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Abstract: Route planning is a key technology for an unmanned aerial vehicle (UAV) to fly reliably
and safely in the presence of a threat environment. Existing route planning methods are mainly
based on the simulation scene, whereas approaches based on the virtual globe platform have rarely
been reported. In this paper, a new planning space for the virtual globe and the planner is proposed
and a common threat model is constructed for threats including a no-fly zone, hazardous weather,
radar coverage area, missile killing zone and dynamic threats. Additionally, an improved ant colony
optimization (ACO) algorithm is developed to enhance route planning efficiency and terrain masking
ability. Our route planning methods are optimized on the virtual globe platform for practicability.
A route planning system and six types of planners were developed and implemented on the virtual
globe platform. Finally, our evaluation results demonstrate that our optimum planner has better
performance in terms of fuel consumption, terrain masking, and risk avoidance. Experiments also
demonstrate that the method and system described in this paper can be used to perform global route
planning and mission operations.

Keywords: unmanned aerial vehicle; route planning; virtual globe; ant colony optimization;
3D environments

1. Introduction

A UAV is an aircraft without a pilot on board that can be remotely controlled or flown
automatically based on a pre-planned route or automation system [1]. With the development of the
aviation electronics industry, UAVs play increasingly important roles in military and civil fields [2,3].

Generally, route planning for a UAV is an optimization problem that aims to generate a feasible
route based on the tasks. The problem is an NP-hard problem [3].

For different types of tasks, scholars have selected different route planning methods. The vector
field method is used in static or dynamic target tracking [4,5]. The rapidly-exploring random-tree (RRT)
method has been applied to the path planning problem of indoor robots and mini UAVs [6–8]. Genetic
algorithms (GA) are used to solve the travelling salesman problems related to UAVs, such as maximum
information collection [9]. The evolutionary algorithm (EA) is used for multi-constraint route planning
in a simulation scenario [10–12]. The particle swarm optimizer (PSO) is used to solve the path planning
problem of UAVs on the sea [13]. Improved ACO [14,15], A* and Theta* [16] algorithms are used
for route planning in three-dimensional environments. To improve the investigation efficiency of
unmanned bombs, scholars have proposed the Quantum Wind Driven [17] algorithm.
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Scholars have proposed a variety of optimization and improvement methods for the route
planning problem under different conditions and have solved these problems relatively well.
For different scenarios, each algorithm also has its own limitations: the ability of RRT to avoid
obstacles is unsatisfactory; the processing time of the A* algorithm will increase explosively as the
planning scene enlarges; and the computational complexity of GA and EA algorithms is high [18].
Scholars tend to optimize the selected algorithm according to their own simulation scenarios but the
results of the experiments seem to not be very objective. For example, the results obtained by PSO
were much better than GA in [13], whereas the results of PSO were inferior to GA in [18].

The virtual globe platform has the great advantages of low cost and ease-of-use in data collection,
browsing, visualization and other aspects [19]. For the path planning problem for a high-endurance
UAV, the virtual globe platform is a good choice to realize the modelling and visualization of a very
large environment. There are many common virtual globe platforms such as Skyline, Google Earth,
Virtual Earth, World Wind, and ArcGlobe.

Moreover, UAVs work in dangerous enemy territory in military penetration tasks. Avoiding
threats from an enemy is a key factor in the success of tasks. Route planning for penetration finds
a feasible route between the start point and end point in the presence of a threat environment.
The defence of medium and high altitude areas in air defence systems is improving because of
the development of the Radar Netting Technique [20]. There is no opportunity to penetrate without
stealth aircraft. However, there are many radar blind zones in low-altitude areas because of topography
and the curvature of the earth, and low-level flight becomes an important way to penetrate. On the
virtual globe platform, threat modelling and route planning are more real and effective and mission
operations can be performed [21]. Using the interactive capabilities of the virtual globe platform,
operations such as parameter adjustment, route editing and storage, and flight simulation can be
realized and successfully applied to industrial fields.

On the virtual globe platform, the method of model construction, planning space partitions and
the realization of the algorithm will be different from the previous studies in the following ways:

• When modelling the radar threat areas, the maximum coverage range of early-warning radar can
be up to hundreds, even thousands of kilometres, with larger signal coverage in high-altitude areas
than at low-altitudes. By using the virtual globe platform, we can construct a more reasonable
radar threat model according to the radar equation and fully consider the influences of earth
curvature and terrain masking.

• The scale of the terrain data is large on the virtual globe platform. In view of this problem,
this paper proposes a multi-granularity planning space to achieve a balance between accuracy
and efficiency.

• In low-altitude penetration, a good valley-following ability can effectively avoid a radar threat,
including unknown radar threats. We propose a strengthened local valley-following algorithm
for route planning.

• The planning space needs to be transformed between Cartesian systems and Geodetic systems.
Because of the overhead problem generated by large-scale data and space transformation,
we optimize some of the algorithm’s implementation details.

