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Abstract: Accurate precipitation data at a high spatial resolution are essential for hydrological,
meteorological, and ecological research at regional scales. This study presented a geostatistical
downscaling-calibration procedure to derive the high spatial resolution maps of precipitation over
a mountainous watershed affected by a monsoon climate. Based on the relationships between
precipitation and other environmental variables, such as the Normalized Difference Vegetation
Index (NDVI) and digital elevation model (DEM), a regression model with a residual correction
method was applied to downscale the Tropical Rainfall Measuring Mission (TRMM) 3B43 product
from coarse resolution (25 km) to fine resolution (1 km). Two methods, geographical difference
analysis (GDA) and geographical ratio analysis (GRA), were used to calibrate the downscaled TRMM
precipitation data. Monthly 1 km precipitation data were obtained by disaggregating 1 km annual
downscaled and calibrated precipitation data using monthly fractions derived from original TRMM
data. The downscaled precipitation datasets were validated against ground observations measured
by rain gauges. According to the comparison of different regression models and residual interpolation
methods, a geographically-weighted regression kriging (GWRK) method was accepted to conduct
the downscaling of TRMM data. The downscaled TRMM precipitation data obtained using GWRK
described the spatial patterns of precipitation reasonably well at a spatial resolution of 1 km with
more detailed information when compared with the original TRMM precipitation. The results of
validation indicated that the GRA method provided results with higher accuracy than that of the
GDA method. The final annual and monthly downscaled precipitation not only had significant
improvement in spatial resolution, but also agreed well with data from the validation rain gauge
stations (i.e., R2 = 0.72, RMSE = 161.0 mm, MAE = 127.5 mm, and Bias = 0.050 for annual downscaled
precipitation during 2001 to 2015; and R2 = 0.91, RMSE = 22.2 mm, MAE = 13.5 mm, and Bias = 0.048
for monthly downscaled precipitation during 2001 to 2015). In general, the downscaling-calibration
procedure is useful for complex mountainous areas with insufficient ground gauges.
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1. Introduction

Precipitation plays a significant role in hydrological and ecological processes as a key component
of mass exchange and energy balance [1,2]. The spatial variations of precipitation generally influence
vegetation distribution, soil moisture, and surface hydrology [3,4]. Accurate high-spatial-resolution
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precipitation data (HSPD) are crucial for different meteorological and hydrological applications,
especially in data-sparse regions. For example, high-resolution estimates of spatial variability in
rainfall fields can identify locally intense storms that could lead to floods [5]. Meanwhile, the HSPD
can capture more spatially detailed information in drought monitoring when compared to rain gauge
observations [6]. In addition, HSPD provides a valuable data source for hydrologic modeling and
water resources planning purposes [7,8].

Traditionally, precipitation data are acquired from rain gauges that rely heavily on field
observations and might be subject to measurement error and heterogeneities in data collection [9].
The high spatial-temporal variability of precipitation and the relatively sparse distribution of rain
gauges makes it difficult to provide fine-resolution precipitation data [10–12]. Various interpolation
methods have been applied to map precipitation distribution based on a limited number of gauge data.
These methods range from simple techniques such as Thiessen polygons, inverse distance weighting
(IDW), or spline [5,13] to complex and computationally intensive approaches, such as geostatistical
kriging [14,15]. The more complex approaches often consider orographic and/or atmospheric effects
and spatial covariance on precipitation occurrences, for example, Parameter-elevation Regressions
on Independent Slopes Model (PRISM) [16], Orographic Precipitation Model (OPM) [17], and the
Auto-Searched Orographic and Atmospheric Effects Detrended Kriging (ASOADeK) model [18].
These studies have revealed that the choice of an appropriate interpolation method depends on the
time step used in the analysis, the density of the precipitation network, the precipitation regime,
and the catchment’s geomorphologic characteristics [19].

With the development of advanced satellites, remote sensing has become the main tool for
estimating precipitation over areas lacking rain gauge networks [20]. In recent years, a series of rainfall
datasets have been developed at both the regional and global scales. For example, datasets have been
developed by the Global Precipitation Climatology Project (GPCP) [21], the Global Satellite Mapping of
Precipitation (GSMaP) project [22], the Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS) [23], the Multi-Source Weighted-Ensemble Precipitation (MSWEP) [24], the Precipitation
Estimation from Remotely-Sensed Information using Artificial Neural Networks-Climate Data Record
(PERSIANN-CDR) [25], the Tropical Rainfall Measuring Mission (TRMM) [26,27], and the Global
Precipitation Measurement (GPM) [28]. Among these satellite precipitation datasets, TRMM has had
the specific goal of measuring precipitation over the oceans and tropics. This dataset has resulted in the
development of a series of rainfall products in the last two decades, and the spatial resolution obtained
has reached 0.25◦ × 0.25◦. TRMM data have been used extensively for inter-disciplined investigations
and applications such as land surface modeling [29], drought monitoring [30], and hydrological
simulation [31]. However, it is still too coarse when applied to the hydrological study of local basins
and regions, which generally need higher-resolution inputs [32]. Thus, a robust downscaling procedure
below the pixel resolution is needed to meet the requirement of a high spatial resolution.

Precipitation as a natural phenomenon is related to other environmental variables, such as topography
and vegetation. Complex topography causes the perturbation and deformation of atmospheric fluxes
that influence precipitation patterns by mechanically altering the wind patterns and microphysical
processes, which impact condensation of the precipitable water [33]. Precipitation distribution in
mountainous regions strongly depends on the terrain altitude and steepness, as well as the
orientation of the slopes [34]. In theory, an increase of elevation could increase the relative humidity
of air masses by expansion and cooling as the air masses rise, resulting in precipitation [35].
The precipitation–topography relationship is also largely dependent on the fluctuations of the
terrain [36]. For example, the barrier effect on the airflow is also closely related to the aspect of
mountains, as well as the direction of the airflow. Aspect is linked to the prevalent wind orientation,
thus determining the potential relative water excess or deficit [37]. These orographic alteration
processes yield large spatial variations with, in general, enhanced precipitation in the windward side
of the mountain barriers and reduced precipitation in the lee side [38]. As for slope, a gradient in the
speed of vertical air movements may control the intensity and area of precipitation [39]. Therefore,
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topographic information is useful to downscale the precipitation over mountainous regions. Jia et al. [2]
improved downscaling results after the inclusion of elevation data. Guan et al. [40] downscaled the
resolution of Next Generation Radar (NEXRAD) from 16 km to four km by considering the orographic
effects on precipitation distribution. Fang et al. [11] developed a statistical spatial downscaling scheme
based on the relationships between precipitation and environmental factors, such as slope, aspect,
and terrain roughness extracted from a digital elevation model (DEM), as well as humidity and
temperature data from meteorological conditions.

The vegetation response on an annual scale has been found to have a positive relationship with
precipitation. Many studies used Normalized Difference Vegetation Index (NDVI) as an independent
variable to downscale the coarse TRMM precipitation data [32,36,41–43]. Although the response of
NDVI to precipitation usually lagged by two or three months [41,44], it was also feasible to downscale
monthly, weekly, or daily satellite precipitation datasets by considering lag time. For example,
Quiroz et al. [45] applied wavelet transform analysis using NDVI data to improve daily rainfall
estimates at meteorological stations located on the Andean Plateau. Hunink et al. [46] assumed a lag
time of one week in the regression models to mimic the response of vegetation to precipitation as well
as to estimate spatial distributions of precipitation at a high spatial resolution with a weekly time step
in a tropical mountainous region in Ecuador.

