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Abstract: Cooperation between networked mobile sensors, wearable and sycophant sensor 
networks with parasitically sticking agents, and also having human beings involved in the 
loop is the “Avatarization” within the robotic research community, where all networks are 
connected and where you can connect/disconnect at any time to acquire data from a vast 
unstructured world. This paper extensively surveys the networked robotic foundations of 
this robotic biological “Avatar” that awaits us in the future. Cooperation between 
networked mobile sensors as well as cooperation of nodes within a network are becoming 
more robust, fault tolerant and enable adaptation of the networks to changing environment 
conditions. In this paper, we survey and comparatively discuss the current state of 
networked robotics via their critical application areas and their design characteristics. We 
conclude by discussing future challenges.  
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1. Introduction 

Sensor networks are relatively young and a challenging area of research. Their primary aim is to 
collect and communicate environmental data for cooperatively monitoring and controlling their 
physical surroundings. Figure 1 shows how research on mobile sensor networking has proliferated in 
the last decade especially due to advances in computation, communication, sensing and actuation 
technologies. Mobile sensor networks, which are composed of navigating units such as heterogeneous 
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robots and unmanned air or ground vehicles, transmit data through wireless communication 
networking. These units can typically communicate with each other via implicit or explicit 
communication techniques. Many applications have emerged in a variety of fields such as wide area 
surveillance, reconnaissance, search and rescue in disaster environments, and planetary exploration, 
which are overviewed in Section 2. 

Figure 1. The number of publications on mobile sensor networking research in the Web of 
Science from 1995 to 2009. 

 
The focus of this survey is mainly on networked mobile sensors, which have various advantages in 

comparison with static ones. The most prominent advantages reside in the cooperation between 
different robot networks as well as the cooperation of robots within a single network. Sensing, acting, 
communication, computation and locomotion capabilities of networked mobile sensor systems  
result in improved efficiency in the execution of hard tasks especially with the help of their mobility  
capability [1]. As a counter example, monitoring and surveying an uncertain environment using static 
sensor networks is done through the acquisition and fusion of data by static nodes to the extent of their 
spread over the area [2,3]. The major problem faced for reconnaissance tasks is inefficiency in area 
coverage [4–6], since deployment control during the spreading of static nodes is weak or non-existent. 
Static sensor networks are spread over an area using airplane, land vehicle, human or animal, and so 
sensor coverage is heterogeneous. This problem has been overcome by using mobile sensor networks, 
which are composed of simple mobile robot units deployed over the area for controlled coverage that 
can be further optimized during network deployment and be still modified under task changes. Mobile 
sensor networking requires a large number of sensor nodes to be deployed within an environment for 
efficient surveillance, monitoring, data harvesting and search tasks [7–11]; efficient coordination is 
critical for accomplishing a given task with a large number of networked robot units. We undertake a 
survey of the evolution of the abilities of mobile sensor networks that have been achieved over the 
years as reflected in the literature. This will be the focus in Section 3, namely coordination control, 
fault tolerance, seamless communication, holonic reconfigurability and scalability. 

Despite those advantages, there are some shortcomings of mobile sensor networks. They face the 
problem of deployment and adaptive coverage, which are energy devouring processes, by each mobile 
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unit of the sensor networks [12], and mobile sensors are more expensive than static ones. A 
considerable amount of energy must be spent for the locomotion task, and so the lifetime of the 
network is very limited, i.e., a given task has to be accomplished within a very constrained time frame. 
Changing a mobile wireless sensor network system into a hybrid union of static and mobile sensor 
subnetworks, cooperating for efficient deployment and coverage in an energy saving mode, makes the 
usage of hybrid sensor networks a more tempting architecture in order to improve the efficiency of the 
system. The main idea in hybrid network systems is that mobile nodes collaborate with the stationary 
ones. Existing works in the literature about hybrid sensor networks are overviewed in Section 4. 
However, the joining of static sensor subnetworks with mobile ones shifts the load of correcting the 
heterogeneity of the coverage that static subnetworks inherently exhibit, to the nodes of the mobile 
subnetwork. This compensation increases the energy need, thus decreasing the efficiency. A recently 
emerged novel concept of Sycophant Wireless Sensor Networks (SWS) was developed as static sensor 
networks that are equipped with limited mobility ability and these are overviewed in Section 4. A SWS 
network is a clandestine traveler that passively uses the mobility of carrying agents to collect, process, 
and communicate data harvested during the agent’s navigation. However, it cannot in any 
circumstance guide or influence the motion of the carrying agents.  

Nowadays, mobile sensor networks are increasingly gaining new abilities with emerging new 
hardware, software and biologically inspired approaches. In turn, many future scientific challenges 
exist in the networked mobile sensor research area such as biologically inspired self-organizing robot 
networks, completely decentralized controller networks, scalability, heterogeneous robot networks 
which can cooperate with humans and intelligent environments. In this paper, we provide a 
comparative survey of existing approaches based on the span of their focus and their advantages or 
disadvantages brought to this field of interest and we dwell on potential future challenges of networked 
mobile sensors in Section 5. 

2. Application of Networked Mobile Sensors  

This section attempts not only to go over the abilities attributed over the years to mobile networked 
robot systems, such as simultaneously localization, mapping, exploration and surveillance, but also to 
overview critical applications of networked robots, including search and rescue operations in 
hazardous areas hostile to humans and military applications with strategically tasks.  

