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Abstract: A comparison of different T-norms and S-norms for interval type-2 fuzzy number weights
is proposed in this work. The interval type-2 fuzzy number weights are used in a neural network
with an interval backpropagation learning enhanced method for weight adjustment. Results of
experiments and a comparative research between traditional neural networks and the neural network
with interval type-2 fuzzy number weights with different T-norms and S-norms are presented to
demonstrate the benefits of the proposed approach. In this research, the definitions of the lower
and upper interval type-2 fuzzy numbers with random initial values are presented; this interval
represents the footprint of uncertainty (FOU). The proposed work is based on recent works that have
considered the adaptation of weights using type-2 fuzzy numbers. To confirm the efficiency of the
proposed method, a case of data prediction is applied, in particular for the Mackey-Glass time series
(for τ = 17). Noise of Gaussian type was applied to the testing data of the Mackey-Glass time series to
demonstrate that the neural network using a interval type-2 fuzzy numbers method achieves a lower
susceptibility to noise than other methods.

Keywords: fuzzy numbers; type-2 fuzzy weights; neural networks; backpropagation; time series
prediction

1. Introduction

In the literature there exists research based on a similar idea to this paper, but with different
approaches and implementations, such as the adjustment of fuzzy number weights in the input and
output layer in the training process for the neural network [1], or the proposal of fuzzy number
operations in a fuzzy neural network [2], and also because the proposed work operates with interval
type-2 fuzzy numbers weights using different T-norm and S-norm in the adaptation of the weights,
which represent the contribution and main difference with respect to the methods in the literature [3–6].

The proposed method in the present research is different to other papers, such as in Gaxiola et al. [7,8],
where the fuzzy weights are obtained using interval type-2 fuzzy inference systems in [7] and
generalized type-2 fuzzy inference systems in [8] for the connections between the layers, and without
any changes for obtaining the change of the weights for each epoch of the backpropagation algorithm.

In the present approach, the use of interval type-2 fuzzy number weights is proposed. The lower
and upper fuzzy numbers are obtained with the Nguyen-Widrow algorithm for the initial weights,
modifying the internal calculations of the neurons by performing the multiplications of the inputs for
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the lower and upper type-2 fuzzy numbers weights separately, and then applying the T-norm for the
lower outputs and the S-norm for the upper outputs; furthermore, we modified the backpropagation
algorithm to achieve the lower change of the weights and the upper change of the weights in each
epoch, respectively.

The proposed approach has the goal in the data of time series of achieving the best prediction
error, which is the minimal error. In this case, the prediction for the Mackey-Glass time series is utilized
to verify the efficiency of the proposed approach.

This paper is focused on analyzing fuzzy neural networks with the interval type-2 fuzzy number
weights and providing a comparison with respect to the traditional neural networks. A same learning
algorithm is used for the two neural models. On the other hand, with the purpose of further analyzing
the performance of the model, we also applied noise in the real test data.

A comparison of the performance for the traditional neural network against the proposed
fuzzy neural network with interval type-2 fuzzy numbers weights is performed in this paper.
This comparison is based on the use of fuzzy numbers for the weights instead of the real numbers
utilized in the traditional neural network; this modification is of great importance, due to the fact that
the learning process of a neural network is directly affected by obtaining the optimal weights and
consequently this has a critical impact on obtaining better results [9–11].

In the fuzzy neural network with interval type-2 fuzzy numbers weights, different T-norms
and S-norms are applied for obtaining prediction error results, like the sum-product, Dombi [12],
Hamacher [13,14] and Frank [15].

The adjustment of the weights in the backpropagation learning using interval type-2 fuzzy
numbers is the main contribution of the proposed work in this paper for neural networks.
This contribution provides to the neural network the robustness to support real data with
uncertainty [16–18].

The main contribution of the proposed work is to improve backpropagation learning with the use
of lower and upper type-2 fuzzy numbers for the adaptation for the weights. The use of the T-Norm
and S-Norm to obtain the outputs of the neurons with the approaches of the sum-product, Dombi,
Hamacher and Frank, enables the achievement of a better support for the uncertainty in the training
process. With this, better results can be accomplished [19,20].

The next section presents a background of research on fuzzy numbers, and other methods of
adaptation of weights and previous work of modifications to the backpropagation learning in neural
networks. Section 3 explains the proposed methodology and the description of the problem to solve in
the paper. Section 4 presents the simulation results for the proposed approach and the statistical tests.
Finally, in Section 5, conclusions are offered and future work outlined.

2. Related Work

In the neural networks area, the backpropagation algorithm and variations of it is the training
method that researchers use in literature [21–23]. In the bibliography, several papers have proposed
different methods to improve the convergence of the backpropagation training algorithm [3,4,6]. In this
paper, the most significant and essential works about the representation or managing of fuzzy numbers
will be reviewed [9–11].