Statistical downscaling is a recently developed approach in obtaining the high spatial resolution
of variables based on correlations between the variable at a coarse resolution and geospatial predictors
at a finer resolution [41]. Great efforts have been made to advance the spatial downscaling algorithms
of TRMM precipitation products based on the relationships described above. Immerzeel et al. [32]
proposed an algorithm for downscaling TRMM datasets using the regression between precipitation and
an NDVI based on the exponential function. Jia et al. [2] developed an algorithm using a multiple linear
regression (MLR) model and introduced both NDVI and DEM as independent variables. Furthermore,
Alexakis [47] implemented a machine learning algorithm, termed an artificial neural network (ANN),
to downscale the TRMM 3B42 precipitation fields from 0.25◦ to 1-km spatial resolution. Chen et al. [48]
and Xu et al. [49] constructed a geographically weighted regression (GWR) model to obtain higher
resolution precipitation datasets based on the assumption that the relationship of rainfall-geospatial
factors varied spatially, but was similar within a region. These studies indicated that the HSPD
obtained through downscaling algorithms not only better presented the spatial variability, but had
higher accuracy than the original TRMM datasets.

Previous studies have shown that monthly rainfall estimates from the TRMM satellite contained
errors (±8% to ±12% per month) due to discrete temporal sampling. As the TRMM satellite is a low
Earth orbiting satellite, its rain sensors sample the regional atmosphere only at discrete time intervals,
sometimes missing short duration storms [50]. Moreover, regional sampling errors (approximately
30%) could be expected in TRMM rainfall estimates [51,52]. Since all downscaling procedures are based
on the original TRMM 3B43 data, these errors would be inevitably introduced into the downscaled
precipitation data. Reliable calibration methods combining satellite rainfall data with rainfall data
from rain gauge stations (RGS) can greatly improve the accuracy of rainfall estimates [53]. For example,
better agreements between downscaled precipitation data and observations from RGS were achieved
by using geographical difference analysis (GDA) in the study of Duan and Bastiaanssen [41].

Although a large number of algorithms have been developed and applied for the downscaling
of satellite-based precipitation data and improvements in accuracy [36], there exists a challenge to
generate accurate precipitation in mountainous watersheds due to the sparse gauge network and
high spatial-temporal variability of precipitation. In this study, our main goal was to map annual and
monthly precipitation with a high spatial resolution over a mountainous, monsoon driven watershed.
More specifically, we had four sub-objectives: (1) to test the applicability of the original TRMM 3B43
V7 precipitation data; (2) to compare three different regression techniques (MLR, ANN, and GWR) of
estimating precipitation at a coarse resolution and five different interpolation methods of regression
residual, choosing one method with the best performance to downscale TRMM precipitation data; (3) to
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map the annual precipitation at a 1-km resolution based on the integrated downscaling-calibration
procedure; and (4) to produce maps of monthly precipitation by disaggregating annual downscaled
precipitation data using a simple fraction disaggregation method.

2. Materials and Methods

2.1. Study Area

The Red River Basin is located in Southwest China, with a geographical location of 22◦21′–25◦36′N
and 100◦07′–105◦42′E (Figure 1). The main stream is 677 km long and the basin area is approximately
7.6 × 104 km2. The elevation of the catchment ranges from 79 m to 3142 m above sea level, decreasing
from the Northwest to the Southeast. The variability of terrain, coupled with the influences of
the Indian and East Asian monsoons, means precipitation over the Red River Basin has a complex
spatial and temporal variation [54]. The annual average precipitation was approximately 1056 mm,
ranging from 854 mm to 1303 mm. Additionally, about 85% of the annual precipitation is concentrated
in the rainy season (May to October), with less than 15% of the annual precipitation observed in the dry
season (November to April). The mean annual temperature ranges from 15 ◦C to 24 ◦C, with June being
the warmest month, and the coldest month being January. The precipitation presents a decreasing
trend with a latitude and altitude increase (Figure 2). The vegetation of the Red River Basin consists of
broad-leaved evergreen forests, coniferous forests, grasslands, and shrubs. Strong correlations between
NDVI and precipitation are found in a previous study [55]. Therefore, it is feasible to develop a spatial
downscaling-calibration procedure for low-resolution satellite-based precipitation datasets based on
NDVI and terrain factors in this area.

Remote Sens. 2018, 10, 119  4 of 27 

 

of estimating precipitation at a coarse resolution and five different interpolation methods of 
regression residual, choosing one method with the best performance to downscale TRMM 
precipitation data; (3) to map the annual precipitation at a 1-km resolution based on the integrated 
downscaling-calibration procedure; and (4) to produce maps of monthly precipitation by 
disaggregating annual downscaled precipitation data using a simple fraction disaggregation method. 

2. Materials and Methods  

2.1. Study Area 

The Red River Basin is located in Southwest China, with a geographical location of 22°21′–
25°36′N and 100°07′–105°42′E (Figure 1). The main stream is 677 km long and the basin area is 
approximately 7.6 × 104 km2. The elevation of the catchment ranges from 79 m to 3142 m above sea 
level, decreasing from the Northwest to the Southeast. The variability of terrain, coupled with the 
influences of the Indian and East Asian monsoons, means precipitation over the Red River Basin has 
a complex spatial and temporal variation [54]. The annual average precipitation was approximately 
1056 mm, ranging from 854 mm to 1303 mm. Additionally, about 85% of the annual precipitation is 
concentrated in the rainy season (May to October), with less than 15% of the annual precipitation 
observed in the dry season (November to April). The mean annual temperature ranges from 15 °C to 
24 °C, with June being the warmest month, and the coldest month being January. The precipitation 
presents a decreasing trend with a latitude and altitude increase (Figure 2). The vegetation of the Red 
River Basin consists of broad-leaved evergreen forests, coniferous forests, grasslands, and shrubs. 
Strong correlations between NDVI and precipitation are found in a previous study [55]. Therefore, it 
is feasible to develop a spatial downscaling-calibration procedure for low-resolution satellite-based 
precipitation datasets based on NDVI and terrain factors in this area. 

 

Figure 1. Elevation and distribution of meteorological stations in the Red River Basin. Figure 1. Elevation and distribution of meteorological stations in the Red River Basin.



Remote Sens. 2018, 10, 119 5 of 27
Remote Sens. 2018, 10, 119  5 of 27 

 

(a) (b)

Figure 2. Scatterplots between annual average precipitation and (a) latitude; (b) elevation for 40 RGS 
from 2001 to 2015. 

2.2. Data 

2.2.1. TRMM Precipitation Data 

TRMM is a joint project of the National Aeronautics and Space Administration (NASA) and the 
Japan Aerospace Exploration Agency (JAXA) launched on 27 November 1997, with the aim of 
monitoring and studying rainfall in tropical and subtropical regions [26]. TRMM is a research satellite 
designed to improve our understanding of the distribution and variability of precipitation covering 
the global region between 50°N and 50°S and has provided valuable information on rainfall and its 
associated heat release [27]. The TRMM 3B43 Version 7 dataset used in this study is one of several 
TRMM precipitation products, containing data from January 2001 to December 2015, with a calendar-
month temporal resolution and a 0.25° × 0.25° spatial resolution. The monthly precipitation data were 
accumulated to obtain the TRMM annual precipitation. 

