application settings. For RAM-hard solutions, Argon2, Lyra2, Catena, Yescrypt,
Balloon, and Battcrypt are the best choices. For non RAM-hard schemes, MAKWA and Parallel
are suggested.
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The following abbreviations are used in this manuscript:

Battcrypt Blowfish All The Things
BRG Bit-Reversal Graph
CIU Client-Independent Update
DBG double-butterfly graphs
EksBlowfishSetup Expensive Blowfish key schedule
H/s Hashes per second
HMAC Keyed-Hash Message Authentication Code
KDF Key Derivation Function
PBKDF2 Password-Based Key Derivation Function 2
PPBKDF Parallel password based key derivation function
PRF Pseudo-Random Function
PHC Password Hashing Competition
PHS Password-Hashing Scheme
PKCS Public-Key Cryptography Standards
SIMD Single Instruction Multiple Data
SR Server relief
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Appendix A. This Appendix Summarizes the GPU Results of Several PHSs

Table A1. GPU measurements.

PHS Hashes per Second (H/s) GPU Model

SHA1 [108] 794,600,000.00 ATI HD 6870
HMAC-SHA1 [108] 395,210,000.00 ATI HD 6870

SHA2 [109] 290,000,000.00 NVIDIA GRID K520
SHA3 [110] 113,116,250.00 NVIDIA GeForce GTX580

PBKDF2-SHA1[108] 424,780.00 ATI HD 6870
PBKDF2-SHA2 [14] 219,480.00 NVIDIA Tesla C2070

Bcrypt [108] 2868.00 NVIDIA GeForce GTX480
-||- 319.37 NVIDIA GeForce GTX480
-||- 33.73 NVIDIA GeForce GTX480
-||- 2.71 NVIDIA GeForce GTX480

Scrypt [108] 42,650.00 NVIDIA GeForce GTX480
-||- 2333.00 NVIDIA GeForce GTX480
-||- 49.06 NVIDIA GeForce GTX480
-||- 0.37 NVIDIA GeForce GTX480

Argon2 [111] 2.64 AMD Radeon HD 7900
-||- 0.70 AMD Radeon HD 7900
-||- 0.04 AMD Radeon HD 7900

Lyra2 [112] 2688.00 NVIDIA Tesla K20X
-||- 300.00 NVIDIA Tesla K20X

Lyra2 [113] 0.018 NVIDIA GeForce GTX TITAN
-||- 0.0018 NVIDIA GeForce GTX TITAN

Appendix B. This Appendix Summarizes the General Features of the Examined PHSs

Table A2. PHS details.

PHS Cryptographic
Primitives Internal Memory Functionality Security

Analysis/Attacks

PBKDF2 PRF (HMAC-SHA1) negl. PHS, KDF

GPU and FPGA
attacks [14],
multi-FPGA
attacks [15]

Bcrypt Blowfish 4 KB PHS, KDF

Attacks in several
low-cost parallel
platforms [16]

Scrypt PBKDF2 HMAC, Salsa20/8 1 GB PHS, KDF

Security analysis [9],
Attacks on GPUs [17],
Cache-timing
attacks [18],
Garbage-collector
attacks [19]

Balloon Blake2b 1 MB–32 MB PHS, KDF Security
analysis [9,25]

Argon AES128 1 KB–1 GB PHS, KDF, SR,
CIU Security analysis [83]

Argon2d BlaMka 200 MB–4 GB PHS, KDF, SR, CIU

Security analysis [84],
effective
attacks [22–25]
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Table A2. Cont.

PHS Cryptographic
Primitives Internal Memory Functionality Security

Analysis/Attacks

Argon2i BlaMka 1 GB–6 GB PHS, KDF, SR, CIU

Security analysis [84],
effective
attacks [22–25]

Battcrypt Blowfish-CBC, SHA512 128 KB–128 MB PHS, KDF, SR, CIU
Security claims [85],
weak
garbage-collector [96]

Catena Blake2b/SHA512 8 MB PHS, KDF, SR, CIU Security analysis [19],
effective attacks [23]

Catena-DBG Blake2b/SHA512 4 MB PHS, KDF, SR, CIU Security analysis [19],
effective attacks [23]

Catena-BRG Blake2b/SHA512 128 MB PHS, KDF, SR, CIU
Security analysis [19],
effective attacks [23]

Lyra2 Blake2b / BlaMka 400 MB–1 GB PHS, KDF, SR,
CIU Security analysis [87]