Dunyak et al. [1] presented a new algorithm for obtaining new weights (inputs and outputs)
in the phase of training with any type of fuzzy numbers for a fuzzy neural network. Fard et al. [24]
presented the sum and the product of two interval type-2 triangular fuzzy numbers and, basing it on
the Stone-Weierstrass theorem, a fuzzy neural network working with interval type-2 fuzzy logic is
developed. Li Z. et al. [2] described a fuzzified neural network computing the results of operations in
two fuzzy numbers such as addition, subtraction, multiplication and division.

Asady B. [25] outlined a method for approximating trapezoidal fuzzy numbers in comparison
with other methods of approximation. Coroianu L. et al. [26] described the inverse F-transform
to accomplish optimal fuzzy numbers, maintaining the support and the convergence of the core.
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Yang D. et al. [27] presented an interval and modified interval neuron perceptron with interval weights
and biases, and modified the learning algorithm for this approach.

Requena et al. [28] presented trapezoidal fuzzy numbers with the conventional parameters
(a, b, c, d) in an artificial neural network, and also proposed a decision personal index (DPI) to
obtain the distance between the numbers. Kuo et al. [29] described a fuzzy neural network using the
real-coded genetic algorithm to generate the initial fuzzy weights, and using the extension principle,
the fuzzy operations are determined. Molinari [30] presented generalized triangular fuzzy numbers
and a comparison with others fuzzy numbers. Chai et al. [31] described a representation of fuzzy
numbers, establishing the theorem “that for each fuzzy number there exists a unique skew fuzzy
number and a unique symmetric fuzzy number”.

Figueroa-García et al. [32] made a comparison between interval type-2 fuzzy numbers using
distance measures. Ishibuchi et al. [33] presented a comparison between real numbers, and different
fuzzy numbers such as symmetric triangular, asymmetric triangular and symmetric trapezoidal
as weights in the connections between layers in a neural network. Karnik et al. [34] presented
mathematical operations of type-2 fuzzy sets for obtaining the join and meet under t-norm.

Raj et al. [35] described fuzzy ranking alternatives for fuzzy numbers as linguistic variables for
fuzzy weights. Chu et al. [36] proposed a ranking of fuzzy numbers with a zone between the original
point and the centroid point and making numerical examples with triangular fuzzy numbers.

Ishibuchi et al. [37,38] proposed to use the weights for a fuzzy neural network like triangular or
trapezoidal fuzzy numbers. Feuring [39] presented a new backpropagation algorithm for learning in the
neural network, in which the new lower and upper limits of weights are computed. Castro et al. [40]
proposed a type-2 fuzzy neurons model, in which the rules used interval type-2 fuzzy neurons in the
antecedents and an interval of type-1 fuzzy neuron in the consequents.

In the area of time series prediction there exists in the literature many recent works developed by
and based on the use of type-2 fuzzy logic, like Castro et al. [41], and other researchers [42–44].

3. Proposed Methodology

The proposed method in this work has the goal of generalizing the backpropagation learning
algorithm by using interval type-2 fuzzy numbers in the calculations, and this approach gives the
neural network less susceptibility to data with uncertainty. In interval type-2 fuzzy numbers, it will be
necessary to obtain the interval of the fuzzy numbers, which consists in the footprint of uncertainty
(FOU), and the calculations in the neurons was obtained with the T-norms and S-norms of sum-product,
Dombi, Hamacher and Frank for the corresponding applications [45–48].

The method of adjustment of weights for each neuron in the connections between the layers in
the backpropagation learning algorithm is modified from the original adjustment (Figure 1).
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Figure 1. Structure and equation of a neuron with traditional numerical weights.
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The method in this paper consists of utilizing interval type-2 fuzzy number weights in neurons.
This development modifies the internal calculation for the neurons and the adjustment of the weights
to allow handle fuzzy numbers (Figure 2) [49].Information 2017, 8, 114 4 of 21 
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3.2. Architecture of the Fuzzy Neural Network with Interval Type-2 Fuzzy Numbers Weights 

In Figure 4 a scheme of the proposed methodology of the fuzzy neural network with interval 
type-2 fuzzy numbers weights (FNNIT2FNW) is presented. 

Figure 2. Scheme of the proposed structure and equations of the neuron with interval type-2 fuzzy
number weights.

We modified the operations in the neurons and the backpropagation learning to adjust the fuzzy
numbers weights and accomplish the desired result, working to find the optimal process to operate
with interval type-2 fuzzy number weights [50,51].

To determine the appropriate activation function f(-) to utilize, the linear and secant hyperbolic
functions were considered in this approach.

3.1. Architecture of the Traditional Neural Network

The architecture of the neural network used in this work (see Figure 3) consists of a hidden layer
with 16 neurons and of an output layer with 1 neuron, and a training data of the Mackey-Glass time
series to the input data in the input layer.
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3.2. Architecture of the Fuzzy Neural Network with Interval Type-2 Fuzzy Numbers Weights

In Figure 4a scheme of the proposed methodology of the fuzzy neural network with interval
type-2 fuzzy numbers weights (FNNIT2FNW) is presented.