2.2.2. NDVI Data 

The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) (NASA, Washington, D.C. 
USA) monthly composite NDVI data of 1-km resolution (MOD13A3, collection v006) spanning the 
period from January 2001 to December 2015 were downloaded from the NASA Land Processes 
Distributed Active Archive Center (https://lpdaac.usgs.gov/dataset_discovery/modis). We 
aggregated the MOD13A3 monthly data into the annual NDVI for 2001–2015. 

It should be noted that since the vegetation growth is suppressed or promoted by some land 
covers (e.g., rivers, lakes, snow and ice, and urban areas), the vegetation data of these land covers 
were excluded. Additionally, due to the strong influence of farming activities (e.g., irrigation, 
fertilization, and harvest) on the crop growth, vegetation data of farmland were also excluded [56]. 
As such, we identified anomalous pixels simply by land use type: pixels categorized as water, 
wetland, urban, cropland, snow/ice, and barren were identified as anomalies. The detected 
anomalous pixels were excluded from the original NDVI dataset and then filled with interpolated 
values using the IDW method to generate an optimized NDVI dataset.  

2.2.3. Land Use Data 

In this study, the land use dataset MCD12Q1 Version 051 (MODIS/Terra+Aqua Land Cover Type 
Yearly L3 Global 500 m SIN Grid V051) in the period from 2001 to 2013 was used, which has a yearly 
temporal resolution and a 500 m × 500 m spatial resolution. MCD12Q1 contains five types of 
classification that describe the properties of surface coverage derived from the observations of the 
MODIS sensor. The first surface coverage schema identifies 17 classes defined by the International 
Geosphere Biosphere Program (IGBP), which was adopted in this study for its wide applications. The 
IGBP classification includes 11 natural vegetation classes, three classes of urbanized lots, and three 
classes of vegetated ground [57]. 
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2.2. Data

2.2.1. TRMM Precipitation Data

TRMM is a joint project of the National Aeronautics and Space Administration (NASA) and
the Japan Aerospace Exploration Agency (JAXA) launched on 27 November 1997, with the aim
of monitoring and studying rainfall in tropical and subtropical regions [26]. TRMM is a research
satellite designed to improve our understanding of the distribution and variability of precipitation
covering the global region between 50◦N and 50◦S and has provided valuable information on rainfall
and its associated heat release [27]. The TRMM 3B43 Version 7 dataset used in this study is one
of several TRMM precipitation products, containing data from January 2001 to December 2015,
with a calendar-month temporal resolution and a 0.25◦ × 0.25◦ spatial resolution. The monthly
precipitation data were accumulated to obtain the TRMM annual precipitation.

2.2.2. NDVI Data

The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) (NASA, Washington, DC,
USA) monthly composite NDVI data of 1-km resolution (MOD13A3, collection v006) spanning
the period from January 2001 to December 2015 were downloaded from the NASA Land
Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/dataset_discovery/modis).
We aggregated the MOD13A3 monthly data into the annual NDVI for 2001–2015.

It should be noted that since the vegetation growth is suppressed or promoted by some land
covers (e.g., rivers, lakes, snow and ice, and urban areas), the vegetation data of these land covers were
excluded. Additionally, due to the strong influence of farming activities (e.g., irrigation, fertilization,
and harvest) on the crop growth, vegetation data of farmland were also excluded [56]. As such,
we identified anomalous pixels simply by land use type: pixels categorized as water, wetland, urban,
cropland, snow/ice, and barren were identified as anomalies. The detected anomalous pixels were
excluded from the original NDVI dataset and then filled with interpolated values using the IDW
method to generate an optimized NDVI dataset.

2.2.3. Land Use Data

In this study, the land use dataset MCD12Q1 Version 051 (MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 500 m SIN Grid V051) in the period from 2001 to 2013 was used, which has
a yearly temporal resolution and a 500 m × 500 m spatial resolution. MCD12Q1 contains five types
of classification that describe the properties of surface coverage derived from the observations of the
MODIS sensor. The first surface coverage schema identifies 17 classes defined by the International
Geosphere Biosphere Program (IGBP), which was adopted in this study for its wide applications.

https://lpdaac.usgs.gov/dataset_discovery/modis
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The IGBP classification includes 11 natural vegetation classes, three classes of urbanized lots, and three
classes of vegetated ground [57].

The land use dataset was mainly used in this study to identify the outliers of NDVI caused by
factors other than precipitation. Since the available MCD12Q1 data spanned 2001 to 2013, we used
the year 2013 instead of 2014 and 2015 for identifying outliers of MOD13A3. In addition, due to
a mismatch in spatial resolution between the MOD13A3 and MCD12Q1 datasets, the MCD12Q1
dataset was up-scaled to a 1-km resolution.

2.2.4. DEM Data

The DEM data were obtained from the NASA Shuttle Radar Topographic Mission (SRTM) [58].
The 90-m DEM was re-sampled at a resolution of 1-km using the pixel averaging method. The variables
of slope, aspect, and geolocation (longitude and latitude) data were further extracted from the
DEM data.

2.2.5. Rain Gauge Data

Monthly precipitation observations obtained from 40 RGS during 2001–2015 were from the
Meteorological Agency of Yunnan Province. The locations of the 40 rain gauges are shown in
Figure 1. As depicted in Figure 1, the distribution of stations in the study area is dense in the East and
relatively sparse in the West. These stations have altitudes from 137 m to 2003 m, with 85% between
1000 m and 2000 m. Figure 3 shows the variation of annual rainfall from 2001 to 2015. We selected
three typical years: 2005, 2001, and 2009 to represent normal, wet, and dry conditions, respectively.
These three reference years, as well as the average annual precipitation of 2001–2015, were selected for
the downscaling and calibration procedure to evaluate the performance in different climatic conditions.

The rain gauge data was divided into two sample sets. The first set was used to calibrate the
downscaled annual precipitation data using calibration methods, and the second set was used for
validation. The separation of the RGS for calibration and validation was done as follows: all available
fifteen-year period (2001–2015) average annual precipitation from all 40 RGS were first calculated and
sorted in a lowest-highest sequence 1–40; then 20 RGS with odd numbers from one to 39, plus number
40, were considered as calibration RGS; the others were validation RGS. This separation allowed the
calibration to cover the whole range of precipitation, including the lowest and highest values [41].
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2.3. Methods

A flowchart was provided to illustrate the main steps of the downscaling-calibration and the
monthly fraction disaggregation algorithm, which is shown in Figure 4.
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2.3.1. Downscaling of Original TRMM 3B43 Precipitation

We established a hybrid downscaling method using a regression model with residual correction
on the basis of previous studies [2,47,48,59,60]. Within the hybrid downscaling method, the TRMM
precipitation data were decomposed into trend and residual components. First, quantitative
relationships between the TRMM data and environmental variables of coarse scale were estimated
via regression analysis and used to derive trend component at a fine scale. Second, the residual
component, which is the difference between the trend component and the original TRMM data,
was then downscaled into a target fine scale via spatial interpolation. The trend and residual
components were finally added to generate fine scale precipitation estimates.