2.1. Simultaneous Localization, Mapping and Exploration 

Autonomous environment mapping and exploration are important missions for real world 
applications where global position data (GPS) is not available, such as semi-collapsed buildings due to 
an earthquake. In simultaneous localization, mapping (SLAM) and exploration missions, robots try to 
answer the questions of “What does the world look like?”, “Where am I?” and “Where do I have to go 
next?” by using noisy range sensor measurements and noisy travelled distance measurements coming 
from encoders, obtained from unknown environments. This is a chicken–and–egg like problem, which 
makes the problem difficult to solve; each robot needs an accurate environment map to localize itself 
accurately in the work space, but robots also require their exact position to generate an accurate 
environment model. 
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Smith et al. [13] proposed an Extended Kalman Filter (EKF) method for estimating the posterior 
distribution over robot position along with the positions of landmarks in the work environment. It is an 
initial work that established the fact that there is a statistical relationship between each landmark 
location and observations. Assumptions made by a Kalman Filter (KF) are that noise in the system is 
Gaussian distributed with zero mean and the process is linear. These are quite error prone 
considerations for complex real world applications. Linearity constraint is handled by the extended 
version of KF, namely the Extended Kalman Filter (EKF), which is used considerably for the solution 
of SLAM problems in the literature [14–16]. Although EKF based SLAM methods are historically the 
earliest used approaches that work well for environments in which there are limited number of 
features, computational complexity increases with an increasing amount of features. Hence, 
computation burden and Gaussian assumption in the probability density function are the shortcomings 
of the EKF based SLAM algorithms [17,18]. 

An alternative particle filter (PF) based method for SLAM problem was introduced by Montemerlo 
et al. [17,19]. Particle filter based approaches are approximations of Bayesian filters such that 
probability distributions are approximately quantized by a finite set of particles [20]. Thus, arbitrary 
multimodal distributions can be approximated by using a sufficient amount of particles. The most 
advantageous characteristics of PF for SLAM problems are the abilities of handling nonlinearities and 
non-Gaussian noise. However computational complexity increases with the number of particles, which 
makes the real-time implementation of PF difficult in complex and hard real world applications. 
Hence, the FastSLAM method, which is a modified version of PF, has been proposed to handle the 
computational burden in classical particle filter methods so as to successfully be implemented on real 
robots [17]. This proposed method utilizes a Rao-Blackwellized representation which integrates PF 
and KF representations. FastSLAM uses PF to estimate the robot navigation path and each particle 
runs EKF to estimate map feature locations. Since each particle generates an individual map 
representation of the work environment, the FastSLAM algorithm suffers from memory constraints. To 
improve the memory efficiency of the method, genetic algorithm based improved Rao-Blackwellized 
approaches are proposed by Feng et al. [21]. 

In order to increase the accuracy and efficiency of SLAM algorithms, putting emphasis to better 
map building of the unknown work environments, networked robot teams have been equipped with 
map merging capabilities [22]. Each robot extracts a partial map of a different portion of the large 
environment and those partial maps are merged into a single joint map to speed up the mapping 
process. SLAM problem becomes complex in the phase of data fusion, integrating the different partial 
maps into a global one based on the cooperation of robot units. Burgard et al. [23] addressed the multi-
robot mapping problem under the constraint that each robot has the initial position and orientation 
information of all group members, and all robots share their motion and range measurements with 
other robots to generate a single joint environment map. This assumption makes the proposed solution 
unrealistic in real world applications, especially in the case of a limited communication range between 
robots and because initial robot localizations and orientations are not exactly known. Generally, the 
initial position of the robots will not be known as a priori information and this initial uncertainty 
generates a crucial question as to how to merge partial maps obtained by different robot units. In [24], 
Carpin et al. presented such a map merging case for multi-robot network by rotating and translating the 
partial maps of the environment developed by each robot unit until similar regions overlapped. 
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Although the presented methodology can merge partial maps successfully into a joint global map, it is 
not suitable for real-time applications because of time inefficiency. If spectral information of the 
partial maps is used as in [25], joining partial maps of large environments can be more accurate and 
fast. There, map merging is evaluated in two separate steps: the first uses rotation transformation 
calculations, and then translations in the x and y direction are extracted. Orientation estimation is done 
using Hough spectrum and translation is computed via basically the pixel intensity value projections 
on the x and y axes of the environment maps. In order to successfully fuse partial maps, it is necessary 
that the individual robot maps being merged have a significant degree of overlapping region and the 
work area must be well structured, such as in the case of indoor environments. Finally, each generated 
map must be in the same scale. These are the shortcomings of existing works concerning merging 
partial environments maps. 

The generation of 3D maps by robots about their work environment is a crucial mission for high 
level and complex task executions such as carrying a buried victim within the debris or exploring 
mines where safety of navigation for the robot can only be achieved by extracting the 3D model of the 
work area. In [26], Thrun presented an approach to construct 3D occupancy grid models of the outdoor 
terrain by using 2D laser range finders that are mounted on a remotely controlled helicopter to learn 
the 3D representation of the outdoor environments. Although, flying robots increase the mobility in 
complex and natural terrains, surfaces are sensed only once, which is the limitation of their work, since 
establishing connections between previously mapped areas is a critical issue for map fusion and those 
correspondences are generated by revisiting mapped areas. Recently, some works have been proposed 
to use vision systems for SLAM, where image based data fusion is found to be more practical and 
natural due to fact that vision systems are cheaper than range scanners and more quality information 
can be obtained using cameras. Visual SLAM methods [27–29] can be classified in terms of stereo and 
monocular approaches to extract 3D visual landmarks from the environment. Feature initialization is 
an important problem in monocular systems. However, features cannot be initialized exactly into the 
existing map using only one measurement because of their unknown depth values, thus Davison  
et al. [30] proposed a delayed initializing methodology using a monocular approach in which the 
algorithm waits until the camera position has enough parallax to determine the feature’s position. The 
proposed algorithm needs a particular depth interval in the features, which cannot be met in the real 
world, where feature depths can be very near. This renders the algorithm not efficiently applicable in 
real world applications. They also use corner-like features due to the fact that data association is 
relatively easy for corners. However, in the environments where limited numbers of corners exists 
such as corridors or areas with a high number of smooth surfaces, this monocular SLAM system can 
crash. Because of the aforementioned disadvantages of monocular SLAM, stereo camera systems have 
been used to provide more robust 3D maps [31]. Gil et al. performed a visual SLAM using a Rao-
Blackwellized PF with autonomous networked robot teams. In their system, each robot is equipped 
with a stereo camera that provides relative measurements between landmarks, which are then used for 
data association. This paper is the first work regarding the building of a common 3D map of the 
environment by using visual measurements provided by multi-robot team. However, this method is 
only suitable for robot networks with a small number of units, because the computation burden grows 
significantly with the amount of robots involved. The proposed algorithm is also not suitable for 
outdoor operations since robot navigation is restricted to 2D motion: when robot motion capability is 
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extended from planar to 3D, the size of the state vector increases leading to an increase of the 
computational burden exceeding any acceptable limit for online applications. 