Information 2017, 8, 114 5 of 21

Information 2017, 8, 114 5 of 21 

 

 
Figure 4. Flow chart of the FNNIT2FNW. 

The architecture of fuzzy neural network with interval type-2 fuzzy number weights (see 
Figure 5) is explained as follow: 

Phase 0: equation of the inputs data. = , , … ,  (1) 

Phase 1: Representation of the Interval type-2 fuzzy number weights [36]. 

[ , ]w w w=%  (2) 

where  and  are generated with the Nguyen-Widrow algorithm [52] for the initial weights. 
Phase 2: Calculation of the output of the hidden neurons with interval type-2 fuzzy number 

weights. 

=  (3) 

=  (4) 

We used the secant hyperbolic as the activation function for the hidden neurons. Subsequently, 
we applied the S-Norm and T-Norm for calculating the lower and upper outputs of the hidden 
neurons, respectively. = ,  (5) = ,  (6) 
where: we used the T-norms and S-norms. 

Sum-Product: 

Figure 4. Flow chart of the FNNIT2FNW.

The architecture of fuzzy neural network with interval type-2 fuzzy number weights (see Figure 5)
is explained as follow:

Phase 0: equation of the inputs data.

x = [x1, x2, . . . , xn] (1)

Phase 1: Representation of the Interval type-2 fuzzy number weights [36].

w̃ = [w, w] (2)

where w and w are generated with the Nguyen-Widrow algorithm [52] for the initial weights.
Phase 2: Calculation of the output of the hidden neurons with interval type-2 fuzzy

number weights.

Net = f

(
n

∑
i=1

xiwij

)
(3)

Net = f

(
n

∑
i=1

xiwij

)
(4)

We used the secant hyperbolic as the activation function for the hidden neurons. Subsequently,
we applied the S-Norm and T-Norm for calculating the lower and upper outputs of the hidden
neurons, respectively.

y = TNorm
(

Net, Net
)

(5)

y = SNorm
(

Net, Net
)

(6)

where: we used the T-norms and S-norms.
Sum-Product:

TNorm
(

Net, Net
)
= Net . ∗ Net (7)

SNorm
(

Net, Net
)
= Net + Net− TNorm

(
Net, Net

)
(8)
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Dombi: for γ > 0.

TNormD
(

Net, Net, γ
)
=

1

1 +
[(

Net−1 − 1
)γ

+
(

Net−1 − 1
)γ]1/γ

(9)

SNormD
(

Net, Net, γ
)
=

1

1 +
[(

Net−1 − 1
)−γ

+
(

Net−1 − 1
)−γ

]− 1/γ
(10)

Hamacher: for γ > 0.

TNormH
(

Net, Net, γ
)
=

Net . ∗ Net
γ + (1− γ)

(
Net + Net− Net . ∗ Net

) (11)

SNormH
(

Net, Net, γ
)
=

Net + Net + (γ− 2)
(

Net . ∗ Net
)

1 + (γ− 1)
(

Net . ∗ Net
) (12)

Frank: for s > 0.

TNormF
(

Net, Net, s
)
= logs

1 +
(
sNet − 1

)(
sNet − 1

)
s− 1

 (13)

SNormF
(

Net, Net, s
)
= 1− logs

1 +
(
s1−Net − 1

)(
s1−Net − 1

)
s− 1

 (14)

Phase 3: Calculation of the output for the output neuron with interval type-2 fuzzy
number weights.

Out = f

(
n

∑
i=1

yiwij

)
(15)

Out = f

(
n

∑
i=1

yiwij

)
(16)

In the output neuron the linear activation function is utilized. Subsequently, we applied the
S-Norm and T-Norm for the lower and upper outputs of the output neurons, respectively.

y = SNorm
(
Out, Out

)
(17)

y = TNorm
(
Out, Out

)
(18)

where: we used the T-norms and S-norms.
Sum-Product:

TNorm
(
Out, Out

)
= Out . ∗Out (19)

SNorm
(
Out, Out

)
= Out + Out− TNorm

(
Out, Out

)
(20)

Dombi: for γ > 0.

TNormD
(
Out, Out, γ

)
=

1

1 +
[(

Out−1 − 1
)γ

+
(

Out−1 − 1
)γ]1/γ

(21)
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SNormD
(
Out, Out, γ

)
=

1

1 +
[(

Out−1 − 1
)−γ

+
(

Out−1 − 1
)−γ

]− 1/γ
(22)

Hamacher: for γ > 0.

TNormH
(
Out, Out, γ

)
=

Out . ∗Out
γ + (1− γ)

(
Out + Out−Out . ∗Out

) (23)

SNormH
(
Out, Out, γ

)
=

Out + Out + (γ− 2)
(
Out . ∗Out

)
1 + (γ− 1)

(
Out . ∗Out

) (24)

Frank: for s > 0.