The downscaling method was based on two assumptions: (1) precipitation has a spatial
relationship with environmental variables, and this relationship can be addressed by established
models; and (2) the models established at low spatial resolution can also be used to predict the
precipitation at a fine resolution with the higher resolution environmental variables dataset [36].
The specific steps used for downscaling in this study are described as follows:

(1) Original NDVI, elevation, slope, and aspect of 1-km resolution were re-sampled at a resolution
of 0.25◦ using a pixel averaging method with the geographical coordinates of the center of each 0.25◦

grid is also extracted;
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(2) The relationships between the re-sampled independent variables and the TRMM 3B43 V7
precipitation data were established using regression models (i.e., MLR, ANN, GWR), from which we
obtained the estimated annual precipitation at the 0.25◦ scale;

(3) Geolocations along with the 1-km spatial resolution variables were entered into the model
established in Step 2, and a downscaled precipitation of 1-km resolution was achieved;

(4) Residual correction can adjust for the precipitation that cannot be predicted by the models.
This adjustment was generated by computing the difference between the estimated precipitation values
at the 0.25◦ scale and the original TRMM 3B43 data, followed by spatial interpolation into the residual
of a 1-km resolution. Five interpolation methods (IDW, spline regularized, spline tension, ordinary
kriging, and simple kriging) were applied to the residuals, and cross-validation was used to choose
the best interpolation method; and

(5) The corrected downscaled precipitation results were obtained by adding the residual correction
term of 1-km resolution to the downscaled precipitation of 1-km resolution.

2.3.2. Regression Models

(1) Multiple Linear Regression Model

The method of analysis used in the multiple linear regression models was the method of least
squares, which is a minimization of the sum of the squares of the deviations of the observed response
from the fitted response [61]. With precipitation being the dependent variable, we constructed a model
that involves both the environmental variables (NDVI, elevation, slope, aspect, longitude, latitude)
and their corresponding parameters.

The general form of the model is written as follows:

P = a0 + a1x1 + a2x2 + . . . + a6x6 (1)

where P is precipitation (mm/year); x1–x6 are the NDVI, elevation, slope, aspect, longitude, latitude,
respectively. Furthermore, a0–a6 are the corresponding parameters of the regression function.

We applied stepwise regression to avoid multicollinearity and overfitting of the linear regression
equation. For the three reference years and entire time period, the significant correlations between
TRMM precipitation and latitude or NDVI were found at the 0.05 significance level, while the other
four factors had no significance at the 0.1 level. Therefore, the regression relationship was established
based on TRMM precipitation, latitude, and NDVI.

(2) Artificial Neural Network Model

The theory behind neural networks is based on an attempt to reproduce human learning
processes [62]. ANN is an attractive and powerful numerical methodology to map complex
relationships between different sets of observed variables [63]. It has been used in different studies
to downscale coarse TRMM precipitation data [47,64]. An ANN consists of a collection of different
neurons connected to each other. A connection occurs when the status of a neuron, i, is one of the
inputs for another neuron, j, by means of a weight, Wij. Individual neurons are often called nodes of
the network. The architecture of an ANN is defined by establishing how the individual neurons of the
network are connected to each other. To estimate the number of the hidden layer nodes, the equation
proposed by Hecht–Nielsen [65] was used as a reference:

Ng = 2× Ni + 1 (2)

where Ng is the number of hidden nodes; and Ni is the number of input nodes.
The multi-layer perceptron (MLP) neural network was used for the application of the ANN.

A three-layer feed forward network consisting of an input layer, one hidden layer, and one output layer
was used as the network structure. For example, the network structure of 2001 was 6-16-1. The number
of the hidden layer nodes was finally estimated through many simulation experiments. According to
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Equation (2), we first obtained a reference value of 13, then we tried the different numbers around 13,
and finally made it 16, as the network performed best when the number of the hidden layer nodes was
16. The input layer had six neurons, including NDVI, elevation, slope, aspect, longitude, and latitude.
The output layer was the precipitation. For the needs of a training procedure, 3000 iterations were set
as a threshold to terminate the procedure. The tangent sigmoid function was used for transferring data
from one layer to another in the hidden layer. The purelin function was used for transferring data in the
output layer. The training and learning function were trainlm and learngdm, respectively. The functions
used above are part of Neural Network Toolbox in Matlab (The MathWorks, Natick, MA, USA) [66].
For the samples, approximately two thirds were regarded as training samples, and the other third was
used as validation samples. The training process of the ANN consisted of the determination of all the
weights of the network based on the observed input/output patterns [47].

(3) Geographically-Weighted Regression Model

GWR is a regional regression method that can be used to investigate the spatially-varying
relationship between dependent and explanatory variables [67]. In other words, GWR runs a regression
for each location instead of a sole regression for the entire study area [68], which attempts to capture
the spatial variation of the relationship by adding the geographical location information into the
regression process. The regression model can be rewritten as Equation (3):

yi = β0(ui, vi) +
p

∑
k = 1

βk(ui, vi)xik + εi i = 1, 2, · · · , n (3)

where yi is the ith observation of the dependent variable; xik is the ith observation of the kth
independent variable; the (ui, vi) represents the geographical coordinates of ith regression point;
and βk(ui, vi) is the kth regression parameter in the ith regression point, which is a function of
geographical location. Furthermore, εi represents the independent normally distributed error term
with zero mean.

The parameters can be estimated by solving the following matrix equation:

β̂(ui, vi) =
(

xT(W(ui, vi))x
)−1

xTW(ui, vi)y (4)

In this equation, β̂(ui, vi) is the local coefficient to be estimated at location (ui, vi); x and y are
the vectors of the explanatory and the dependent variables, respectively; and W(ui, vi) is the weight
matrix, which plays the role of ensuring that closer observations around the ith point carry more
weight than observations farther away [48,69]. In this study, the GWR method was conducted using
GWR 4.0 software (https://gwrtools.github.io/category/gwr.html) [68].

2.3.3. Calibration of Downscaled Precipitation

The GDA calibration method developed by Cheema and Bastiaanssen [53] was used to minimize
the difference between the satellite precipitation and the measurements from RGS. Instead of GDA,
geographical ratio analysis (GRA) was developed to calibrate the downscaled precipitation. In this
process, we compared GDA and GRA using measurements from validation RGS to choose a method
that provided results with higher accuracy. The processing steps of GDA/GRA are as follows:

(1) The differences/ratio between the downscaled precipitation values and the measurements from
RGS were computed;

(2) The differences/ratio were interpolated into a resolution of 1-km with the interpolation
technique; and

(3) The downscaled precipitation was corrected to obtain the final calibrated precipitation by
adding/multiplying the differences/ratio term of 1-km resolution.

https://gwrtools.github.io/category/gwr.html
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2.3.4. Monthly Fraction Disaggregation from Annual Precipitation

A simple fraction method derived from original TRMM 3B43 monthly data developed by Duan
and Bastiaanssen [41] was used to disaggregate downscaled-calibrated annual 1-km precipitation
maps into maps at monthly time steps. The procedure was as follows:

(1) The monthly fractions of 0.25◦, which were used to disaggregate the annual precipitation,
were defined as:

Fractioni = TRMMoi/ ∑ 12
i = 1TRMMoi (5)

where the TRMMoi represents the precipitation that occurs during the ith month as estimated
from the original TRMM 3B43 product; and the denominator is the annual total value.

(2) The 0.25◦ fractions were further interpolated into a spatial resolution of 1-km which was consistent
with the downscaled-calibrated annual precipitation using an interpolation method;

(3) The annual downscaled precipitation values at 1-km resolution were disaggregated into
monthly-downscaled precipitation values by multiplying the fraction values of 1-km resolution.