Another important task for networked robots in the mission space is exploration. Unfortunately, 
numerous researches are using single robot systems to simultaneously explore and create maps in an 
unknown environment such as search and rescue areas [32–35]. The most important disadvantage of 
single robot usage is that it takes much more time than networked robot systems. Time efficiency in 
the distributed system comes from task partitioning and coordination between robot units. Coordinated 
multi-robot systems win over single robot approaches, dealing with limited communication range, map 
merging into a better global map of the workspace and better time constraints [36,37]. To date, the 
major portion of coordinated exploration works has focused upon coverage of an entire area in 
minimum time [38,39]. These techniques are based on the selection of the best next observation point 
for each robot in order to reduce the uncertainty of the environment map. Frontier cells, which are the 
cells on the borders between explored and unknown space, are taken as possible next observation 
points. Existing methodologies only dwell on SLAM solutions that minimize only the cost of reaching 
the target observation point and expected information gain. Entropy based methodologies are geared 
towards optimal data acquisition for localization but with very limited exploration.  

No guidance to the robots about the purpose of the exploration mission therefore exists. Any 
additional information about the aim of the exploration, such as prior information about the work 
environment, can be a valuable guidance for the exploration. Preferred regions with the highest 
likelihood for finding victims can give a priority to the exploration, called prioritized exploration. We 
have developed an active exploration methodology based on percolation guidance, where a percolator 
estimates the existence of connected voids in the upcoming yet unexplored region ahead of the robot, 
so as to increase the efficiency of the reconnaissance operation by the superior ability of the percolator 
guidance for speedy coverage of the area [40–42]. However, proposed prioritized exploration 
approaches coverage does not become solely a primary issue. There, space coverage and time 
optimization are mainly aimed through guidance, based on either prior knowledge, or on extra 
information reflecting the characteristics of the environments that lead to the estimation of connected 
voids by a percolator for the areas to be explored. These techniques have high map coverage accuracy, 
while being adversely affected by errors in robot localization that would be minimized if exploitation 
was done. On the other hand, entropy based SLAM methods put exploitation as their primary goal, and 
exhibit poor coverage while achieving high localization accuracy. Percolation enhanced entropy based 
SLAM harnesses both exploration and exploitation by switching between the two under a switching 
controller, depending upon whether position or map accuracy is needed during FastSLAM [42]. 

2.2. Surveillance 

In the past decade, terrorist attacks have raised some new research issues like that of surveillance 
using networked autonomous vehicles. Surveillance is the mission of observing the movements of 
targets navigating in a risky urban environment, such that robots can be considered to assume the role 
of security guards. Static sensor network approaches have been commonly used for such missions, but 
they were found to fail in complex applications such as surveying dynamic and open areas. The 
reasons for failure are generally about the limited sensing range of the sensing devices, the very large 



Future Internet 2010, 2            
 

 

369

work space to be covered during observations and the non-existence of prior knowledge about how to 
deploy the sensors [43,44]. Nowadays, networked mobile sensor systems are widely used for 
surveillance missions because of the decreasing cost of the autonomous platform development and the 
increasing abilities in navigation, sensing and computation [45]. Surveillance missions generally 
include target detection and tracking, under the coordination of mobile robots of the network. 

Especially in video based surveillance methods, target detection is a considerably problematic issue 
because of natural, uncontrolled environmental conditions such as scene variety and illumination. Li  
et al. [46] used a hybrid Gaussian mixture model with temporal frame difference for detecting moving 
objects in environments where illumination can change suddenly. Their approaches also handle wrong 
labeling, which occurs when targets come at very close proximity to each other using a “record” 
strategy. Another research area dealing with surveillance is the physical tracking of targets, which 
involves continuously adjusting velocities of robots in order to keep track of the target within the 
viewing distance of the tracker robot. Sarwal et al. [47] handled the tracking of a target using multi 
robot systems, using a reference list that a robot maintains, so that it does not track an encountered 
target if that target is being tracked by another team member.  

Parker [48] developed a distributed coordination control strategy that observes the movements of 
targets in the task area for being processed by networked robot systems. This work is the first research 
regarding multi-robot surveillance in complex and geometrical environments. Mobility and 
cooperation abilities provide successful task accomplishment despite a robot’s limited sensing range. 
Robots can follow targets using local force vector based methodology and these vectors also handle the 
consistency problem of observing a target by multiple robots using a back force. The given algorithm 
minimizes the total time in which targets can escape from the pursuit by some robot team member in 
the area of interest, which is an important real-time need in unknown and dynamic environments. The 
limitation of the method relates to the work environment: the algorithm works only in areas without 
obstacles or where only a few simple convex obstacles exist, since the algorithm is very sensitive to 
detection errors. A distributed coordination control algorithm for surveillance missions by multiple 
robots was presented by Kolling and Carpin, whose method is an extension of the work by Parker [49]. 
Their algorithm, named Behavioral Cooperative Multi-robot Observation of Multiple Moving Targets 
(B-CMOMMT), is based on Explore and Help behaviors that keep the targets under observation by 
utilizing information supplied by sensors. However, this method also suffers from constraints of the 
operation environment. Kolling and Carpin [50] later presented a graph theoretic solution to the 
environmental problem encountered in their previously referred work, by modeling the complex work 
area as a graph. In their model, the environment is partitioned into nodes and their Graph-Clear module 
determines the minimum number of robots needed to mark all targets. Consequently, robots coordinate 
their actions to achieve this goal of marking targets in the graph modeled complex environment.  