TNormF
(
Out, Out, s

)
= logs

1 +
(
sOut − 1

)(
sOut − 1

)
s− 1

 (25)

SNormF
(
Out, Out, s

)
= 1− logs

1 +
(
s1−Out − 1

)(
s1−Out − 1

)
s− 1

 (26)

Phase 4: The single output of the neural network is obtained:

y =
y + y

2
(27)
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3.3. Proposed Adjustment for Interval Type-2 Fuzzy Numbers with Backpropagation Learning

The backpropagation learning algorithm is performed by the adjustment of the interval type-2
fuzzy number weights, described as follows:

Stage 1: The Nguyen-Widrow algorithm is utilized to initialize the lower and upper values of the
interval type-2 fuzzy numbers weights for the neural network.

Stage 2: The input pattern and the wanted output for the neural network is established.
Stage 3: The output of the neural network is calculated. In the first instance, the inputs for the network

are introduced and the output of the network is obtained performing the calculations of the
outputs from the input layer until the output layer.

Stage 4: Determine the error terms for the neurons of the layers. In the output layer, the calculation of

lower (δO
pk) and upper (δO

pk) delta for each neuron “k” is performed with the follow equations:

δO
pk =

(
dpk − ypk

)
f O′
k (y) (28)
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δO
pk =

(
dpk − ypk

)
f O′
k (y) (29)

In the hidden layer, the calculation of lower (δh
pj) and upper (δh

pj) delta for each neuron “j” is

perform with the follow equations:

δh
pj = f h′

j (Net)∑
k

δO
pkwkj (30)

δh
pj = f h′

j
(

Net
)
∑
k

δO
pkwkj (31)

Stage 5: The utilization of a recursive algorithm allows the actualization of the interval type-2 fuzzy
number weights, beginning from the output neurons and updating backwards until the
neurons in the input layer. The adjustment is described as follows:
The calculation of the change of interval type-2 fuzzy number weights is achieved with the
equations described as follows:
Calculations of the output neurons:

∆wkj(t + 1) = δO
pkypj (32)

∆wkj(t + 1) = δO
pkypj (33)

Calculations of the hidden neurons:

∆wji(t + 1) = δh
pjxpi (34)

∆wji(t + 1) = δh
pjxpi (35)

Stage 6: The method is recurrent until for each of the learned patterns the error terms are
small enough.

Ep =
1
2

M

∑
k=1

δ2
pk (36)

Alternatively, we have the option of working with fuzzy inputs and fuzzy targets. In this case,
the modification of the proposed neural network must be in phase 2, multiplying by the lower input in
Equation (2) and the upper input in Equation (3); besides, in phase 4, we can maintain the lower and
upper final outputs of the output neuron because there is no need for performing the average.

The neural network used in this research consists of 16 neurons for the hidden layer, based on
a study of the performance of the neural networks modifying the numbers of neurons in the hidden
layer, starting with 5 neurons and increasing one by one, until reaching 120 neurons; we are presenting
this study in the following section. To test the proposed method, experiments in the time series
prediction are performed. A benchmark and chaotic time series such as the Mackey-Glass time series
(for τ = 17) is used in this study.

Based on previous work, in the experiments, the backpropagation algorithm applying gradient
descent and adaptive learning rate is utilized.

The neural networks manage interval type-2 fuzzy number weights in the hidden and output
layer [53,54]. In the hidden and output layer of the network we used the backpropagation algorithm
modified for working with interval type-2 fuzzy numbers to achieve new weights for the next epochs
of the network [55–57].
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4. Simulation Results

We achieved the experiments for the Mackey-Glass time series, and for this we used 1000 data
points. In this case, 500 data points are considered for the training stage and 500 data points for the
testing stage.

4.1. Neural Network with Interval Type-2 Fuzzy Numbers Weights (NNIT2FNW) for T-Norm and S-Norm of
Sum-Product

We performed an experiment for determining manually the optimal number of neurons in the
hidden layer of the fuzzy neural network with the interval type-2 fuzzy numbers; we increase the
number of neurons by one unit at a time in the interval of 5 to 120 neurons. The acquired results from
the experiments are presented in Table 1. The fuzzy neural network with 16 neurons in the hidden
layer obtained the best result with 0.0149 for the best prediction error, and 0.0180 for the average error
(MAE). This experiment was realized with the T-norm and S-norm of sum-product.

The mean absolute error (MAE) is considered in obtaining the results of the experiments.
The average error was obtained by taking 30 experiments with the equal parameters and conditions
for all experiments.

The parameters for the fuzzy neural network with interval type-2 fuzzy numbers are of 500 epochs
and 0.0000001 of error for the training phase.

We observe from Table 1 that the fuzzy neural network with interval type-2 fuzzy numbers
and T-norm and S-norm of sum-product with 16 neurons in the hidden layer (FNNIT2FNSp) shows
better results than the others; so, based on this fact, in the following experiments we work with this
architecture for the neural network.