2.3.5. Validation

The validation in this study included three steps. First, the predicted annual precipitation obtained
using three regression models were compared with the original TRMM estimates at 0.25◦ resolution.
Four metrics, the coefficient of determination (R2), the root mean square error (RMSE), the mean
absolute error (MAE), and the Bias, were used to evaluate the results. They were defined as follows:

R2 =

[
∑n

i = 1
(
Oi −O

)(
Pi − P

)]2
∑n

i = 1
(
Oi −O

)2
∑n

i = 1
(

Pi − P
)2 (6)

RMSE =

√
∑n

i = 1(Oi − Pi)
2

n
(7)

MAE =
∑n

i = 1|Oi − Pi|
n

(8)

Bias =
∑n

i = 1 Pi

∑n
i = 1 Oi

− 1 (9)

where O and P represent the original TRMM precipitation and predicted precipitation of models at
0.25◦ resolution, respectively.

Second, leave-one-out cross validation (LOOCV) was used to compare the residual results of
different interpolation methods. The LOOCV method removes one point every time, and then predicts
the value of this point using the remaining points until all the points were iterated [70]. Two indicators
(RMSE and MAE) were calculated based on the predicted values and the original values of all the
points to evaluate the interpolation methods.

Third, the accuracy of the final downscaled precipitation was further validated against the
measurements from RGS, based on the R2, RMSE, MAE, and Bias. The rain gauge data not used for
calibration were used to validate the final downscaled results.

3. Results

3.1. Comparison between TRMM and Station-Based Observed Precipitation

The applicability of the original TRMM 3B43 V7 was tested using measurements from 34 RGS,
which are not included in the Global Precipitation Climatology Centre (GPCC) gauge network used
in 3B43 ground calibrations. Figure 5 shows plots of the original TRMM precipitation against rain
gauge measurements at multi-time scale from 2001 to 2015. From Figure 5, a significant correlation was
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found between the two datasets during the dry season, wet season, and whole year. The correlation
coefficients reached 0.87 (dry season), 0.84 (wet season), and 0.91 (whole year), respectively, which all
passed the 0.01 level of significance test. These results indicated an obvious linear correlation
and consistency between TRMM precipitation and rain gauge data. In terms of bias, the dry
season, wet season, and whole year were 0.091, 0.057, and 0.062, respectively, which means that
the precipitation was overestimated by TRMM 3B43 when compared with observations from RGS.
On the whole, there was a strong applicability of the original TRMM 3B43 data in the estimation of
precipitation over the Red River Basin.
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3.2. Performance of the Different Downscaling Models

Obtaining the regression relationship between the TRMM precipitation and environmental
variables, is a vital premise of the downscaling procedure, which directly affects the final result.
Therefore, the predictive performances of three regression models (MLR, ANN, and GWR) were
evaluated by comparing the predicted annual precipitation by each model with the original TRMM
annual precipitation at 0.25◦ resolution. To better compare the performance of the three models,
a bootstrapping procedure was employed to create a sample of the same size as the original data,
a total of 1000 tests were conducted, and performance metrics (i.e., R2, RMSE, MAE, and Bias) were
calculated accordingly. Table 1 shows the mean values and 95% confidence interval of R2, RMSE,
MAE, and Bias, estimated by the three models for the three reference years and entire time period.
The box plots of R2, RMSE, MAE, and Bias are shown in Figure 6. From Table 1 and Figure 6, it can be
seen that both ANN and GWR produced a higher R2 and lower RMSE and MAE than that of MLR
under different climatic conditions. In terms of Bias, the Bias of GWR was lower than that of ANN
in three reference years and the entire time period. GWR is a regression algorithm, which adds the
geographical information for each location into the regression process, potentially addressing the
spatially heterogeneous relationships between various environmental factors. Compared with ANN,
GWR can capture more specific, local details. Thus, GWR was chosen as the downscaling model to
generate HSPD in subsequent analyses.
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Table 1. Comparison of annual precipitation data from TRMM 3B43 and estimates based on MLR,
ANN, and GWR models (95% confidence intervals are in parentheses).

Year 2001 (Wet) 2005 (Normal) 2009 (Dry) 2001–2015 (Averaged)

MLR

R2 0.44 (0.32, 0.55) 0.52 (0.42, 0.61) 0.58 (0.50, 0.66) 0.59 (0.49, 0.67)
RMSE 241 (216, 265) 241 (214, 268) 231 (207, 255) 221 (197, 244)
MAE 194 (173, 215) 185 (163, 207) 184 (165, 205) 172 (152, 192)
Bias 0.010 (−0.014, 0.038) 0.014 (−0.019, 0.047) 0.017 (−0.022, 0.052) 0.014 (−0.015, 0.043)

ANN

R2 0.90 (0.86, 0.93) 0.90 (0.85, 0.93) 0.92 (0.90, 0.95) 0.91 (0.86, 0.95)
RMSE 112 (97, 126) 115 (99, 134) 101 (88, 114) 105 (85, 124)
MAE 85 (73, 96) 88 (78, 100) 75 (65, 85) 73 (62, 84)
Bias 0.030 (0.019, 0.042) 0.001 (−0.015, 0.016) 0.025 (0.009, 0.041) −0.016 (−0.029, −0.004)

GWR

R2 0.87 (0.82, 0.91) 0.89 (0.85, 0.92) 0.90 (0.86, 0.93) 0.90 (0.86, 0.93)
RMSE 117 (99, 137) 119 (103, 137) 114 (97, 131) 110 (92, 127)
MAE 78 (66, 91) 82 (71, 96) 76 (65, 88) 73 (61, 86)
Bias −0.000 (−0.012, 0.012) 0.000 (−0.015, 0.016) 0.000 (−0.017, 0.016) 0.002 (−0.012, 0.016)

3.3. Downscaling and Calibrating of TRMM Annual Precipitation

3.3.1. Downscaling Analysis of TRMM Annual Precipitation

The estimated precipitation of three reference years and the entire time period was obtained based
on the GWR model. The following took the average annual precipitation of 2001–2015 as an example
to analyze the downscaled results. A comparison of Figure 7a,b showed similar spatial patterns of
estimated TRMM precipitation when compared with the original TRMM precipitation at a spatial
resolution of 0.25◦. However, the estimated TRMM precipitation was a little lower than the original
TRMM precipitation. In addition, the spatial variability of the estimated TRMM precipitation was
higher than that of the original TRMM precipitation, indicating a difference between the estimated
TRMM precipitation and the original TRMM precipitation with a 0.25◦ spatial resolution in terms
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of precipitation value and spatial distribution range. Figure 7c shows the spatial distribution of the
residual of annual average TRMM precipitation with a spatial resolution of 0.25◦ × 0.25◦. The map
of residuals represents the part of the precipitation that could not be explained by the GWR model.
Positive values of the residual indicate that the precipitation was underestimated by the GWR method,
while negative values indicate an overestimate of precipitation.Remote Sens. 2018, 10, 119  13 of 27 
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Figure 7. Downscaled results of annual average TRMM precipitation covering a period of 2001–2015:
(a) the original TRMM 3B43 precipitation at 0.25◦ resolution; (b) the estimated TRMM 3B43 precipitation
at 0.25◦ resolution by GWR; (c) residual at 0.25◦ resolution; (d) residual at 1-km resolution; (e) the
estimated TRMM 3B43 precipitation at 1-km resolution; and (f) the final downscaled precipitation map.