Surveillance is not only done by groups of ground vehicles, but also is done by air vehicles. The use 
of networked Unmanned Air Vehicles, in short UAV, has potential benefits since they can cover very 
large and remote areas and they can identify very small targets via technologically-advanced cameras. 
Heterogeneous networked unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) 
are used for searching targets in predetermined large battlefield operation areas as introduced by 
Grocholsky et al. [51]. Aerial and ground vehicles have complementary capabilities and 
characteristics. Networked air vehicle teams can cover large areas much quicker than ground vehicles. 



Future Internet 2010, 2            
 

 

370

However, air vehicles cannot exactly localize targets because of altitude and limitations in the 
resolution of sensing devices. At that point, ground vehicles help them by using their high resolution 
sensors for localization process.  

Feasible path planning for each vehicle in the network and strategy generation for obstacle 
avoidance are other research issues within surveillance operations which critically affect the efficiency 
of time and energy of the system performance. Multi-robot path planning, for example, generally 
causes multiple area coverage creating redundancy of exploration, which can turn into advantages for 
correcting errors in mapping. However, time and energy have to be consumed for building such 
accuracy in mapping by error correction based on redundancy. If time and energy become primary 
issues, multiple area coverage should be prevented when it is detected by the algorithm. 
Decentralization is the main cause for this need of compensation. Authors have tried to provide 
centralization to some local problems of networked mobile robotics. Cai and Peng [52] used a novel 
adaptive genetic algorithm based cooperative path planning algorithm for networked robot systems. 
Although the proposed algorithm is robust for convergence, it is a centralized method and suffers from 
the limitations of centralization such as computation burden and single point failure. On the contrary, 
Berg and Overmars [53] gave a decentralized prioritized motion planning method for various types of 
robot platforms such as flying and wheeled robots or manipulators. A priority is assigned to each 
robot, then a robot is selected according to the highest priority and a feasible path is planned for that 
selected robot, considering also dynamic obstacles inside the work environment. 

2.3. Search and Rescue Operations 

One of the main application areas for mobile robot teams is search and rescue operations in disaster 
environments. Different kinds of catastrophe occur in nature such as earthquakes, landslides and fires. 
Usage of networked robot systems is of great importance under these disaster situations [54]. Robots 
consistently help humans in dangerous and complex tasks, providing information about areas that 
cannot be directly reached by the humans, especially in disaster areas, which are typically highly 
unstructured and uncertain. Search and rescue teams of living humans have the main disadvantage of 
tiredness from continuous and tedious long hours of works, so robotic aids are increasingly being 
considered in search and rescue tasks [40]. Networked mobile robots show promise to be a highly 
versatile system for disaster reconnaissance, building the inventory of the disaster while searching  
for survivors.  

The most important search and rescue task for networked robot teams in a disaster environment is 
the localization of victims within the disaster rubble, so as to provide information about the condition 
of detected possible survivors in the disaster areas not easily reachable by humans. Heterogeneous 
networked robot teams were constructed by Sato et al. [55] to cooperatively control each other to find 
survivors. The heterogeneous rescue teams are composed of three kinds of robots, each of them 
equipped with different abilities: MA-I is a track type inspired from tanks and is remotely controlled 
by an operator over a radio signal, IGA is a track type with flippers, which gives the ability of 
navigation in rough terrain, and KOHGA is a snake-like robot. Differently structured robots are used to 
improve mobility with the help of the robots’ flippers, snake-like motion and the capability of physical 
support. For example, when a robot is trapped into the rough terrain by obstacles and cannot recover its 
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mobility, other robot team members can give physical support to the trapped robot to escape from its 
failed position. This improved robustness in mobility has promising capabilities for safe navigation in 
challenging unstructured environments.  

Task execution, like for exploration, mapping and navigation, can be very difficult due to the 
structural characteristics of the disaster environments. Networked robot systems can handle these 
difficulties, not only by using information sharing but also by reshaping their morphology and passing 
some components to each other; this is called force cooperation in the literature. These networked 
robots are called reconfigurable robots and can execute complex tasks that the information-only 
coordinated robot team with fixed structure cannot execute [56,57]. Reconfiguration capability 
provides flexibility to the robot team when accomplishing difficult tasks in urban search and rescue 
missions such as transportation of victims in the catastrophe area and helping other failed robots in the 
team to recover, or coverage of the failed robots in accomplishing the rest of the given mission [56]. 
Wang et al. [57] investigated force cooperation between networked robots to enhance the mobility of 
the team. The proposed networked robot system can dock and adjust each team member’s position and 
orientation according to other robots’ states to easily execute a given task using force cooperation. 
Hard environmental conditions such as hills and being trapped in a trench are handled by using this 
docking skill.  

Another problem for search and rescue teams is the mechanical development of robot platforms, 
since some of the robots need to be small and have high mobility while others need be powerful and 
robust. Simple small devices are used for debris exploration making use of their high maneuvering 
capabilities and powerful robotic devices are used for treating heavy debris, opening passages and 
carrying victims out of collapsed buildings. There are various types of rescue robots, being either 
autonomous or human operated [58–60]. The Helios VII arm-equipped tracked vehicle is a simple yet 
robust robot developed by Guarnieri et al. [58] to explore debris. It has a mounted arm that assists the 
motion of the robot and can also be used for manipulation. The robot navigates through very harsh 
environments with the help of its tracks. Turned upside down, it is able to flip over using the mounted 
arm. In [59], Tanaka et al. reported a high power rescue robot to move big obstacles and to carry a 
victim out of debris as soon as possible using a high-pressure hydraulic actuator. After the localization 
of victims by a small robot with a high capability for maneuver, powerful robots carry the survivor out 
of the debris or helps human beings in the transportation of heavy obstacles.  

Existing networked mobile robot systems are not yet fully operable during real and hard catastrophe 
management activities due to limitations of the sensing, navigation and decision making capabilities of 
mobile sensors and robots.  