MAKWA HMAC_DRBG, SHA256 335 KB

PHS, KDF, SR,
offline hash
upgrade,
password escrow

Security analysis [88],
Optimization on
GPU and CPU [99]

Parallel SHA512 negl. PHS, KDF, SR, CIU

Security claims [89],
weak
garbage-collector [96]

POMELO - 8 KB, 256 GB PHS, CIU Security analysis [90]

Pufferfish Blowfish,
HMAC-SHA512 4 KB–16 KB PHS, KDF, SR Security claims [91]

Yescrypt Scrypt 3 MB (RAM),
3 GB (ROM) PHS, KDF, SR, CIU

Security claims [92],
garbage-collector and
weak
garbage-collector [96]

Appendix C. This Appendix Includes the Evaluation Results for the Examined PHSs

Table A3. Software implementations of PBKDF2, Bcrypt, Scrypt, the nine PHC finalists, and Balloon.

PHS Password Salt Output t_cost m_cost ROM RAM CPU(bytes) (bytes) (bytes) (KB) (KB)

PBKDF2 24 8 64 1000 0 30 0 0.002024
PBKDF2 24 8 64 2048 0 30 0 0.004150
PBKDF2 24 8 64 4096 0 30 0 0.008141
PBKDF2 24 8 64 10,000 0 30 0 0.019386
PBKDF2 24 8 64 1,000,000 0 30 0 1.908592
PBKDF2 24 8 64 16,777,216 0 30 0 32.969576

Bcrypt 12 16 54 12 0 27 492 2.668653

Scrypt 8 32 64 5 0 182 450,656 2.837654
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Table A3. Cont.

PHS Password Salt Output t_cost m_cost ROM RAM CPU(bytes) (bytes) (bytes) (KB) (KB)

Balloon 8 8 32 8 1,048,576 430 3384 0.443758
Balloon 8 8 32 10 1,048,576 430 3428 0.807338
Balloon 8 8 32 20 1,048,576 430 3432 1.328957
Balloon 8 8 32 40 1,048,576 430 3440 2.20058
Balloon 8 8 32 8 2,359,296 430 4716 1.175839
Balloon 8 8 32 10 2,359,296 430 4728 1.364459
Balloon 8 8 32 20 2,359,296 430 4730 2.315945
Balloon 8 8 32 8 4,194,304 430 6504 2.017822
Balloon 8 8 32 10 4,194,304 430 6588 2.358291
Balloon 8 8 32 20 4,194,304 430 6648 4.446284

Argon 32 32 32 3 2 82 192 0.008917
Argon 32 32 32 254 1 82 144 0.037167
Argon 32 32 32 236 10 82 172 0.285078
Argon 32 32 32 56 100 82 244 0.674987
Argon 32 32 32 3 1000 82 1216 0.551141
Argon 32 32 32 3 10,000 82 10,172 5.520845
Argon 32 32 32 3 100,000 82 100,168 55.457062

Argon2d 32 32 32 3 2 110 44 0.000524
Argon2d 32 32 32 254 1 110 44 0.028593
Argon2d 32 32 32 236 10 110 68 0.026851
Argon2d 32 32 32 56 100 110 136 0.077891
Argon2d 32 32 32 3 1000 110 1064 0.043209
Argon2d 32 32 32 3 10,000 110 10,112 0.434536
Argon2d 32 32 32 3 100,000 110 100,064 4.325295

Argon2i 32 32 32 3 2 111 40 0.000522
Argon2i 32 32 32 254 1 111 40 0.028412
Argon2i 32 32 32 236 10 111 44 0.045702
Argon2i 32 32 32 56 100 111 136 0.080158
Argon2i 32 32 32 3 1000 111 1088 0.042961
Argon2i 32 32 32 3 10,000 111 10,112 0.431438
Argon2i 32 32 32 3 100,000 111 100,064 4.194904

Battcrypt 8 4 64 0 0 27 18 0.000310
Battcrypt 8 4 64 1 0 27 18 0.000394
Battcrypt 8 4 64 1 1 27 30 0.000760
Battcrypt 8 4 64 1 2 27 42 0.001987
Battcrypt 8 4 64 1 3 27 74 0.004286
Battcrypt 8 4 64 1 4 27 138 0.016476
Battcrypt 8 4 64 1 5 27 266 0.022355
Battcrypt 8 4 64 1 6 27 520 0.045729
Battcrypt 8 4 64 1 7 27 1000 0.091153
Battcrypt 8 4 64 1 8 27 2000 0.149327
Battcrypt 8 4 64 1 9 27 4000 0.254832
Battcrypt 8 4 64 1 10 27 8000 0.418654
Battcrypt 8 4 64 1 11 27 16,000 0.766934
Battcrypt 8 4 64 1 12 27 32,000 1.472502
Battcrypt 8 4 64 1 13 27 64,000 2.853102
Battcrypt 8 4 64 2 1 27 25 0.001090
Battcrypt 8 4 64 3 1 27 25 0.001630
Battcrypt 8 4 64 4 1 27 25 0.002192