Precipitation residuals with a spatial resolution of 0.25◦ × 0.25◦ (Figure 8a) between TRMM
precipitation and estimated TRMM precipitation were interpolated to a higher spatial resolution of
1-km using different spatial interpolation methods, i.e., the IDW method in Figure 8b, the simple spline
regularized interpolation in Figure 8c, the simple spline tension interpolation in Figure 8d, the ordinary
kriging method in Figure 8e, and the simple kriging method in Figure 8f. Considering the strong
influence of different interpolation methods on residual results, we conducted a comparison using
LOOCV. The indicators (RMSE and MAE) of five interpolation methods were compared to select the
method with the best performance. According to the results in Table 2, the simple kriging method was
accepted for the spatial interpolation of precipitation residuals from lower to higher spatial resolution
(Figure 7d). It should be noted that the simple kriging interpolation was used in subsequent analysis
such as calibration and monthly fraction disaggregation.
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Figure 7e shows the spatial patterns of the estimated annual average TRMM precipitation
with 1-km resolution. Figure 7f shows the spatial distribution of downscaled annual average
TRMM precipitation, which was obtained by adding the high-spatial-resolution predictive annual
average precipitation data to the high-spatial-resolution residual obtained above. From Figure 7f,
the downscaled TRMM precipitation adequately represented real-world precipitation patterns.
In particular, high precipitation was observed mainly in the southern region, and less precipitation
was found in the northeast region. Downscaled TRMM precipitation using environmental factors
better described the spatial patterns of precipitation with more detail at the spatial resolution of 1-km
when compared with the original TRMM precipitation.
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Table 2. Evaluation of different interpolation methods for residual based on GWR model’s output
(95% confidence intervals are in parentheses).

Interpolation
Methods IDW Spline

Regularized
Spline

Tension
Ordinary
Kriging

Simple
Kriging

RMSE 97.56
(83.11, 114.26)

96.50
(82.10, 113.86)

96.39
(81.95, 113.00)

96.47
(82.05, 113.28)

95.56
(81.23, 112.40)

MAE 67.89
(57.68, 78.92)

67.73
(57.83, 78.62)

67.48
(57.35, 78.41)

67.45
(57.32, 78.39)

66.86
(56.95, 77.77)
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3.3.2. Calibrating Analysis of Downscaled TRMM Annual Precipitation

Calibration with rain gauge data is an essential step for the downscaling-calibration procedure as
there may be some bias in the downscaled precipitation introduced by the inherent error in the original
TRMM precipitation when downscaling [32]. In this study, we employed two calibration methods
(GDA and GRA) to correct the bias of the downscaled precipitation data using rainfall data from
RGS. The rainfall data from 21 calibration RGS were used to calibrate the downscaled precipitation
and the remaining 19 RGS were used for validation. It should be noted that there is the potential for
substantial uncertainty in precipitation inferred from gauge observations as gauges in mountainous
terrain often suffer significant undercatch errors due to strong winds and accessibility difficulties that
can obstruct routine maintenance [71]. In this section, the original TRMM precipitation was labeled
as V7 and the above-mentioned downscaled precipitation was labeled as DS. The precipitation after
GDA and GRA calibration based on the downscaled precipitation (DS) was labeled as DSGDA and
DSGRA, respectively.

The statistical results of V7, DS, DSGDA, and DSGRA using 19 validation RGS measurements for
three reference years and the entire time period are listed in Table 3. Compared with the V7 results,
the DS results improved accuracy with reduced RMSE and Bias values, and considerable improvement
could be observed in the dry year. In general, both the GDA and GRA calibration methods can further
improve accuracy with increased R2 and reduced RMSE, MA, and Bias values. Compared with the
GDA calibration method, GRA performed better in terms of the four indicators calculated. Therefore,
the GRA method was used to calibrate the downscaled precipitation on an annual scale. The final
calibration results of three reference years and the entire time period were conducted based on
21 calibration RGS, which are shown in Figures 9 and 10. The estimated precipitation for 2001, 2005,
2009, and 2001–2015 were 1544 mm, 1320 mm, 1068 mm, and 1309 mm, respectively. The spatial
distribution and amount variations of precipitation reflected well the wet, normal, and dry conditions.
Note that some outliers were identified in Figure 10, which may be attributed to high precipitation in
mountainous areas, and may also be partially due to errors in the downscaling process.Remote Sens. 2018, 10, 119  16 of 27 
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Table 3. Statistics of validation results using 19 validation RGS on an annual scale for three reference
years and the entire time period (95% confidence intervals are in parentheses).

Year Datasets Mean
(mm) R2 RMSE

(mm)
MAE
(mm) Bias

2001 (Wet)

RGS 1276

V7 1210 0.36
(0.12, 0.65)

246
(107, 399)

159
(82, 267)

−0.050
(−0.133, 0.027)

DS 1218 0.35
(0.06, 0.66)

245
(125, 354)

171
(98, 260)

−0.044
(−0.125, 0.033)

DSGDA 1290 0.54
(0.21, 0.80)

198
(125, 266)

155
(102, 217)

0.012
(−0.055, 0.078)

DSGRA 1279 0.55
(0.22, 0.80)

196
(123, 264)

155
(101, 215)

0.004
(−0.064, 0.070)

2005 (Normal)

RGS 1035

V7 951 0.57
(0.18, 0.87)

243
(105, 411)

156
(82, 263)

−0.078
(−0.174, 0.015)

DS 974 0.60
(0.06, 0.90)

211
(127, 313)

159
(100, 230)

−0.056
(−0.136, 0.031)

DSGDA 1053 0.66
(0.12, 0.92)

190
(116, 271)

142
(88, 203)

0.020
(−0.060, 0.109)

DSGRA 1068 0.65
(0.14, 0.92)

185
(115, 254)

137
(84, 198)

0.035
(−0.045, 0.121)

2009 (Dry)

RGS 826

V7 791 0.45
(0.12, 0.76)

235
(153, 333)

184
(123, 255)

−0.034
(−0.149, 0.097)

DS 810 0.56
(0.08, 0.87)

200
(159, 239)

169
(120, 215)

−0.015
(−0.112, 0.105)

DSGDA 831 0.62
(0.11, 0.89)

181
(142, 222)

157
(117, 197)

0.010
(−0.088, 0.118)

DSGRA 828 0.63
(0.12, 0.90)

175
(134, 217)

151
(111, 191)

0.006
(−0.087, 0.110)

2001–2015 (Averaged)

RGS 1011

V7 988 0.64
(0.37, 0.84)

202
(111, 316)

142
(85, 220)

−0.021
(−0.109, 0.073)

DS 1005 0.63
(0.17, 0.89)

187
(123, 254)

144
(91, 201)

−0.005
(−0.081, 0.083)

DSGDA 1066 0.71
(0.26, 0.93)

170
(124, 211)

137
(92, 186)

0.055
(−0.018, 0.139)

DSGRA 1061 0.72
(0.27, 0.93)

161
(115, 201)

128
(83, 172)

0.050
(−0.017, 0.130)
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3.4. Monthly Results of Disaggregating Annual Precipitation