2.4. Military Applications 

National military forces always try to use technological developments to reduce the risk of soldier 
death and injury by producing highly technological weapons and vehicles. These reasons make the 
military field a very reasonable application area for robotic systems. Walking through minefields, 
surveying borders, executing logistic operations and destroying dangerous materials are some 
examples of the usage of networked mobile systems in the military applications [61–63]. 
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Nowadays, autonomous Multi-Unmanned Air Vehicles (MUAVs) have great importance in the 
field of military for reconnaissance applications [61]. UAVs flying without a human crew are used to 
report militants’ actions before any attack. Because of limited sensing and communication range in 
highly strategic and secret missions, vast operation areas, and power issues, multi UAV systems have 
been preferred over networked ground autonomous vehicles. UAV systems have become very popular 
in military missions, since they can collect information from different locations and fuse them for 
decisions about the next action that each member of the group has to take and send collected 
information to an operation center. They are also fault tolerant, flexible in surveillance tasks and highly 
versatile, spanning a large variety of application areas. Large coverage areas can be monitored due to 
cooperation of swift units of the UAV network and coordination in the exchange of sensory 
information acquired individually from the work environment. 

Maza et al. [63] developed a team control strategy for a distributed UAV network not only for 
observation of critical areas but also for deployment of small sensor nodes in the mission environment. 
By deploying new sensors in areas deprived of continuous communication, the UAV network repairs 
the connectivity of the existing network. The given architecture is also designed for cooperatively 
carrying heavy loads by three UAVs. It is the first attempt to carry a military load with three UAVs. 
Networked micro-robot teams that have complex sensing abilities are a challenging research topic for 
military operations. They can effectively percolate into hazardous environments and send information 
about the state of the enemy. Many limitations exist, e.g., robot units must be small enough to reach 
small areas and be inexpensive. Minimum power consumption is another very critical design issue. If 
these critical issues are solved, micro robot teams will perform a very critical duty in the military 
applications and reduce the danger of death to humans in the wars.  

Santana et al. [62] proposed a heterogeneous multi-robot system for humanitarian demining, 
including mine and minefield detection. Their system includes human operators, UAVs, legged and 
wheeled robots, where complexity is reduced through cooperation and coordination of the different 
units. UAVs are used to detect mines. Legged robots have the capability to walk in rough and 
unstructured terrains and wheeled robots have high navigation capability in smooth terrains such that 
they increase the system performance in terms of cost and time. Therefore, the coordination and 
cooperation between robots with different navigation and sensing capabilities increase the efficiency of 
the proposed system in humanitarian demining operations. 

Jacoby and Chang [64] were inspired from the hierarchical nature of military operational theory 
when developing a control methodology for heterogeneous networked unmanned ground vehicle and 
unmanned aerial vehicle teams for military applications. The ultimate aim of their research is to 
replace humans by effective autonomous systems in military missions. The proposed approach has an 
organizing schema about distributed networked robot teams applicable to hierarchical military rank 
structures. A new swarming concept within a military-like hierarchy is suggested in this work: simple 
small teams made up of two to four robots are constructed to accomplish a given mission while 
searching, tracking, carrying, and deploying abilities. This research provides a novel approach on the 
coordination control of networked robot teams in military field using the inherent benefits of control 
from emulating the distributive hierarchical nature of military operational theory. 
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3. Networked Mobile Robot System Design Issues 

There are some desired characteristics of networked robot systems such as fault tolerance, 
scalability, adaptively controlled coordination, reconfigurability and communication. These issues are 
gaining importance in parallel with the increase of complexity of high level robotic tasks. Primary 
design factors particular to decentralized mobile robot systems are surveyed in this section. 

3.1. Coordination Control 

Coordination between robots means that they cooperate to achieve a given common goal. The usage 
of multiple robots has several advantages over single robot systems: cooperating robots have the 
potential to achieve a given task faster than a single robot by working in parallel [65]. Complex and 
high level tasks cannot be accomplished by a single robot even if they have high sensing and actuation 
capabilities. Moreover, the overall performance of the solution for a single robot system cannot be 
improved, while for a network of robot unit’s coordination and cooperation enhance the efficiency of 
the system performance in terms of time, energy and data fusion [55,66]. 

In the literature, multi robot systems are categorized according to their coordination level, as fully 
coordinated, weakly coordinated and not coordinated. Coordinated robot networks are classified into 
centralized and decentralized [67]. Many control tasks are based upon the partitioning of the mission 
into different subtasks, which are then assigned to individual robots by a central unit or robot  
leader [68,69]. However, these systems do not handle the problem of distributing resources among 
robots. In centralized methods, a robot works as a ‘leader’ and group members send their acquired 
information to the related unit. The leader, in turn, plans optimal actions for each of the group 
members. In this case, robot units act only according to the leader’s commands. Although in such cases 
coordination control of robots can be perfect and all the important information can be used by the team 
members, these methods are computationally hard and have a heavy communication burden [70,71]. 
An increase in complexity is proportional to the number of robots and this makes the usage of these 
systems difficult in real-time application. Moreover, these systems are not robust in cases of single 
point failures, and if there is a problem with the leader’s abilities such as communication errors or 
physical crash, the task cannot be completed by any of the remaining robots.  

On the other hand, in decentralized systems each robot unit is completely autonomous in the 
decision–making process [72–74] and executes a coordination protocol, while taking independent 
decisions. Since these systems are generally more robust to communication and group member 
failures, accomplishment of the task is not affected by a single point of failure, which gives the 
opportunity to use this architecture in real world applications [75]. However, disadvantages exist in 
distributed systems as well, such as integration of local task accomplishments towards a global aim. 
Moreover, all problems cannot be broken down into small tasks that will be assigned to separate robots. 

3.2. Fault Tolerance 

Any system that is not affected by a single point of failure (either in communication or in robot 
coordination by failure of some units) is called a fault tolerant system, which is a crucial property 
especially for decentralized systems such as networked mobile robots undertaking strategic and 
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complicated tasks. Homogenous centralized systems composed of robots with the same capabilities, 
both hardware- and software-wise, are more fault tolerant then heterogeneous ones since the failure of 
a robot member can be easily compensated by other network members that are identical to the failed 
one. However, homogenous systems cannot adapt themselves easily to complex and high level tasks 
where cooperation of different skills is required. This is the primary need for the emergence of 
heterogeneous robot networks.  

