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Abstract: Within the mind, there are a myriad of ideas that make sense within the bounds 

of everyday experience, but are not reflective of how the world actually exists; this is 

particularly true in the domain of science. Classroom learning with teacher explanation are 

a bridge through which these naive understandings can be brought in line with scientific 

reality. The purpose of this paper is to examine how the application of a Multiobjective 

Evolutionary Algorithm (MOEA) can work in concert with an existing computational-model 

to effectively model critical-thinking in the science classroom. An evolutionary algorithm 

is an algorithm that iteratively optimizes machine learning based computational models. 

The research question is, does the application of an evolutionary algorithm provide a 

means to optimize the Student Task and Cognition Model (STAC-M) and does the 

optimized model sufficiently represent and predict teaching and learning outcomes in the 

science classroom? Within this computational study, the authors outline and simulate the 

effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the 

Student Task and Cognition Model (STAC-M) a computational model of student cognitive 

processing in science class developed in 2013, the authors complete a computational 

experiment which examines the role of cognitive retraining on student learning. 

Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective 

Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post 

cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the 
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potential uses of cognitive and neuropsychological computational modeling in educational 

research. The authors also outline the limitations and assumptions of computational modeling. 

Keywords: cognition; computational model; teaching and learning; science education 

 

1. Introduction 

Computational modeling of human critical thinking expands the ability of researchers to examine 

complex human actions, such as teaching and learning in the classroom, with greater control and 

clarity than is possible in traditional classroom research. One of the major area of difficultly in 

educational research is the interaction of teachers and students. The difficultly in the research arises in 

the capture of and analysis of the complexity of teachers interact with students. During student-teacher 

interactions, the teacher intentionally shapes the classroom environment through application of 

selective pressures arising from classroom management techniques. A particularly rich area in which 

computational modeling can be informative is in elucidating the complex interactions between teachers 

and their students in such a scenario. Within the computational model in this study teacher responses 

can be seen as a selective pressure which shape student cognitive experience. 

A second property of the brain that is difficult in educational research is the need to model the 

presence of the mind that emerges from the brain. However, the mind is uniquely complex and 

difficult to model [1]. Part of the complexity of the mind arises from its ability to hold multiple 

conceptions, which can be either mutually supporting or in opposition to one another. These types of 

naive understandings have been shown to conflict with classroom science instruction [2]. Naïve 

understandings serve an important purpose in shaping everyday experience, but are not reflective of 

reality as seen through a scientific lens. This conflict is particularly apparent when students begin to 

learn of new scientific phenomena that contrasts these naive understandings and must use critical 

thinking to reconcile the differences. During this conflicting period students often require explanation 

and teaching in order to reconcile the differences between both understandings and ultimately adopt 

the scientifically validated version that best reflects reality [3]. In such a conflicting scenario naive 

understandings or misconceptions are pathways that are not optimized to resolve incoming 

environmental stimuli and create usable outcomes for students in classrooms [4].  

This lack of pathway optimization occurs in part, because the rate of biological evolutionary change 

of instinctual information processing and the rate of change in modern society are on vastly different 

time scales. This leads to students with non-optimized pathways that cannot correctly reconcile 

environmental inputs and their scientific mechanism of action [5]. This is a disconnect which has left 

humans with pathways which are not optimized to detect and reject information that contrast scientific 

understanding. Instead of recognizing differences in scientifically accurate and inaccurate 

environmental inputs, humans make use of each equally as long as they lead to beneficial results 

during everyday experience. These outcomes, which result from instinctual information processing 

developed as a part of a psychology arising in past evolutionary environments and result incorrect 

information processing outcomes and casual beliefs [6]. For example, it makes extremely good sense 

to interpret the sun as rising in the East and setting in the West because it offers both a way to track 



Computation 2015, 3 429 

 

 

time and direction. Yet in reality, the Earth is the celestial body and is just rotating. The lack of 

situational awareness leads to wrong assumptions because of selective pressure on our critical 

reasoning abilities resulting in underlying psychological heuristics that are potentially misapplied [7]. 

A second example of this misapplication of heuristics is related to medical doctor’s reliance on the use 

of cognitive heuristics during diagnosis of medical conditions. The heuristics themselves evolved long 

before human understanding of disease, this can result in the misapplication of the cognitive heuristics 

to the medical problem evidenced by symptoms and result in faulty diagnosis [8].  