The previous section demonstrated the best annual precipitation data, which were obtained
through downscaling and calibration procedures. The following analysis took the average annual
precipitation of 2001–2015 as an example to map the monthly precipitation. The accumulated 1-km
resolution annual average precipitation of 2001–2015 was disaggregated into monthly time steps
using the fraction specified under Equation (5). The disaggregated 1-km monthly precipitation was
labeled as DSdis. The calibration of DSdis was not conducted in this study given that duplicated
calibration processes on a monthly scale are no longer necessary after calibration on an annual scale
given the scarcity of available RGS [41]. Figure 11 shows the final downscaled monthly precipitation
with a 1-km resolution. The spatial distribution changes of downscaled monthly precipitation clearly
reflected the influence of monsoon activities (both onset and decline) on precipitation. Meanwhile,
the monthly precipitation variations during the wet season (May to October) and the dry season
(November to April) are depicted in Figure 12.Remote Sens. 2018, 10, 119  17 of 27 
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The measurements from validation RGS were also used to assess the accuracy of the downscaled
monthly data. The 19 validation RGS were the same as those mentioned in Section 3.3.2. Figure 13a,b
compares the monthly precipitation from RGS with the corresponding values from the original TRMM
3B43 data and the downscaled data. The original TRMM 3B43 data could estimate the monthly
precipitation with R2 = 0.88, RMSE = 26.5 mm, MAE = 13.7 mm, and Bias = −0.023. The monthly
DSdis data agreed well with the measured data with an R2 of 0.91, RMSE of 22.2 mm, MAE of
13.5 mm, and Bias of 0.048. The monthly DSdis data could improve the accuracy further with increased
R2 and reduced RMSE, but the improvement was not significant with respect to MAE and Bias.
Considering the strong seasonality of precipitation in this region, the seasonal bias in the original
TRMM data may be introduced into the downscaled monthly precipitation by using the monthly
fraction disaggregation method. To explore the effect of the seasonal bias on the downscaled monthly
precipitation, we compared monthly precipitation from RGS with the original TRMM data and the
downscaled TRMM data in dry and wet seasons, respectively. Figure 13c,e show an underestimation
of the original TRMM data in both dry and wet seasons, where the Bias were −0.006 and −0.026,
respectively. The Bias of downscaled monthly precipitation were 0.110 in the dry season and 0.037 in
the wet season (Figure 13d,f), which indicate that the downscaled monthly precipitation data in turn
overestimated the precipitation in both the dry and wet seasons.
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Figure 13. Comparison of monthly precipitation measured by RGS with (a) original monthly TRMM
data; (b) downscaled monthly data; (c) original monthly TRMM data in the dry season; (d) downscaled
monthly data in the dry season; (e) original monthly TRMM data in the wet season; and (f) downscaled
monthly data in the wet season. The red line indicates a 1:1 correspondence and the blue line gives the
linear regression best fit.

4. Discussion

4.1. Sources of Errors and Limitations in the Downscaled Satellite Precipitation Datasets

The downscaling method is based on the assumption that the regression models established at low
spatial resolution can also be used to predict precipitation at a fine resolution with a higher-resolution
environmental variables dataset. However, the TRMM product has considerable regional and seasonal
errors [72,73]. The errors in TRMM products could seriously disturb the relationship between
precipitation and environmental variables at low spatial resolution, making it difficult to accurately
predict precipitation with environmental variables at a fine resolution. This limitation can lead to some
uncertainty in the downscaled satellite precipitation datasets. Immerzeel et al. [32] pointed out that the
downscaled satellite precipitation may be suffering from inherent errors in the satellite precipitation
datasets and NDVI caused by orbital drift, atmospheric conditions, and imperfect retrieval algorithms.
For example, the purpose of the 3B43 algorithm is to produce the best precipitation rate (mm/h)
estimates from TRMM and other data sources. However, there are some deficiencies, such as the
discontinuity in the data record and the bias introduced by the AMSU-B algorithm of TRMM 3B43,
which potentially reduces the accuracy of TRMM 3B43 [2].

Therefore, calibration with rain gauge data is an essential step to improve the accuracy of the
downscaled precipitation data. The GDA and GRA methods have proven to be simple and effective
methods to correct the errors in the downscaled data [41,74,75]. In this study, calibration using GDA
and GRA methods gave better annual precipitation in terms of statistical indicators for the three
reference years and the entire time period. GRA was preferred over GDA for the better statistical
indicators and some mathematical reasons. Over regions with high spatial variation in precipitation,
the downscaled precipitation corrected by ratio-based calibration provided more accurate results than
that of difference-based calibration. However, the Red River Basin is a poorly gauged area with 21 rain
gauges for calibration present over 76,000 km2 area and, hence, one gauge represents approximately
3619 km2. The scarcity of rain gauge stations inevitably limits the capabilities of the GDA and GRA
calibration methods.
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4.2. Precipitation-NDVI Relationships and Precipitation-Topography Relationships

The capability of NDVI and DEM for downscaling TRMM precipitation datasets has been
widely investigated. The responses of vegetation to precipitation were acknowledged, where NDVI
is generally considered as a powerful predictor for precipitation [76,77]. The basic assumption
of the regression model is that a significant correlation relationship exists between precipitation
and NDVI. Therefore, the impacts of NDVI datasets on the downscaling results included two
aspects. First, a higher NDVI did not always represent more precipitation in humid zones because
of saturated NDVI [75,78]. This saturation effect influences the positive relationship between NDVI
and precipitation, which may lead to some errors in the downscaled precipitation datasets. Second,
in some local areas, NDVI anomalies induced by the existence of various land use (such as water,
wetland, snow, urban, cropland, and barren) [2,79], which disrupt the distribution pattern of the NDVI
controlled by precipitation and reduces the predictability of precipitation through NDVI. In this study,
these NDVI anomaly pixels were detected and eliminated during data processing. However, the NDVI
of these pixels was estimated by interpolating the NDVI of pixels around, which may also lead to some
errors in the downscaled precipitation datasets. Generally, unlike topography, vegetation activities
cannot be seen as a factor influencing rainfall amounts as precipitation is the driver for vegetation
development. Therefore, using NDVI as a predictor in the downscaling process needs to be further
studied. For example, a lot of pre-processing was required (i.e., excluding various environments) that
considered the vegetation condition of a specific region to make it useful in our analysis.

The orographic effect is believed to be an important mechanism that controls the spatial variability
of precipitation in mountainous areas [11]. There are many studies that have highlighted the orographic
effect on the spatial variability of rainfall and incorporate topographical features into the downscaling
scheme [2,40,80]. The key questions in physical process-oriented precipitation mapping are the scale
at which topography controls the spatial distribution of precipitation and how this information can
be captured. Daly et al. [81] explored this question using six resolutions with a differing smoothing
level in the application of PRISM, which is based on station data density and local terrain complexity.
Meersmans et al. [34] presented a mean total annual precipitation mapping technique that combined
topographical information (i.e., elevation and slope orientation) with average total annual rain gauge
data from Belgium where 19 directions and 80 resolutions were considered in this technique to
investigate the scale of topographic control at the regional scale. In our study, only a resolution of
1-km (using a pixel averaging method) was taken into consideration, which may have ignored this
scale effect. A wider range of resolutions (or smoothing levels) need to be considered to detect the
scale of topographic control at a regional scale.

4.3. The Downscaling Procedure

Many different geostatistical techniques are used to interpolate precipitation data [82,83]. Recently,
several mixed interpolation techniques have been developed, combining kriging and the secondary
information [84,85]. For example, regression kriging (RK) combines the trend fitted by global regression
with the kriged residuals, which makes better use of the available data, thereby improving the accuracy
of the estimations when compared to ordinary kriging [86]. The advantage of RK is the ability to
extend the method to a broader range of regression techniques and to allow separate interpretation of
the two interpolated components [87].