Parker [76] introduced a pioneering work on the fault tolerant multi-robot coordination control 
method in heterogeneous robot networks. Each robot has overlapping capabilities with other team 
members and adapts its actions using sensory feedback from the execution tasks related with each 
robot’s internal state and environmental conditions. Motivational behaviors are used to monitor task 
progress level and new tasks are dynamically distributed according to the state of the task 
accomplishment. ALLIANCE has been implemented on different multi-robot applications like box 
pushing and target tracking [77] and the validity of the method proven. 

Another fault tolerant architecture (MURDOCH) was developed by Gerkey et al. [78] and the 
success of the proposed method is presented via box pushing experiments. An auction based task 
allocation system is proposed to intelligently coordinate networked robot team in noisy and dynamic 
environments. A publish–and–subscribe communication model is used for allocating tasks 
hierarchically to the robots. Some assumptions make their solution realistic in real world problem 
solutions: for example, any robot can fail at any time, communication between robots can crash or can 
be noisy, and a robot may not be aware of its own failure. Tasks are assigned to the most capable robot 
at every time step by a greedy task scheduler (MURDOCH) that guarantees the efficiency of that 
assignment through an auction process, which is performed with the following five distinct steps:  
task announcement, metric evaluation, bid submission, auction closing and progress monitoring or 
contract renewal. 

Dias et al. [79] presented the Traderbots approach; a market based and robust multi-robot 
coordination methodology for in dynamic environments. Although an explicit communication strategy 
is used for task allocation, the proposed approach ensures the robustness of the team task execution by 
using failure recovery ability in the case of communication failures, robot deaths and partial  
robot failures.  

Swarm approaches inspired from social insects such as bees, birds and bacteria, show robust 
coordination mechanisms to achieve a given global goal. Behaviors emerge from the local interactions 
among robots and the operation environment. Robustness is achieved as a graceful degradation of one 
robot member breaking down while another robot takes over the failed robot’s task [80–82]. Although 
there is research into the fault tolerance of robot networks, there is no standard accepted metrics for 
evaluating this fault tolerance and this issue remains as an open research area.  

3.3. Scalability 

Scalability is one of the desired characteristics of robot networks. A robot network control strategy 
can be called scalable if the performance of the system does not decay by increasing the number of 
robots in the network. Existing networked robot research has only focused on small teams comprised 
of 5–10 robots. These networks have to be extended into large multi-robot teams in order to increase 
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the system performance and generate more robust solutions. Although simulation studies have been 
considered as a valid methodology, constructing reliable scalable mobile robots for developing  
simple, robust, efficient and low–cost robot platforms is crucial for accomplishing scalable real world  
robotic research [83–86].  

Howard et al. [83] presented a potential field based distributed solution to the area coverage 
problem by using a mobile sensor network in an unknown environment. In this approach, robot units 
cooperatively work to cover the entire mission space by changing their initial configurations. This 
proposed method considers robot units as virtual particles where each of them is subject to virtual 
forces acting on each robot unit while being only dependent on the position and orientation of nearby 
robots and obstacles. This force is used as a control vector for each robot’s motors. Robot units use 
only local information for decision–making, so there is no need for communication between robots. In 
this way, there is no need for environment modeling or localization. Hence the given methodology is 
highly scalable to large robot groups and the validity of the algorithm is demonstrated on a 100 robot 
deployment problem in a large and complex environment.  

Balch and Hybinette [84] presented a scalable multi-robot formation control solution for 
homogenous large robot teams. Their method is based on a new class of potential functions, which are 
inspired from crystal molecules. At each time step, robots calculate a vector indicating the robot’s 
navigation direction using parameters such as static obstacles, formation maintenance, movement to 
the given common goal and movement to the unit center. Each robot navigates towards a goal direction 
only with the help of location information of the nearby robots, so this given solution is completely 
scalable to large robot groups. 

Nowadays, there has been remarkable research on human–robot interaction where scalability of the 
robots to the interaction in question has been a serious concern. Researchers have tried to develop 
systems to allow more effective communication between humans and robots in the education, 
rehabilitation, and museum tour applications with scalable tasks adaptive to interactions. Tews  
et al. [85] proposed a scalable interaction infrastructure for the human–robot interaction problem. This 
infrastructure consists of two characteristics phases: one of many–to–many interactions and the second 
of one–to–one interactions. The first phase is required to expose robot services to human beings  
and the second one takes place in the level of personal one–to–one interaction. The proposed 
approach allows many humans to interact with many robots by dividing requests while also 
undertaking one–to–one interactions. Although multi-robot and multi-person systems are introduced 
by Tews et al. much of the current work is focused only upon single robots and single human beings 
and scalable approaches for human–robot interaction is still an open area of research.  

Reconfigurable modular robots also need scalability capability, because scalability provides high 
level task accomplishment capability to the robot with the help of a large number and complex 
modules. Kurokawa et al. [86] constructed a reconfigurable modular robot called M-TRAN. The 
proposed mechanism can perform flexible and adaptable locomotion by acting as a four-legged robot 
or a snake-like one. Developments of local infrared communication between neighboring units and  
of parallel distributed motion control mechanisms make this method highly scalable, thus adaptable  
and dexterous.  
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Generally, reconfigurability of robot team boosts the complexity of the system. Thus, scalability 
becomes out of the question due to this complexity issue. Therefore, more work is still needed to 
consider the literature tackling reconfigurable and scalable networked robots. 

3.4. Holonic Reconfigurability 

Robotic researchers have always shown interest towards reconfigurable and scalable distributed 
robotic structures. Holonic reconfiguration was the early attempt in reconfigurable and scalable 
networks. Holons, introduced by Hirose, usually work in cooperation with other holons of a group, 
forming a modular flexible system [87]. The basic property of a system having a holonic architecture is 
that it is built from simpler components working in a colony so as to achieve a global behavior of a 
higher order [87,88]. 