Ultimately, untenable psychological heuristics are purged from the evolutionary system through 

attrition from a population over generations [9]. This type of systemic instinctual change will not occur 

in the short term such as an individual’s lifespan because evolution requires substantial differences in 

survival and reproduction over generations for change to occur. Even with this period of generations 

being met, sufficient variations in cognitive systems would have to be present and be directly selected 

for. Given these restraints, only through education can naive understandings be disregarded in favor of 

scientific reality. 

Teacher’s assist in the transition of naïve understanding to truer understanding through selectively 

exerting pressures on specific cognitive pathways for example through dialogic interactions that are 

reflective of scientific reality [10]. This can lead to an optimization of student cognitive pathways 

where they are more likely to recognize information which is reflective of a scientific reality and make 

use of this over the naïve understandings. Teaching acts on cognitive pathways in much the same way 

evolution acts upon biological systems. This process leads to students approaching problems 

differently and ultimately results in the optimization of a cognitive pathways for reasoning around a 

specific task or related tasks that functions more quickly than trial and error approaches [11]. This type 

of optimization in critical thinking, as well as other cognitive systems, builds required cognitive 

heuristics in a mechanism akin to cognitive retraining.  

The balance of the teacher-student relationship is similar to the characterization of command 

balance suggested by Gabris, and Artman (1998) [12]. Command balance creates the casual 

component in optimization problems for students solving science tasks. The number of variables 

within the interactions alone creates difficulty for educational researcher attempting to examine, 

model, and isolate systems used in the learning of science such as critical thinking. The ability to 

successfully isolate cognitive systems is critical in creating realistic models of interactions [13]. One 

approach to isolation and modeling these complex systems is to choose one system and related 

cognitive pathway for modeling. A cognitive pathway is the sequential activation of particular brain 

systems processing specific data streams form internal and external antecedents [14]. The 

characteristics and complexity of cognitive pathways lend themselves to modeling via artificial neural 

networks (ANN) [15].This level of complexity is incredibly difficult to model even when using 

systems which are best suited for models of this complexity. Part of this difficulty arises from there 

being multiple objectives occurring non-sequentially in a dynamic system during teaching and 

learning. Teaching and learning when contextualized in this manner has striking similarities and 

parallels to a class of algorithms known as Multiobjective Evolutionary Algorithms (MOEA) for 

optimization of Artificial Neural Networks (ANN). All of the conflicting explanations and attempts to 

overcome instinctual information processing increases cognitive load and decrease efficiency in 

thinking ultimately limiting the system’s ability (student’s ability) to solve problems [16]. The increase 
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in cognitive load on the part of the student forces greater interactions with the teacher ultimately 

increasing cognitive load for the teacher. The increased cognitive load reduces the ability of the teacher 

and student to assess perceptions, comprehension, projection, and prediction within the mind of the 

student and teacher and reduces learning. 

The purpose of this paper is to examine how the application of a Multiobjective Evolutionary 

Algorithm (MOEA) can work in concert with a cognitive computational model to solve critical 

thinking problems in the science classroom. A secondary purpose is to model intentional human 

critical thinking without a using a trial and error approach to model optimization. An important 

assumption of this model is that appropriate selective pressures on the processing element, the ANN, 

as a part of the computational model would optimize outputs from the artificial system and resemble 

student cognition in the science classroom. The optimization would also confer an additional 

advantage of occurring in a far shorter period than in natural biological systems. In this way, 

researchers may characterize and experiment in compressed timeframes with models of human 

cognition and teaching and learning in the framework of a Multiobjective Evolutionary Algorithm 

(MOEA). The ability to compress time creates some of the value of evolutionary algorithm use in 

educational research. The research questions are (1) does the application of MOEA provide a means to 

optimize the Student Task and Cognition Model (STAC-M) computational model? (2) Do the 

optimized model result in adjustments that mimic teaching and learning in an educational 

environment? Consideration of this research question suggests the following hypothesis. The STAC-M 

optimized using a MOEA will result in fewer iterations to successfully solve the presented Piagetian 

task. Substantiation of this hypothesis would lend evidence to the view that the inclusion of a MOEA 

within a cognitive model replicates teaching and learning. Substantiation would also provide support 

for teaching as a means by which classroom selective pressures can be leveraged to encourage 

cognitive growth. 