In Figure 6, we are presenting the plot of the real data of the Mackey-Glass time series against
the predicted data of the interval type-2 fuzzy neural network (FNNIT2FNSp) with 16 neurons in the
hidden layer. In Figure 7, an illustration of the convergence curves in the training process is presented.

Table 1. Results for the fuzzy neural network with interval type-2 fuzzy numbers with T-norm of
sum-product in time series prediction using Mackey-Glass time series.

No. Neurons Best Prediction Error MAE Average MAE

5 0.0187 0.0240
6 0.0197 0.0245
7 0.0188 0.0250
8 0.0172 0.0231
9 0.0198 0.0259

10 0.0170 0.0246
11 0.0190 0.0252
12 0.0192 0.0248
13 0.0198 0.0255
14 0.0191 0.0251
15 0.0185 0.0227
16 0.0149 0.0180
17 0.0180 0.0238
18 0.0202 0.0242
19 0.0205 0.0239
20 0.0164 0.0247
21 0.0201 0.0243
22 0.0189 0.0241
23 0.0178 0.0249
24 0.0195 0.0250
25 0.0195 0.0259
26 0.0189 0.0233
27 0.0195 0.0246
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Table 1. Cont.

No. Neurons Best Prediction Error MAE Average MAE

28 0.0191 0.0248
29 0.0175 0.0245
30 0.0149 0.0233
31 0.0193 0.0245
32 0.0182 0.0259
33 0.0195 0.0252
34 0.0170 0.0243
35 0.0195 0.0241
36 0.0188 0.0251
37 0.0209 0.0248
38 0.0187 0.0243
39 0.0195 0.0254
40 0.0190 0.0246
41 0.0188 0.0263
42 0.0172 0.0233
43 0.0188 0.0249
44 0.0192 0.0237
45 0.0192 0.0247
46 0.0157 0.0247
47 0.0188 0.0252
48 0.0189 0.0246
49 0.0204 0.0247
50 0.0151 0.0246
51 0.0190 0.0250
52 0.0179 0.0239
53 0.0191 0.0242
54 0.0177 0.0240
55 0.0168 0.0240
56 0.0202 0.0251
57 0.0196 0.0255
58 0.0181 0.0250
59 0.0192 0.0248
60 0.0173 0.0239
61 0.0168 0.0236
62 0.0188 0.0239
63 0.0168 0.0240
64 0.0183 0.0238
65 0.0169 0.0252
66 0.0185 0.0250
67 0.0174 0.0253
68 0.0171 0.0230
69 0.0185 0.0244
70 0.0186 0.0248
71 0.0210 0.0251
72 0.0182 0.0249
73 0.0206 0.0247
74 0.0169 0.0249
75 0.0170 0.0240
76 0.0174 0.0233
77 0.0206 0.0245
78 0.0185 0.0244
79 0.0190 0.0247
80 0.0178 0.0246
81 0.0179 0.0247
82 0.0185 0.0243
83 0.0192 0.0254
84 0.0170 0.0237
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Table 1. Cont.

No. Neurons Best Prediction Error MAE Average MAE

85 0.0178 0.0242
86 0.0186 0.0260
87 0.0197 0.0233
88 0.0197 0.0256
89 0.0178 0.0252
90 0.0191 0.0257
91 0.0183 0.0265
92 0.0193 0.0240
93 0.0199 0.0240
94 0.0166 0.0242
95 0.0206 0.0248
96 0.0181 0.0236
97 0.0191 0.0252
98 0.0199 0.0248
99 0.0173 0.0249

100 0.0181 0.0248
101 0.0168 0.0237
102 0.0173 0.0250
103 0.0198 0.0245
104 0.0191 0.0237
105 0.0205 0.0245
106 0.0197 0.0246
107 0.0179 0.0256
108 0.0185 0.0244
109 0.0189 0.0241
110 0.0164 0.0242
111 0.0190 0.0254
112 0.0198 0.0250
113 0.0173 0.0245
114 0.0203 0.0244
115 0.0168 0.0248
116 0.0170 0.0233
117 0.0199 0.0254
118 0.0188 0.0252
119 0.0196 0.0247
120 0.0189 0.0250
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We performed the same experiment that we presented before with the T-norm and S-norm of 
Dombi, Hamacher and Frank. 

4.2. NNIT2FNW for T-Norm and S-Norm of Dombi 

The architecture for the fuzzy neural network with T-norm of Dombi (FNNIT2FND) has 4 
neurons in the hidden layer and = 0.8, the best results with 0.0457 for the best result for the 
prediction error, and 0.0622 for the average error. We show some results for this architecture in 
Table 2, Figures 8 and 9. 

 
Figure 8. Illustration of the prediction data of the FNNIT2FND against the real data for the 
Mackey-Glass time series. 

Figure 7. Illustration of the convergence curves in the training process for FNNIT2FNSp.

We performed the same experiment that we presented before with the T-norm and S-norm of
Dombi, Hamacher and Frank.