In holonic robotic structures, the overall system behavior is determined not only by the individual 
autonomy of each primitive robot subsystem that forms the whole structure, but also by cooperation 
between those subsystems. Distributed decision–making and control yield the capability of cooperation 
in such systems. Many works exists in the literature using modular systems that pertain to the principle 
of independence and cooperation, although not all of them are called as holonic. 

Chen and Burdick [89] studied the optimum configuration of assemblies built up from modular 
robots for a given task. They consider kinematic geometry joined by joint elements. The optimum task 
oriented kinematics is obtained using genetic algorithms due to the discrete nature of the problem. 
Ueyama et al. [90] focused on the robotic systems called CEBOTs (Cellular Robotics Systems), which 
are functionally different robots that work together to achieve a given task by sharing subtasks. They 
make use of Genetic Algorithm in the trajectory planning of each module called a cell. 

Chirikjian [91] designed his own modular robotic system and produced a few prototypes. The main 
points in his work are the strong coupling between the modules, producing stiff structures that can also 
accomplish reconfiguration. Because of the self–reconfiguration ability of these systems, he calls them 
“metamorphic”. These modules are designed in a hexagonal geometry due to fact that symmetry brings 
a great simplification to the analysis and control of self–reconfigurable systems. Chirikjian used the 
simulated annealing method to decide on the action of each module in the reconfiguration phase. 
Similar to Chirikijan, Murata worked on the self–reconfiguration of modular structures made up of 
symmetric modules. Since their hexagonal symmetric structure is similar to fractal structures, he calls 
each of the modules a “fractum” [92]. As is also the case for the metamorphic robots of Chirikijan, 
fractums move within the structure by “sliding” over each other. In both of the works [91,92], the 
coupling principles of the modules are the same and are based on electromagnetic fields. 

The need for holonic systems arises from the unstructured nature of the media where the robot has 
to operate and from the changing nature of the task in that medium. In order to adapt such a medium, 
the system must change its structure in an optimum way so that a variable structure is achieved in the 
control and task spaces while keeping itself robust and accurate in behavior [93–95]. Cooperation of 
robot units towards reconfiguration of the distributed robotic system can only be feasible under 
seamless uninterrupted communication. 
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3.5. Communication 

Communication between robot units in the network is essential for real world applications because 
of situational awareness. In particular, cooperation and coordination in networked systems requires a 
robust communication ability to accomplish a given mission accurately. Communication methods in 
networked robot systems are classified as implicit communication, also called stigmergy, and explicit 
communication. The effect of communication on the system performance is shown in a variety of 
works; non-verbal communication efficiency in human–robot teamwork [96], target search task 
performance evaluation with no communication, reflexive and deliberative communication [97], 
communication range effects on robot search task on two distinct search algorithms which are spiral 
search and informed random search [98]. Çayırpunar et al. [98] developed a cooperative search 
method in complex environments and shows the effect of communication in the target search mission 
on real experimental setups. In these experiments, e-puck robots try to find a hidden object via 
explicitly communicating with their local neighbors. They concluded that the system performance 
improves with increasing communication range, in terms of the task accomplishment time. Robots can 
exchange information about the other robots’ internal states and environmental conditions via explicit 
communication protocols, which also improves the system performance. Meanwhile, this yields a 
considerable computational burden to the robot team and these systems may not be robust to single 
point failures. 

Explicit communication is achieved using special standard communication protocols. 
Environmental conditions are important for explicit communication especially in indoor applications 
such as search and rescue operations; reliability and robustness may be corrupted due to noisy or failed 
signals in explicit communication techniques as seen in some special cases of references [99]. For 
example, in a semi–collapsed building, communication signal strength can be very strong only until 
one meter, whereas in outdoor environments, communication signals can generally easily cover 50 m 
with full bandwidth. Explicit communication approaches are also not suitable in the sense of scalability 
characteristics because of communication load and computational complexity [76]. 

In implicit communication techniques, information transmission is accomplished through the 
environment or via the observation of robot behaviors. Implicit communication based approaches were 
first introduced by Balch et al. [84], who showed that there is no need for explicit communication in 
some task executions. Their communication strategy is inspired from biological systems such as social 
behavior of animals, and they proved that explicit communication is unnecessary in graze tasks. 
Although implicit communication is simple, it can suffer from limitations in robots sensing abilities.  

Swarm robotic researchers have focused upon implicit communication to obtain emergent 
cooperation. This provides the opportunity for the colony’s control algorithm to be scalable to large 
numbers. Anderson and Papanikolopoulos [100] presented an implicit cooperation methodology for 
networked robots search in unknown areas with a reactive, layered architecture composed of three 
behaviors; namely, obstacle avoidance, stall recovery, and search. Each robot selects its next search 
area in the border of a locally sensed area so the algorithm bases upon local experience rather than the 
collective experience. It is proved that selection of local search goals increases the system 
performance, because it reduces interference between robots.  
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Implicit communication between humans and robots in heterogeneous teams is extremely important 
in order to understand the internal state of the robot. Breazeal et al. [96] introduced such an implicit 
non–verbal communication technique between robot and human by using behaviors, social cues and 
gestures, without any deliberate communication. The research platform, Leonardo, allows the human 
to maintain an accurate mental model of the robot with its social cues. This gives an opportunity for 
humans to coordinate their activities with those of robots. Communication in the future of networked 
mobile robotics tends towards distributed cognition, interpreting social behavior and intention 
recognition of subparts of the networking. 

4. Hybrid Sensor Network 

Hybrid sensor networks consist of static and mobile units working together to achieve a given 
common goal. Static nodes are used to collect data about the physical environmental conditions or to 
detect events, while mobile nodes are used to build upon acquired data for a more detailed analysis of 
the environment or to improve coverage by using their mobility capability. Collaboration and 
coordination between network units increase the efficiency of the task execution in networked hybrid 
sensor based systems. Coverage of very large areas has become an important issue for static sensor 
networks because of their limited number of static nodes, sensor failures due to limited energy or 
environmental conditions, and heterogeneous sensor distribution caused by random sensor distribution 
over the area. To reliably accomplish missions, especially in large and irregular regions, a huge 
number of sensor nodes are necessary, which is not always feasible with the current technology. 
Mobile nodes have to be used to improve area coverage and enhance sensing and communication 
abilities of the overall sensor network in the area of interest. Lambrou and Panayiotou [101] presented 
area monitoring methodology by using hybrid wireless sensor networks with stationary and mobile 
nodes. Mobile robots collaborate with the stationary nodes so that they navigate towards areas that are 
the least covered by the stationary sensor nodes. Static sensors work as pathfinders for mobile ones and 
undetected targets can be detected via improved coverage. However, in this approach, mobile robots 
cannot control their actions according to the other mobile units’ navigation paths, so multiple area 
coverage occurs and energy efficiency is considerably decreased.  