1.1. Intention 

The STAC-M makes use of educational and psychological measurement models describing the 

student’s cognitive state at any given time as they complete tasks in a virtual environment. The change 

in state over time as the student completes the tasks is translated into intention within the data. The 

modeled data set has the effect of bypassing the problem of composite actions. The problem of 

composite actions is the seeming disconnection between two actions link only through situation but not 

necessarily dependent on one another for completion, in this way composite actions do not require 

intention. Composite actions are accounted for in educational and psychological measurement models 

through the a (task discrimination), b (task difficulty), and c (guessing) parameters under item 

response theory (IRT). Item response theory is a psychometric theory and paradigm for the design, 

analysis, and scoring of mental measures of ability, attitudes, and other constructs [17]. Under IRT, 

composite tasks are assigned probabilities in relation to each of the parameters a, b, and c. The 

combination of probabilities is combined with second measurement method known as cognitive 

diagnostics. Cognitive diagnostics is a psychometric modeling techniques used to develop profiles of 

cognitive systems used in task and skill mastery [15,18]. The combination of IRT and Cognitive 

Diagnostics converts all composite actions toward task completion into patterns of probabilities that 
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are fed into the input nodes for the artificial neural network. This is in effect similar to a decision tree 

where the nodes represent cognitive tools or attributes and outcomes are predicated on the activation of 

the correct patterns of the tool. Conceptualization of the STAC-M under IRT and Cognitive 

Diagnostics places it into a class of computational model operating under the Beliefs, Desires, and 

Intentions Model (BDI) as the STAC-M inherently desires an outcome state of success independent of 

the environment in which it is set. 

1.2. Multiobjective Evolutionary Algorithms 

Many real world critical reasoning problems including the Piagetian conservation tasks involve 

multiple inputs and assessments of information from the external environment and internal memory [19]. 

Research using other types of computational models do not focus on the system of cognition as a 

whole, instead they focus on one aspect of the system and then relate all other aspects to the one [20]. 

The multiple inputs associated with the teacher-student learning interactions often require 

simultaneous cognitive optimization of the teacher and the student for processing and successful task 

completion. With the requirement of simultaneous optimization, task completion is not serial but 

parallel in nature. Critical thinking in the biological sense is a cognitive attribute and supporting 

cognitive architecture responsible for the analysis, evaluation, and conclusions drawn from incoming 

data streams via the senses, internal memory, and psychological affect [9,21]. Modeling of the 

nonlinear dynamics associated with critical thinking is difficult requiring the use of complex 

measurement methods and applications of theories of nonlinear dynamics such as Chaos Theory [21,22]. 

With this level of complexity, conventional modeling optimization techniques are often difficult to 

extend to even simple models of human cognitive functioning. Evolutionary algorithms and 

specifically MOEA are well suited to this purpose due to their ability to handle this complexity. A 

MOEA’s ability to handle these complex problems rests with its ability to search for multiple solutions 

in parallel. One example of a MOEA that provides a means to optimize STAC-M is NeuroEvolution of 

Augmented Topologies. Source code is available for download [23]. Some additional examples of 

evolutionary algorithms are the multiobjective firefly algorithm and the multiobjective flower 

pollination algorithm. Each of these algorithms works to optimize the multiple, conflicting criteria 

associated with a complex problem. 

Within the MOEA framework for optimization of a computational model, a real-world critical 

thinking problem involves multiple objectives and solutions. In this understanding, critical thinking 

represents the cognitive pathway requiring optimization and teaching in the model is represented by 

the MOEA optimizing the computational model’s cognitive pathways. Within the process of 

optimization, the intent is to minimize the theoretical decision space associated with potential 

outcomes for successful solutions [24]. This is very similar to the ways teachers attempt to work with 

students to minimize the number and distance associated with proper choice selection around topics. 

Minimization of the solution space occurred using the function, 

F(x) = (f1(x)…fm(x))T s.x. x ϵ Ω 

where Ω is the theoretical decision space, s.x. is the standard error of x, and x ϵ Ω represents the vector 

of choices consisting of m objective functions within the objective space for decision processing. The 
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minimization of theoretical decision space is difficult requiring significant computational resources [25]. 

Though the minimization of decision space does not seem difficult for biological systems, there is little 

understanding of the actual mechanisms of action that biological systems use to achieve this 

minimization and create agency. Thus, proposed computational models using algorithms such as 

MOEA would be incredibly useful for testing prospective mechanisms for teaching and learning. 