4.2. NNIT2FNW for T-Norm and S-Norm of Dombi

The architecture for the fuzzy neural network with T-norm of Dombi (FNNIT2FND) has 4 neurons
in the hidden layer and γ = 0.8, the best results with 0.0457 for the best result for the prediction error,
and 0.0622 for the average error. We show some results for this architecture in Table 2, Figures 8 and 9.
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39 neurons in the hidden layer and = 1, the best result with 0.0130 for the best prediction error, and 
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Table 2. Results for the fuzzy neural network with interval type-2 fuzzy numbers with T-norm of
Dombi in time series prediction using Mackey-Glass time series.

Experiment Prediction Error

1 0.0457
2 0.0466
3 0.0549
4 0.0581
5 0.0599
6 0.0636
7 0.0656
8 0.0671
9 0.0675
10 0.0694

Average 0.0622

4.3. NNIT2FNW for T-Norm and S-Norm of Hamacher

The architecture for the fuzzy neural network with the T-norm of Hamacher (FNNIT2FNH)
has 39 neurons in the hidden layer and γ = 1, the best result with 0.0130 for the best
prediction error, and 0.0164 for the average error. We show some results for this architecture in
Table 3, Figures 10 and 11.

Table 3. Results for the fuzzy neural network with interval type-2 fuzzy numbers with T-norm of
Hamacher in time series prediction using Mackey-Glass time series.

Experiment Prediction Error

1 0.0130
2 0.0138
3 0.0149
4 0.0154
5 0.0163
6 0.0165
7 0.0170
8 0.0175
9 0.0177
10 0.0183

Average 0.0164
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4.4. NNIT2FNW for T-Norm and S-Norm of Frank 

The architecture for the fuzzy neural network with T-norm of Frank (FNNIT2FNF) has 19 
neurons in the hidden layer and = 2.8, the best results with 0.0117 for the best prediction error, and 
0.0167 for the average error. We show some results for this architecture in Table 4, Figures 12 and 13. 
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4.4. NNIT2FNW for T-Norm and S-Norm of Frank

The architecture for the fuzzy neural network with T-norm of Frank (FNNIT2FNF) has 19 neurons
in the hidden layer and γ = 2.8, the best results with 0.0117 for the best prediction error, and 0.0167 for
the average error. We show some results for this architecture in Table 4, Figures 12 and 13.
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4.5. Comparison of Traditional Neural Network Against NNIT2FNW for T-Norm and S-Norm 

The acquired results in the experiments with the traditional neural network (TNN) are present 
on Table 5 and Figures 14 and 15, and the neural network parameters are obtained are based on 
empirical testing. The best result of the prediction errors is of 0.0169, and the average error is of 
0.0203 (MAE). In Table 2, we present the comparison of these results against the results of the fuzzy 
neural network with interval type-2 fuzzy numbers for all T-norms (FNNIT2FNSp, FNNIT2FND, 
FNNIT2FNH, FNNIT2FNF). 
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Table 4. Results for the fuzzy neural network with interval type-2 fuzzy numbers with T-norm of Frank
in time series prediction using Mackey-Glass time series.

Experiment Prediction Error

1 0.0117
2 0.0140
3 0.0153
4 0.0156
5 0.0158
6 0.0163
7 0.0170
8 0.0175
9 0.0177

10 0.0179
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4.5. Comparison of Traditional Neural Network Against NNIT2FNW for T-Norm and S-Norm

The acquired results in the experiments with the traditional neural network (TNN) are present
on Table 5 and Figures 14 and 15, and the neural network parameters are obtained are based on
empirical testing. The best result of the prediction errors is of 0.0169, and the average error is of
0.0203 (MAE). In Table 2, we present the comparison of these results against the results of the fuzzy
neural network with interval type-2 fuzzy numbers for all T-norms (FNNIT2FNSp, FNNIT2FND,
FNNIT2FNH, FNNIT2FNF).

Information 2017, 8, 114 15 of 21 

 

 
Figure 13. Illustration of the convergence curves in the training process for FNNIT2FNF. 

Table 4. Results for the fuzzy neural network with interval type-2 fuzzy numbers with T-norm of 
Frank in time series prediction using Mackey-Glass time series. 

Experiment Prediction Error
1 0.0117 
2 0.0140 
3 0.0153 
4 0.0156 
5 0.0158 
6 0.0163 
7 0.0170 
8 0.0175 
9 0.0177 
10 0.0179 

Average 0.0167 

4.5. Comparison of Traditional Neural Network Against NNIT2FNW for T-Norm and S-Norm 

The acquired results in the experiments with the traditional neural network (TNN) are present 
on Table 5 and Figures 14 and 15, and the neural network parameters are obtained are based on 
empirical testing. The best result of the prediction errors is of 0.0169, and the average error is of 
0.0203 (MAE). In Table 2, we present the comparison of these results against the results of the fuzzy 
neural network with interval type-2 fuzzy numbers for all T-norms (FNNIT2FNSp, FNNIT2FND, 
FNNIT2FNH, FNNIT2FNF). 