Viet et al. [102] proposed a distributed hybrid sensor network control algorithm to increase the 
efficiency of event detection in a given sensing area, based on the minimization of total energy 
consumption. In their work, static sensors completely cover the area of interest and can detect all 
extraordinary actions. After the detection of events by static sensor network, mobile sensor units are 
sent to event–related locations to identify the details of the event. Static sensor localization is very 
important in hybrid networks: they are randomly deployed in the environment by using airplanes, 
therefore, mobile robots are used to localize static sensors via signal strength of received radio 
messages [103]. The localization problem is solved by the Robust Extended Kalman Filter (REKF) 
based state estimator, which is more efficient then the classic Extended Kalman Filter (EKF) in terms 
of computation cost and robustness. The accuracy of the proposed methodology has proven to be 
approximately one meter, which is very good when compared to other methodologies that use received 
signal strength.  
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However, combining static sensor networks with mobile sensor networks shifts the load of 
correcting the heterogeneity of the coverage inherent to static subnetworks, to the nodes of the mobile 
subnetwork. This compensation that is required from mobile sensor networks increases the energy 
need, thus tremendously decreasing energy efficiency. Wearable or sticking wireless sensor networks 
(WSN) on different carrying agents are now appearing in the literature [104,105] in order to handle 
energy inefficiency. All these wearable WSN approaches aim to get human centered data from the 
human himself or herself and his/her environment under his/her knowledge. In such wearable WSNs, it 
is assumed that the sinks, which are the final destinations for the data collected, are within the wireless 
range, i.e., that they are connected [105,106]. In systems such as transporter deployment architectures, 
the static network has an infinite energy source and the WSN is able to connect to distant nodes like 
satellites [107]. Doğru et al. [108] aimed to generate network structures that have the ability to control 
coverage while still being static sensor networks. Giving the ability of controlled deployment to static 
sensor networks may appear as a true controversy but the authors develop and implement their novel 
concept of static sensor subnetworks that are equipped with limited mobility by using only 
clandestinely the mobility of an agent they hook parasitically upon. They term such networks 
Sycophant Wireless Sensor Networks, in short SWS networks. SWS networks are clandestine travelers 
that passively use without hostility the mobility of the carrying agent, to collect, process, and 
communicate data harvested during the agent navigation about its environment, and not necessarily 
about the agent itself as classical wearable sensor networks do. This SWS networks cannot in any 
circumstance guide or influence the motion of the carrying agent. Agents perform their navigation for 
each task without the knowledge of the onboard “clandestine” SWS network. The proposed work also 
contributes to advancing the hybrid static and mobile sensor network usage found in the literature by 
the novel hybrid approach of SWS networks cooperating with Sparse Mobile Sensor networks in 
Simultaneous Localization and Mapping (SLAM) of a region. Map growing is being accomplished by 
the cooperation of different types of nodes; those of the SWS network and those of the sparse mobile 
sensor network.  

5. Conclusion: Future Challenges in the Networked Mobile Sensor World 

In light of the above–presented work addressing existing research, there are many significant 
challenges for the future of networked mobile sensors. In this section, we briefly present some of the 
key important open research questions and develop a roadmap for the networked robot network area 
extrapolating into its future.  

The European Robotics Technology Platform (EUROP) published a Strategic Research Agenda 
(SRA) on 7 July 2009 for robotics researchers to attract attention to key challenging robotic topics and 
to promote robotic development in Europe [109]. Human–robot interaction is a very challenging 
research area. Because existing works are still very new and immature, most of the developed systems 
are not yet able to perform outside simple laboratory experiments. Existing works only focus on single 
human and single robot problems, so scalable approaches for human–robot interaction is an open 
research interest to be tackled in the near future. Human–robot learning interfaces, which enable 
humans and robots to communicate with each other, have to be constructed utilizing cognitive 
approaches. If many humans interact with networked robots, a distributed learning interface, excited at 
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any different instant of time, at different locations of robot units and human units, will be one of the 
challenge of cognition.  

Cooperating robots in a distributed manner is another field of research where desired global 
behavior emerges from the interactions between robots and environments. Distributing and assigning 
tasks is crucial in order to improve the efficiency of the robot network in real-time and dynamic 
environments. Thus, scalable and fault tolerant coordination control algorithms with effective local or 
implicit communication are important to obtain real-time responses by fusing obtained data from 
reduced communication loads.  

Physical construction of networked robots that can operate under hard and real-time conditions is an 
opportunity for future robotic research. In particular, reconfigurable robots, in which robot units are 
connected to each other physically, will inject real-time control to swarms that are mainly exhibiting 
emergent behaviors nowadays. Wireless communication protocols need to be improved for efficiency 
in strategic missions such as search and rescue. Reconfigurable heterogeneous robotic systems can 
adapt their structures to the changing environmental conditions and needs, such as changing the robot 
configuration from a legged robotic structure to a snake robot and then to a rolling robotic one [110]. 
Reconfigurable networked robot systems are fault tolerant in the case of robot failures by replacing 
faulty part autonomously. Self–repairing reconfigurable robots will tend towards self–repairing hybrid 
networks composed of fixed sensors, computing devices, human operators and robot teams is currently 
a trendy worldwide research topic. With the help of synergy between these different operation units, 
the overall performance of the system can be increased in complex and high level tasks. Cooperation 
between biological and mechanical networks with human beings will present the “avatarization” of 
networked robotics in the long-term future of research.  
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