Using artificial neural networks (ANN) as a model of human cognitive function allows researchers 

to use the resultant probability to develop new cognitive models and theorems related to student 

learning and processing of science tasks. Artificial neural networks combine both a graphical and 

statistical outcomes to solve cognitive psychology, educational, and teaching problems and more 

specifically allow one to develop a deeper understanding of learning and the impact of teaching. One 

specific model developed by the author, the Student Task and Cognition Model (STAC-M), models 

critical thinking and lateral thinking [26]. The STAC-M is a useful tool and has the potential to be 

improved through the integration of evolutionary algorithms to solve optimization problems associated 

with teaching. The MOEA acts as a representation for teaching with the optimized STAC-M 

representing the learning outcome. While this model (STAC-M) of human reasoning without the addition 

of the MOEA has some of the underlying principals and characteristics of biological-information 

processing, it lacks the ability to optimize, this is a critical characteristic that readily occurs within 

biological systems through learning, pruning, and other neurological mechanisms. 

The dynamic and complex problems associated with student information processing and reasoning 

in the real world effectively outstrips even the most sophisticated artificial intelligences. As such, the 

development of overarching algorithms that achieve reasonable approximations of simple human 

reasoning, teaching, and learning when applied to problems of human information processing is an 

intensely active area of research in several domains of computational education and computational 

cognitive psychology. One area of significant promise is evolutionary (genetic) computational 

algorithms. Through the application of these algorithms to computational models such as the STAC-M 

one would expect an increase in the effectiveness of solution success and effective mimicry of learning 

for simulation purposes.  

1.3. Student Task and Cognition Model (STAC-M) 

The STAC-M is an attempt to model the biological mechanisms of action associated with lateral 

thinking and critical reasoning [27]. The model was developed within the framework of connectivism. 

Identification of the attributes occurred using a modified cognitive diagnostics approach (CDA) [28]. 

The modification of the CDA is the use of video game server data based on student choices and actions 

as opposed to talk aloud protocols [29]. The number of neurons (seven) within the STAC-M clearly 

illustrates the level of comparative sophistication of the STAC-M in comparison to humans and even 

the simplest biological system. For example Caenorhabditis elegans, contains 302 neurons allowing 

for far greater cognitive flexibility than current computational models of cognition.  

The use of an artificial neural network as the underlying computational aspect of the STAC-M 

allows for the examination of the model using Bayesian assumptions and networks. In order to model 

science task learning one must first understand the complexity of the relationships between the 

cognitive inputs, cognitive attributes, and outputs measured by educators such as science task 
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completion. Specifically, each individual science task requires the assignment of success and failure 

probabilities using item response theory. Practically this process of assigning probabilities must be 

related to student cognitive processing of tasks using Cognitive Diagnosis, a second powerful 

educational measurement technique. The STAC-M acts to illustrate the role of cognitive attributes as 

they interact as a dynamic non-linear system to solve problems. This is accomplished by employing 

machine learning in the form of flexible networks based in Bayesian approaches specifically artificial 

neural networks. These systems make use adaptive gating of data streams related to cognitive attribute 

activation to provide the processing power necessary to solve science based critical reasoning tasks 

such as Piagetian conservation tasks.  

In educational research, computational models represent possible mechanisms of action associated 

with teaching and learning. Multiple types of models exist examine various aspects of human cognition 

and leaning, Two examples of models are the ACT-R model from Carnegie Mellon University and the 

SimStudent Model also from Carnegie Mellon University. While an artificial neural network is the 

processing element in the model STAC-M uses of Item Response Theory Models and CDA to provide 

a means to incorporate new information within the modeled system of interacting neurons while using 

pre-existing information. The inclusion of prior knowledge leads to the identification of the STAC-M 

as a Bayesian Model [30].  

1.4. Bayesian Networks 

A generalized Bayesian Network in this case an ANN consists of two interdependent aspects. The 

first aspect is a directional tree diagram or directional acyclic graph illustrating set conditional 

independencies. In the case of STAC-M these conditional interdependencies are parameterized using 

an Item Response Theory (IRT) model combined with Cognitive Diagnostic Assessment (CDA) [8,9,27]. 

The parameterization of the variables using IRT and CDA creates the second structure within Bayesian 

network consisting of a set of local parameters Ai representing the conditional probability distribution 

for the cognitive information processing given different value combinations of their parent values in 

the structural form of a Q-Matrix. By combining neural network propagation weighting with the two 

Parameter Logistic IRT model probabilities of item completion, one can merge the two models and 

create a means to measure the contribution each attribute makes to the overall task completion as either 

a 1 or 0 for success or failure. Specific parameters such D are a scaling factor equal to 1.70, (this 

approximates a normal ogive curve), ai is the item discrimination, Θ is the subjects ability for success 

on the particular task item. Through manipulation of these variables, one can calculate Pi, the 

probability of correctly completing a task. This mode of use allows the STAC-M to make use of a 

Markov Chain related to probability distributions of the variables. When combined with the neural 

network model, φ is the non-linear activation function for the artificial neural network, w^il(n) 

represents the gradient decent along the training function, and x^ln−1 represents the input to the hidden 

layers via the cognitive attributes.  