The RK technique has been found useful for downscaling low-resolution precipitation datasets,
for example, Wagner et al. [86] considered two covariates (i.e., distance in wind direction from the
main orographic barrier and TRMM precipitation) in the regression-based interpolation approaches to
evaluate different spatial interpolation schemes for daily rainfall in data scarce regions. Teng et al. [59]
established MLR models and the interpolation of residuals in RK where elevation and TRMM were
used as auxiliary variables to predict the daily rainfall at a 1 km × 1 km scale. Park et al. [60]
quantified the relationships between the TRMM data and environmental variables based on MLR and
gained the residual interpolation by using area-to-point kriging to downscale the TRMM precipitation.
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Although great efforts have been made to advance the downscaling algorithms based on environmental
variables, there were still a potential source of errors in downscaling algorithms. The satellite
precipitation datasets were predicted using global regression, which had not thoroughly considered
that the relationship between precipitation and environmental variables was spatially varying and
scale-dependent [49]. For a spatially varying relationship, it may be more appropriate to apply local
regression rather than global regression.

Geographically-weighted regression kriging (GWRK) is a hybrid technique and an extension of the
GWR approach. GWRK is composed of two components, deterministic and stochastic, where both are
modeled separately. The deterministic component is modeled with GWR and uses available covariate
information to predict the trend of a target variable. Similar to universal kriging, GWR is a local
regression approach that extends the traditional regression framework by allowing the estimation
of local, rather than global, parameters. GWR has the advantage of investigating the non-stationary
and scale-dependent characteristics of the relationship between the variables [49,67]. The stochastic
component (residuals) can be interpolated with kriging and added to the estimated trend. Residuals are
considered as errors, and it is possible that the errors have some spatial correlation structure that
can be modeled. It could be considered that the errors are the component of the model which
cannot be explained by the deterministic component, but is important to add as it helps explain the
variation of the target variable across space [88]. GWRK has been proven to be an effective method for
spatial prediction [88–90]. However, few studies have investigated this approach to downscale the
low-resolution satellite-based precipitation datasets.

This study applied the GWRK downscaling algorithm for the TRMM 3B43 precipitation
product in Red River Basin, Southwest China, providing a fresh case study for similar research
in other mountainous areas. GWRK can provide an alternative to other global models when
estimating non-stationarity relationships, especially in precipitation which is highly variable spatially.
Despite several limitations with the GWR approach (i.e., smoothing effect) that were found in the
previous study [49], the GWRK presented a realistic picture of the spatial distribution of precipitation.
Overall, the GWRK explicitly addressed the spatial dependency and represents a new and accurate
way of mapping precipitation. Our work also provided a basis for water resources management
using a remote sensing data source with a considerable difference of altitudes and uneven spatial
distribution of precipitation patterns. However, this approach could not be used to downscale the
satellite precipitation datasets over the regions where precipitation has no relationship with NDVI
and DEM (such as evergreen vegetation, snow covered areas, desert, and water bodies). The common
characteristics of these regions are that there is no vegetation and the precipitation is usually not
correlated with the topography. The very weak relationship between the dependent variable and the
independent variables would be the detriment of the explanatory and predictive ability of the built
regression model [49].

5. Conclusions

This paper investigated a geostatistical downscaling-calibration procedure of TRMM 3B43 product,
in conjunction with rain gauge data and environmental variables, to map annual and monthly gridded
precipitation data at a fine spatial resolution in a mountainous watershed affected by a monsoonal
climate. The following conclusions were drawn based on this work:

1. A comparison between the TRMM precipitation and measurements from RGS indicated that
good agreement was found between the two datasets. Moreover, TRMM precipitation was 6.2%
higher than observations from RGS at a yearly scale.

2. In the process of downscaling satellite precipitation datasets with environmental variables,
it was critical to select a suitable downscaling procedure to effectively conduct the downscaling
based on the relationship between satellite precipitation and the NDVI, DEM. In this study,
we established a hybrid downscaling method using a regression model with residual correction.
According to the comparison of different regression models and residual interpolation methods,
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the GWRK method was accepted to conduct the downscaling of TRMM data. This indicated the
non-stationary nature of the precipitation–NDVI and precipitation–DEM relationships and the
spatial correlation structure of regression residuals needs to be considered when downscaling
satellite precipitation datasets.

3. Calibration with rain gauge data is an essential step for the downscaling-calibration procedure.
Both the GDA and GRA calibration provided better annual precipitation when validated based
on rain gauge data. The GRA outperformed the GDA method in terms of the validation
metrics calculated.

4. Downscaled TRMM precipitation using environmental factors better described the spatial
patterns of precipitation with more details at the spatial resolution of 1-km when compared
with the original TRMM precipitation. Moreover, the simple disaggregation procedure based
on the monthly fractions was practically used to disaggregate annual precipitation to monthly
precipitation. The disaggregated 1-km monthly precipitation not only improved the spatial
resolution, but also agreed well with rain gauge data (i.e., R2 = 0.72, RMSE = 161.0 mm,
MAE = 127.5 mm, and Bias = 0.050 for annual downscaled precipitation during 2001–2015;
R2 = 0.91, RMSE = 22.2 mm, MAE = 13.5 mm, and Bias = 0.048 for monthly downscaled
precipitation during 2001–2015).

This study demonstrated that through integrated downscaling-calibration of satellite precipitation,
it is feasible to map fine-resolution annual and monthly precipitation for a mountainous and
monsoon-driven watershed. Since the atmospheric variables (e.g., humidity, wind, temperature,
etc.) are closely related to precipitation, these variables should be considered to downscale satellite
precipitation datasets in the future. In addition, the Integrated Multi-satellitE Retrievals for GPM
(IMERG) product is available at finer spatial and temporal scales, which have also been proven to be
better than the TRMM product [91,92]. Further investigations should be conducted to examine the
potential of the IMERG product for downscaling.
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Abbreviations

TRMM Tropical Rainfall Measuring Mission
NDVI Normalized Difference Vegetation Index
GWR Geographically-weighted regression
MLR Multiple linear regression
ANN Artificial neural network
GDA Geographical difference analysis
GRA Geographical ratio analysis
HSPD High-spatial-resolution precipitation data
IDW Inverse distance weighted
PRISM Parameter-elevation Regressions on Independent Slopes Model
OPM Orographic Precipitation Model
ASOADeK Auto-Searched Orographic and Atmospheric Effects Detrended Kriging
GPCP The Global Precipitation Climatology Project
GSMaP The Global Satellite Mapping of Precipitation
CHIRPS The Climate Hazards Group InfraRed Precipitation with Station data
MSWEP The Multi-Source Weighted-Ensemble Precipitation



Remote Sens. 2018, 10, 119 23 of 27

PERSIANN-CDR
The Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks-Climate Data Record

GPM The Global Precipitation Measurement
NEXRAD Next-Generation Radar
DEM Digital elevation model
RGS Rain gauge stations
NASA National Aeronautics and Space Administration
JAXA Japan Aerospace Exploration Agency
MODIS Terra Moderate Resolution Imaging Spectroradiometer
IGBP The International Geosphere Biosphere Program
SRTM Shuttle Radar Topographic Mission
MLP Multi-layer perceptron
R2 The coefficient of determination
RMSE The root mean square error
MAE The mean absolute error
LOOCV Leave-one-out Cross Validation
RK Regression Kriging
GWRK Geographically Weighted Regression Kriging
GPCC The Global Precipitation Climatology Centre
IMERG The Integrated Multi-satellitE Retrievals for GPM
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