Catena–blake2b 8 16 64 3 18 25 16,384 0.353742
Catena–blake2b 8 16 64 3 20 25 65,596 2.619238
Catena–blake2b 8 16 64 3 21 25 128,484 5.461030
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Table A3. Cont.

PHS Password Salt Output t_cost m_cost ROM RAM CPU(bytes) (bytes) (bytes) (KB) (KB)

Catena–Dragonfly 8 16 64 3 18 34 16,496 0.093241
Catena–Dragonfly 8 16 64 3 20 34 65,764 0.379892
Catena–Dragonfly 8 16 64 3 21 34 131,428 0.797481

Catena–Butterfly 8 16 64 3 18 35 24,668 1.450987
Catena–Butterfly 8 16 64 3 20 35 98,448 6.402041
Catena–Butterfly 8 16 64 3 21 35 196,852 13.508681

Lyra2 8 16 64 5 5 98 44 0.000084
Lyra2 8 16 64 5 100 98 696 0.001463
Lyra2 8 16 64 5 1000 98 6104 0.015104
Lyra2 8 16 64 5 10,000 98 60,128 0.159651
Lyra2 8 16 64 5 131,071 98 787,416 2.916398

MAKWA 8 16 64 0 0 95 335 0.000096
MAKWA 8 16 64 10 0 95 335 0.000132
MAKWA 8 16 64 100 0 95 335 0.000273
MAKWA 8 16 64 1000 0 95 335 0.002035
MAKWA 8 16 64 4000 0 95 335 0.007838
MAKWA 8 16 64 8192 0 95 335 0.015621

Parallel 8 16 64 0 0 71 0 0.001000
Parallel 8 16 64 0 10 71 0 0.001018
Parallel 8 16 64 10 0 71 0 0.047020
Parallel 8 16 64 10 10 71 0 0.047051

POMELO 8 16 64 0 0 67 12 0.000031
POMELO 8 16 64 0 7 67 1064 0.003537
POMELO 8 16 64 0 17 67 1,048,648 7.951508
POMELO 8 16 64 7 0 67 12 0.001270
POMELO 8 16 64 7 7 67 1064 0.171375
POMELO 8 16 64 20 0 67 12 8.504152

Pufferfish–ref 8 16 64 0 0 103 156 0.000057
Pufferfish–ref 8 16 64 6 2 103 120 0.003359
Pufferfish–ref 8 16 64 6 10 103 1192 2.225718
Pufferfish–ref 8 16 64 10 10 103 1188 38.341005
Pufferfish–ref 8 16 64 6 11 103 2236 19.884300

Pufferfish–opt 8 16 64 0 0 398 220 0.000055
Pufferfish–opt 8 16 64 6 2 398 180 0.002980
Pufferfish–opt 8 16 64 6 10 398 1140 2.183917
Pufferfish–opt 8 16 64 10 10 398 1132 37.668099

Yescrypt-ref 8 16 64 0 0 36 44 0.000094
Yescrypt-ref 8 16 64 0 7 36 1516 0.004173
Yescrypt-ref 8 16 64 0 8 36 2112 0.007209
Yescrypt-ref 8 16 64 1 8 36 2112 0.008901
Yescrypt-ref 8 16 64 2 8 36 2112 0.012088
Yescrypt-ref 8 16 64 3 8 36 2112 0.015313
Yescrypt-ref 8 16 64 0 11 36 16,448 0.058253

Yescrypt-opt 8 16 64 0 0 44 72 0.000116
Yescrypt-opt 8 16 64 0 7 44 1148 0.003296
Yescrypt-opt 8 16 64 0 8 44 2124 0.005796
Yescrypt-opt 8 16 64 1 8 44 2124 0.006885
Yescrypt-opt 8 16 64 2 8 44 2124 0.009448
Yescrypt-opt 8 16 64 3 8 44 2124 0.011544
Yescrypt-opt 8 16 64 0 11 44 16,460 0.046733
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