There are a number of ways to relate Bayesian networks to machine learning and specifically 

artificial neural networks. In particular, one can use such methods as supervised learning, unsupervised 

learning, and inferential Bayesian networks. The STAC-M falls into a specific type of network 

identified as learning Bayesian network. These networks derive their structure and conditional 
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probabilities either necessarily from an external expert acting as a referential point, or through 

automatic learning from databases. In the case of STAC-M the learning data derives from students 

playing a science based Serious Educational Game with embedded critical reasoning tasks. Thus, the 

model of cognition within the STAC-M is used as identification of the topology of the network occurs 

by examination of biological models of critical reasoning (students) and in particular the topology of 

the biological neural network as a mesh network. 

The two methods IRT and CDA allow STAC-M to make use of and act as a hybrid between a score 

and search method algorithm and a detection of conditional probabilities algorithm. This hybridization 

occurs through a combination of the constrained-based method and score and search methods. The 

constrained-based method of occurs during the use of Cognitive Diagnostic Assessment applications 

with the estimations occurring though a maximum likelihood method. The score and search method is 

integrated into the model via applications of IRT. The application of IRT allows the development  

of a scoring metric to evaluate the quality of each Bayesian network with respect to completion  

of the cognitive task and search through the network to examine the probabilities showing  

successful outcomes.  

1.5. Evolutionary Algorithm Characteristics 

There has been a rapid increase in the number and types of research into evolutionary algorithms as 

a means to optimize real-world problem solving. As a class of algorithms, evolutionary algorithms 

represent an important advance in approaches for solving real world problems such as the optimization 

of cognitive models used to solve critical reasoning problems in science. Evolutionary algorithms are 

defined as a form of artificial intelligence meant to mimic biological evolutionary selective pressures 

working to approximate solutions to novel problems through model optimization [31]. In this 

approach, the evolutionary algorithms acts to optimize solutions under the uncertain and dynamic 

outcomes associated with critical thinking in the sciences such as the Piagetian conservation tasks. The 

overall objective of the evolutionary algorithm in relation to models such as STAC-M is to obtain a 

desired level of functionality that more closely mimicking that of biological critical thinking. In a 

broader sense, the addition of the evolutionary algorithms can be used to generate new optimized node 

values for critical thinking increasing odds of success in solving a science-based problem and 

identifying critical threshold levels of the critical reasoning system.  

The combination of IRT and CDA helps to identify the algorithm as a probabilistic model for 

optimization. A critical advantage of this method of algorithm generation is that individual processing 

pathways and node values are sampled from the distribution and retained for future use as a successful 

solution or removed as non-viable from the solution space. In this way, the inclusion of the 

evolutionary algorithms allows the model to deal with problems around the interactions of cognitive 

variables not initially introduces into the system until post artificial neural network training. This 

combined with the models ability to solve novel problems creates a means to more closely mimic and 

thus model biological cognition in science students.  

In many real-world uses of computational models, such as teaching and learning, the optimization 

values of nodes, the fitness function of the model in conjunction with the derived parameters, and 

optimal decision space are fluid creating increased complexity. These non-linear dynamic systems 
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create increased challenges for models initially developed under static assumptions such as those found 

in traditional educational measurement and psychometrics. However, the educational process is not 

static or linear, creating an incredibly difficult problem for researchers to model and optimize. Thus, 

the main challenge is ability to dynamically model the change in student cognition over time and in 

real time. This difficulty is due to the sensitivity of starting conditions and often leads educational 

researcher to engage in qualitative assessments of learning. For this reason, an algorithm that adjusts 

the model based upon cognitive attribute gating and necessary task or environmental learning details 

are required. Essentially an algorithm with multiple inputs can accomplish this through real-time 

examination of key environmental characteristics associated with student cognition in learning.  

A second potentially more important characteristic of the proposed evolutionary algorithms within 

cognitive models is the ability to optimize with noise. Noise in this context is defined as non-optimal 

solution space reducing the efficiency of successful cognitive pathway model development. Within this 

type of modeling, there are relatively few methods for mitigating noise. Most commonly, a resampling 

method resulting in a rank ordering of solutions provides a means to reduce noise. Using resampling in 

conjunction with adaptive machine learning, cognitive model makes use of past node weights and 

variations in vector direction allowing a quicker model convergence. In this way, the cognitive 

optimization model can divide the solution space into an n-dimensional hypersphere with solution 

vectors equidistant to the optimal solution. The average performance of the vector through the sphere 

is used to classify noise resulting in greater ability to optimize pathways to the appropriate cognitive 

solution and science task completion. 