 
Figure 14. Illustration of the prediction data against for the traditional neural network the real data of 
the Mackey-Glass time series. 

Figure 14. Illustration of the prediction data against for the traditional neural network the real data of
the Mackey-Glass time series.



Information 2017, 8, 114 16 of 21
Information 2017, 8, 114 16 of 21 

 

 
Figure 15. Illustration of the convergence curves in the training process for traditional neural 
network. 

Table 5. Results for the traditional neural network (TNN) in the Mackey-Glass time series and the 
comparison against the FNNIT2FNSp, FNNIT2FND, FNNIT2FNH, and FNNIT2FNF. 

 Best Prediction Error Average
TNN 0.0169 0.0203 

FNNIT2FNSp 0.0149 0.0180 
FNNIT2FND 0.0457 0.0622 
FNNIT2FNH 0.0130 0.0164 
FNNIT2FNF 0.0117 0.0167 

4.6. Comparison of the Proposed Methods for Mackey-Glass Data with Noise 

We also implemented an experiment utilizing noisiness in the interval 0.1 to 1 in the test data to 
analyze the robustness of the traditional neural network (TNN) and the fuzzy neural network with 
interval type-2 fuzzy numbers for all T-norms (FNNIT2FNSp, FNNIT2FND, FNNIT2FNH, 
FNNIT2FNF). The obtained results for these experiments are presented in Table 6. We applied the 
noise by using the following equations: = + ( × ) (37) = 2 × (1, ) − 0.5  (38) 
where: “Data” are the test data points of the Mackey-Glass Time series, “NoiseLevel” is the level of 
noise in the range (0.1–1), “rand” is a uniformly distributed function for random numbers used for 
obtained the values for the noise. 

Table 6. Results for the traditional neural network and fuzzy neural networks with all T-norms in the 
Mackey-Glass time series under different noise levels (n). 

Noise Level TNN FNNIT2FNSp FNNIT2FND FNNIT2FNH FNNIT2FNF
n = 0 0.0169 0.0149 0.0457 0.0130 0.0117 

n = 0.1 0.0564 0.0617 0.0704 0.0556 0.0594 
n = 0.2 0.1115 0.1135 0.0981 0.0960 0.0954 
n = 0.3 0.1749 0.1275 0.1168 0.1171 0.1175 
n = 0.4 0.2311 0.1554 0.1362 0.1360 0.1419 
n = 0.5 0.3124 0.1661 0.1502 0.1536 0.1571 
n = 0.6 0.3676 0.1897 0.1485 0.1576 0.1589 

Figure 15. Illustration of the convergence curves in the training process for traditional neural network.

Table 5. Results for the traditional neural network (TNN) in the Mackey-Glass time series and the
comparison against the FNNIT2FNSp, FNNIT2FND, FNNIT2FNH, and FNNIT2FNF.

Best Prediction Error Average

TNN 0.0169 0.0203
FNNIT2FNSp 0.0149 0.0180
FNNIT2FND 0.0457 0.0622
FNNIT2FNH 0.0130 0.0164
FNNIT2FNF 0.0117 0.0167

4.6. Comparison of the Proposed Methods for Mackey-Glass Data with Noise

We also implemented an experiment utilizing noisiness in the interval 0.1 to 1 in the test data
to analyze the robustness of the traditional neural network (TNN) and the fuzzy neural network
with interval type-2 fuzzy numbers for all T-norms (FNNIT2FNSp, FNNIT2FND, FNNIT2FNH,
FNNIT2FNF). The obtained results for these experiments are presented in Table 6. We applied the
noise by using the following equations:

DataNoise = Data + (NoiseLevel × Noise) (37)

Noise = 2× [rand(1, nData)− 0.5] (38)

where: “Data” are the test data points of the Mackey-Glass Time series, “NoiseLevel” is the level of
noise in the range (0.1–1), “rand” is a uniformly distributed function for random numbers used for
obtained the values for the noise.

We observe in Table 6 that the better performance was accomplished with the fuzzy neural
network with interval type-2 fuzzy numbers with all T-norms for almost all the levels of noise in the
data test. The prediction error for the traditional neural network was increasing considerably with the
higher noise levels as a difference to the fuzzy neural network, which maintains the prediction error
below 0.21.

We observe in Figure 16 that when at the test data is applied noise, the fuzzy neural network with
interval type-2 fuzzy numbers with the Hamacher and Frank T-norms achieve minor prediction errors
compared with the traditional neural network in the different levels of noise. An important fact is that
the fuzzy neural network with T-norm of Dombi presents better performance than the others in the
test with noise but without noise has a higher prediction error.
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Table 6. Results for the traditional neural network and fuzzy neural networks with all T-norms in the
Mackey-Glass time series under different noise levels (n).