2. Experimental Section 

Experiments with the STAC-M with and without the addition of MOEA occurred using the JMP 

11.0 statistical package with and Artificial Neural Network featuring a graphical user interface. Within 

the simulation, there is a modified Piagetian conservation task to solve. The agent’s ability to process 

within the simulation is controlled via an artificial neural network representing the human critical 

thinking system. The controlling neural network is organized using three layers with one neuron in the 

first layer, five neurons in the second layer, and two neurons in the final layer. Each neuron represents 

a specific system in the biological network. Each evolution of the weightings contains a different 

cumulative probability function. Function fi randomly generates weights constrained via Ω between 0 

and 2 between the inputs and the first processing layer of the neurons representing the critical 

reasoning system in the biological system. The subsequent function fa computes the bias of the second 

layer neurons representing additional cognitive attributes recruited to solve the task post data parsing 

by critical thinking. Finally, fb represents the final integration function representing lateral thinking 

systems and the ultimate connection weights among neurons in the final stages of the input information 

integration in the biological system. The implementation of the MOEA as an optimizing agent for the 

STAC-M cognitive pathways is akin to a teacher working and teaching students through complex 

science problems in a classroom. Table 1 summarizes the parameter setting of the constants 

determining the genotypic distance between two of the modeled variants of STAC-M.   
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Table 1. Multiobjective Evolutionary Algorithms (MOEA) parameters. 

Parameter Value

Population Size 100 
CPPN Weights Amplitude 2.00 
CPPN Output Amplitude 1.00 

Distance Threshold 10.0 
Distance 1 2.00 
Distance 2 2.00 
Distance 3 0.50 

Mating Probability 0.80 
Add Link Mutation Probability 0.40 
Add Node Mutation Probability 0.01 

Elitism Per Species 5% 

Table 2 illustrates the experimental design and variables tested. The experimental condition 

consisted of the addition of the evolutionary algorithm to optimize the Student Task and Cognition 

Model (STAC-M). 

Table 2. Study design. 

Treatment Condition Group Label Pretest Treatment Posttest

Experimental  E O1 X (Addition of Evolutionary Algorithm) O2 
Control C O1  O2 

3. Results and Discussion 

Lamb (2013) trained the initial model, STAC-M using a Serious Educational Game to collect data 

as students completed tasks within the virtual science classroom in the game [32]. This method of 

collecting data about teaching and learning arises from the use of science based Serious Educational 

Games as conceptualized by Annetta (2010) to generate sufficient data for model development in this 

case n = 450,000 [29,33,34].  

Data for the development of the initial STAC-M was garnered from 645 high school students 

located in the mid-Atlantic region of the United States. Subjects consist of student enrolled in full-time 

high school classes and specifically, those enrolled in science classes at the grade 9–12 level.  

Subject ages ranged from 14 to 18. Over the course of 15 hours of play, the subjects generated 

approximately 450,000 data points for training, analysis, and development of parameters around 

critical reasoning tasks using IRT and CDA. Upon completion of the presentation of training data to 

the STAC-M researchers presented the STAC-M with modification of the Piagetian conservations 

tasks for analysis [17,35]. 

MOEA parameters were setup as illustrated in Table 1. The algorithm was executed a total of 100 

times allowing randomization of sampling populations and convergence of the rival models generated 

by the optimization algorithm. The iterations represent places where the teacher taught a specific 

concept around the conservation task in the science classroom. Convergence of STAC-M with the 

algorithm and without the algorithm is illustrated in Figure 1 The target fitness of 85% success or 

mastery was reached at the median generation of 63 by STAC-M using the evolutionary algorithm. 
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STAC-M without the evolutionary algorithm did not reach the 85% mastery level within the 100 

iterations tested. The number of iterations was extended to 180 with STAC-M converging at iteration 

162. In this way we can observed that the STAC-M using the evolutionary algorithm outperformed 

STAC-M in the speed of convergence, which is indicative of solving the problem science critical 

reasoning problem. Thus, the model demonstrates that teaching out performs self-taught or trial and 

error methods of learning. This also provided some evidence of validation of this computational model 

of teaching and learning. Figure 2 provides a visual representation of the evolved neural network and 

the original STAC-M for comparison. It is critical to note that the intent was not to add nodes (addition 

cognitive systems) as the STAC-M is a previously validated model of human cognition and it is highly 

unlikely that the human brain would spontaneously recruit new systems to solve a particular set of 

problems. It is far more likely from a biological standpoint that data channels within the biological 

system would be retrained to handle differing amounts of information through the process cognitive 

retraining. This is because evolution builds off existing variation already present in systems, making 

the immergence new systems being an extremely rare event in the history of life.  

 

Figure 1. Comparison of model convergence between Multiobjective Evolutionary 

Algorithm-Student Task and Cognition Model (MOEA-STAC-M) and Student Task and 

Cognition Model (STAC-M). 

 

Figure 2. Resultant MOEA-STAC-M. Bold lines indicate weightings increased by the 

addition of MOEA, dashed lines indicate weightings decreased by the addition of MOEA, 

and thin solid lines are lines unchanged by the addition of MOEA. 
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3.1. Application of Educational Research 

The primary purpose of this paper is to examine how evolutionary algorithms can be applied in 

concert with cognitive computational models such as the STAC-M to solve critical thinking problems 

and model human critical reasoning in the science classroom. In order to answer the research questions 

the primary author generated two models one with the application of an MOEA and one without. 

Model comparison occurred in an effort to find optimal cognitive attribute weights for solutions to 

Piagetian conservation tasks found in a Serious Educational Game (SEG). A SEG is a simulation of 

real-world events and processes designed to teach using embedded pedagogical approaches [35]. 

Fields in the natural sciences, computer science, and engineering have used evolutionary algorithms 

and computational modeling to address complex questions and find solutions to complex optimization 

problems with great success. These fields often make use of computational models to examine  

non-liner dynamic systems such as traffic flow and neuronal activations. However, the field of 

education has been slow to approach and apply this powerful tool while sister fields such as sociology, 

psychology, and anthropology have embraced these tools with great success. As computing power 

increases and computational modeling becomes more prevalent educational researchers should make 

use of these models for the examination of mechanisms of action related to teaching and learning. 

Making use of a combination of computational modeling experiments and educational experimental in 

conjunction with one another, it would be possible to develop theoretical assumptions, modes of 

action, and hypothesizes for examination often absent in educational research. 

Much of the cognitive research in science education, and critical thinking specifically, is seen at the 

level of the student as a simple linear serial input-output system, as evidenced with the prominent use 

of simple pretest post-test examinations without control. This situation arises because researchers view 

the processes between input and output as too complex for empirical study [28]. This linear system out 

of necessity often becomes focused on external environmental systems such as culture without 

consideration of internal cognitive processing. Even when science education researchers address 

cognitive processing, it is often addressed at a surface level with little consideration of testable models, 

mechanisms of action, and hypotheses. The use of a linear research approaches without testable 

underlying mechanisms of action and attempts to reconcile across frameworks fragments science 

education, isolates researchers, and advocates for a singular approach to the study of constructs. A 

study by Lamb, Cavagnetto, and Akmal (2014) provides direct evidence for the systemic non-linear 

nature of learning and more importantly provides a testable mechanism of action related to cognition 

around student learning [28]. Furthermore, several recent computational experiments using cognitive 

computational model have suggested the power of the computational model approach as means to test 

and understand cognition related to learning in science. More to this point neuroimaging studies and 

computational modeling studies in science education provide further evidence that current research on 

student learning in science education is underdeveloped in the area of cognition.  

In this paper, the authors present the results of a two-fold computational experiment. The first part 

applies a MOEA as a means to simulate teaching a lesson on an artificially intelligent model of 

cognition and second illustrates the potential power of simulations in educational research using 

computational models. Within the simulation using the MOEA, the results illustrate greater generation 

of complex functions earlier in the evolution of the simulated cognitive pathway. This runs akin to the 
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experiences of students as they gain exposure to ideas throughout a class. Further, the simulated lesson 

illustrates the value cognitive retraining in the optimization of the cognitive system node weightings in 

the model as a pedagogical approach. Using cognitive retraining prior to the teaching of concepts and 

skills in a virtual environment such as an SEG may allow greater success with applications in the 

classroom. In this way, cognitive retraining can be central to the learning process and tied to the model 

accordingly. Researchers using these types of models can examine the strengths and weakness of 

pedagogical approaches and interventions through manipulation of the MOEA algorithm and STAC-M 

weightings. By doing so, educational researchers can examine and simulate many types of interventions, 

teaching models, and learning models prior to implementation in the classroom. Being able to do so 

would not only result in more efficient use of resources, but also allow researchers to begin optimizing 

their intervention prior to entering a classroom and potentially bolstering its effectiveness. 