Noise Level TNN FNNIT2FNSp FNNIT2FND FNNIT2FNH FNNIT2FNF

n = 0 0.0169 0.0149 0.0457 0.0130 0.0117
n = 0.1 0.0564 0.0617 0.0704 0.0556 0.0594
n = 0.2 0.1115 0.1135 0.0981 0.0960 0.0954
n = 0.3 0.1749 0.1275 0.1168 0.1171 0.1175
n = 0.4 0.2311 0.1554 0.1362 0.1360 0.1419
n = 0.5 0.3124 0.1661 0.1502 0.1536 0.1571
n = 0.6 0.3676 0.1897 0.1485 0.1576 0.1589
n = 0.7 0.4250 0.1866 0.1684 0.1770 0.1736
n = 0.8 0.4941 0.2018 0.1744 0.1811 0.1808
n = 0.9 0.5411 0.2077 0.1775 0.1887 0.1858
n = 1 0.5684 0.2075 0.1858 0.1920 0.1935
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The results obtained with the statistical test for prediction errors for TNN against 
FNNIT2FNFare of 0.003631 in the estimated mean difference, 0.002897 in the lower limit of the 
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Figure 16. Illustration of the results of prediction error of the TNN against the results of FNNIT2FNSp,
FNNIT2FND, FNNIT2FNH, and FNNIT2FNF for data with Gaussian noise of the Mackey-Glass time
series for MAE.

A statistical test, the t-student test, was applied to perform a comparison of the performance
of TNN against FNNIT2FNH, and FNNIT2FNF in the prediction error; we selected these two fuzzy
neural networks because they presented a better performance than FNNIT2FNSp, and FNNIT2FND.
In the statistical tests we consider 30 experiments and a 95% of reliability in the tests.

We present in Table 7 the parameters for the statistical test of the TNN and FNNIT2FNHmodel.
We used a Hypothesis testing of H0: TNN = FNNIT2FNHand for the alternative hypothesis
H1: TNN > FNNIT2FNH by the comparison of these models; H0: TNN = FNNIT2FNF and
H1: TNN > FNNIT2FNF.

Table 7. Parameters used in the t-student statistical test for the TNN against FNNIT2FNH and FNNIT2FNF.

TNN FNNIT2FNH FNNIT2FNF

No. Experiments 30 30 30
Mean Data 0.02028 0.01638 0.01665

Standard Deviation 0.00158 0.00133 0.00123
Standard error of the mean 0.00029 0.00024 0.00023
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The results obtained with the statistical test for the prediction errors for TNN against FNNIT2FNH
are of 0.003907 in the estimated mean difference, 0.003153 in the lower limit of the difference, a t value
of 1037, p value of 0.0001 and 56 degrees of freedom.

The results obtained with the statistical test for prediction errors for TNN against FNNIT2FNFare
of 0.003631 in the estimated mean difference, 0.002897 in the lower limit of the difference, a t value
of 9.93, p value of 0.0001 and 54 degrees of freedom.

The results obtained with the statistical test for prediction errors for FNNIT2FNHagainst
FNNIT2FNF are of −0.00027 in the estimated mean difference, −0.000940 in the lower limit of the
difference, a t value of −0.84, p value of 0.407 and 57 degrees of freedom.

The results demonstrate that there exists significant statistical evidence to affirm that the
FNNIT2FNH and FNNIT2FNHF are better than the TNN, and that the FNNIT2FNH is equal to
the FNNIT2FNF.

5. Conclusions

Based on the experiments, we have reached the conclusion that the fuzzy neural network with
interval type-2 fuzzy number weights with T-norm of Sum-product (FNNIT2FNSp), Hamacher
(FNNIT2FNH) and Frank (FNNIT2FNF) achieved better results than the traditional neural network
for the benchmark time series used in this work, Mackey-Glass. This affirmation is based on the
prediction errors of 0.0169 for TNN, and 0.0149, 0.0130 and 0.0117 for FNNIT2FNSp, FNNIT2FNH and
FNNIT2FNF, respectively; and the average errors obtained of 30 experiments are of 0.0203, and 0.0180,
0.0164 and 0.0167, respectively.

The fuzzy neural network with interval type-2 fuzzy number weights with the T-norm presented
a better tolerance and behavior than the traditional neural network when Gaussian noise is applied
at the testing data. This inference was reached by analyzing that the fuzzy neural network with
interval type-2 fuzzy number weights with T-norms show only minor prediction errors compared
to the traditional neural network at increasing the levels of noise. Besides, analyzing Tables 5 and 6,
and Figure 10, from which the FNNIT2FNH and FNNIT2FNF show only minor prediction errors
compared to the other paradigms in this work for the Mackey-Glass time series, and furthermore
observing the results for the statistical tests performed to these paradigms.

The method proposed in this work, a fuzzy neural network with interval type-2 fuzzy number
weights with T-norms, presents better performance, robustness and achieves lower results of prediction
errors than the traditional neural network. Furthermore, the interval type-2 fuzzy number weights
allow the neural network to have a minor susceptibility to increment the results of the prediction error
when the real data is affected with noise.
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the use of type 2 fuzzy logic.
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