This paper provides the theoretical framework for future education researchers to apply 

evolutionary algorithms and computational modeling using machine learning to student learning in the 

science classroom. This becomes possible using data collected in an immersive three dimensional 

serious education game environment. Thus, student play through the game provides a window into 

student cognition relating to science learning. Using mixed measurement approach of IRT and CDA 

the researchers are able to develop the necessary probabilistic inputs allowing cognitive modeling of 

learning. Ultimately, this results in usable simulation data for educators. The STAC-M in conjunction 

with a Multiobjective Evolutionary Algorithm provides a view of the complex processes of learning 

and sets the conditions to develop further computational models in science education. Emergent factors 

developed from the psychometric analysis and solution vector provide educators a means to identify 

critical computational components of human cognition using these models. Educational interventions 

designed to optimize human cognitive attributes via attributional retraining and learning would provide 

for the greatest student increases in task completion. From a substantive point of view, this allows 

educators to assess and optimize interventions prior to use in the classroom. Modulation of attributes, 

related psychological affect and behavior might allow one to manipulate variables to understand 

individual differences in education at a deeper level governed by psychological mechanisms. One 

important aspect of this research is that individual neurons within the STAC-M are representative of 

regions of the brain associated with the various cognitive attributes and not the individual neurons 

themselves. Hence, while there is one individual neuron within the hidden layer identified as critical 

thinking it is actually representative of the regions and systems of the brain associated with the 

striatum regulated (gated) via the frontal cortex. Recruitment of additional processing centers, via this 

gated mechanism, allows for an increase in the number of data channels and increasing processing 

power when presented with difficult problems. This can lead to an assumption within computational 

modeling that simply adding neurons to the hidden layer will create more outcomes that are successful 

solutions to the science task problems. The addition of the MOEA would allow one to find the optimal 

weighting of nodes to solve the science task problems. In this way, teachers can target and assess 

student learning as a function of task completion. However, though it is tempting to simply add nodes 

and computational power, this assumption becomes problematic because as one increases 

computational components associated with STAC-M this can lead to overfit errors from a statistical 

view and the addition of biological nodes (systems) is unlikely. The additions of the correct number of 

computational neurons related to processing also supports the link between affect, cognition, and 
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behavior as portions of the striatum (represented in the STAC-M as a critical thinking neuron) are 

associated with motivation and behavior in addition to critical thinking and related attributes. 

3.2. Study Limitations 

This study is limited in that it focuses solely on the role of cognition in solving critical thinking 

tasks and does not account for behavior or psychological affect. The authors agree that these are 

critical components to learning. Given the novelty of these methods and the nascent nature of the field 

of computational education, significant research is still necessary to account for these components and 

link them within these mechanisms of action within the models. The study is also conducted from the 

computational view of cognition taking into account the internal activities of the learning and assumes 

that intelligence belongs to the individual alone. Another limitation of this approach is the 

understanding that despite the sophistication of the artificial intelligence and its ability to account for 

the non-linear dynamics of the classroom, the model is still relatively unsophisticated in relation to 

biological systems despite its ability to evolve and solve novel problems. The authors would also like 

to note that this level of sophistication places educational computational modeling at the level of 

weather forecast modeling in the late 1950s. The authors also acknowledges that this form of modeling 

of nonlinear dynamic systems such as student learning is in its nascent form as requires more research 

to bring its full potential to fruition.  

4. Conclusions 

The addition of a Mulitobjective Evolutionary Algorithm in the broader context of a cognitive 

computational model provides a means to create intention, more rapid model convergence, greater 

success outcomes, and model teacher-student interactions in a more realistic way. Regarding the 

methodological approach, the use of these types of algorithms is of increasing interest across fields 

such education not traditionally using these approaches. The proposed addition should exhibit 

improved performance when compared to the computational model algorithms lacking Multiobjective 

Evolutionary Algorithms. The author does not claim that scheme will work for all problems in the 

study of student learning as it has only been applied to one particular aspect of this process. Further 

testing of a Multiobjective Evolutionary Algorithm under multiple conditions is needed. Future 

research efforts should include the implementation of the proposed scheme in other forms of  

cognitive problem solving optimization. Computer code and algorithm coding are available upon 

request to the author. 
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