• Because there are certain errors in a UAV's navigation system and control system, this paper refers
to industry standards, such as the performance based navigation (PBN) standard [22], to optimize
and improve the robustness of the route to avoid collisions because of flight errors.

Section 2 describes the route planning problem and evaluation indexes in the risk environment.
In Section 3 we propose a multi-granularity planning space on the virtual globe platform for route
planning and consider multiple types of threats. In Section 4, we propose an improved ACO algorithm
with valley-following and threat avoidance for route planning and some route optimization algorithms
to make the route more effective and robust. Section 5 shows the practicability of the proposed methods
through experiments. Section 6 presents conclusions and proposes future research work.
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2. Route Planning Problem Descriptions

The location of a point P in geodetic space Ψ3 is described by longitude x, latitude y, and altitude
H. A UAV flies along the designated route point sequence Rroute = {r1, r2, · · · , rn} , ri ∈ Ψ3, where
r1 is the start point and rn is the end point. The goal of penetration routing is to obtain a feasible route
with minimal fuel consumption, maximum terrain masking, and minimum risk.

Both the navigation systems and the control systems of UAVs contain certain deviations.
The international civil aviation organization proposed the concept of the required navigation
performance (RNP). RNP [22] describes the precision that can be attained during at least 95% of
the flight time; the precision unit is the nautical mile (nmi). In Figure 1, the segment width of the route
is defined as 4 × RNP. The planned route may not satisfy the performance constraints of UAVs.
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We evaluate the planning route on four dimensions: minimal fuel consumption, maximum
terrain masking, minimum risk and performance safety. Additionally, we evaluate the efficiency of
the planner:

• Lroute: Route length. Connect the points in Rroute successively and obtain a series of line segments,
then calculate the total length of the segments to obtain the route length. To evaluate the result,
we introduce the theoretically shortest length of the route, Lmin. Then, we connect the r1 and rn of
Rroute to obtain the straight line segment r1rn. Lmin is the length of r1rn.

• havT: Average terrain altitude passed by the route. havT is calculated as follows: Obtain the
interpolation points {r1 (x 1 , y1, H1), r2 (x 2 , y2, H2) , · · · , rk (x k , yk, Hk)} with interval ∀ of Rroute.
We can then obtain points on the terrain {r1 (x 1 , y1, H1T), r2 (x 2 , y2, H2T) , · · · , rk (x k , yk, HkT)},
and havT = ∑k

i=1 HiT/k. To evaluate the result, we introduce a reference HavT, the average
terrain altitude passed by r1rn. We can understand the terrain masking ability of the planner by
contrasting the result with HavT.

• LFA: Route length that passes through the threat zones.
• LUS: Route length that does not meet the flight performance safety requirements.
• Processing time.

3. Build the Planning Space

3.1. Virtual Globe Space

For the penetration tasks on the virtual globe, the planning space needs to be converted between
Geodetic space Ψ3 and Cartesian space U3. Ψ3 treats the earth as a reference ellipsoid. P (x, y, H) ∈ Ψ3

can be converted into Q (X, Y, Z) ∈ U3 as follows:
X = (M + H) cos (y) cos (x)
Y = (M + H) cos (y) sin (x)

Z =
[
M
(

1 − a2−b2

a2

)
+ H

]
sin (y)

(1)

where M represents the radius of curvature of the reference ellipsoid, computed as follows:

M =
a√

1 − a2 − b2

a2 sin2(y)
(2)
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where a and b represent the length of the major axis and the minor axis of the reference
ellipsoid, respectively.

Q (X, Y, Z) ∈ U3 can be converted into P (x, y, H) ∈ Ψ3 as follows:
x = arctan(Y

X )

y = arctan( Z(M + H)√
(X 2 + Y2)

[
M
(

1 − a2 − b2

a2

)
+ H

] )
H =

√
X2 + Y2

cos(y) − M

(3)

The reference ellipsoid used by the Global Positioning System and virtual globe platforms is the
World Geodetic System of 1984 ellipsoid (WGS-84 ellipsoid) [22].

The lengths of the same longitude interval in different latitudes and the same latitude interval
in different longitudes are not fixed in Ψ3. For example, the distance between (90◦, 29◦, 4000 m)
and (91◦, 29◦, 4000 m) is 97,422.04 m, whereas the distance between (90◦, 26◦, 4000 m) and (91◦, 26◦,
4000 m) is 100,114.77 m. In the later sections, the planning space is in Ψ3, but the distance measure,
interpolation algorithm, equation calculation and other operations are carried out in U3.

The terrain is usually described by digital elevation model (DEM) data, whereas terrain texture is
described by digital orthophoto map (DOM) data. The data of DEM and DOM can be represented
as {(x, y, z)i}, where x is longitude and y is latitude. In DEM data, z is the altitude value of the
corresponding position, whereas z is the pixel value for DOM data, as Figure 2a,b illustrate.
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DEM and DOM describe discrete space, whereas the real world belongs to contiguous space.
The information of any position can be obtained by using a spatial interpolation method through the
adjacent points, and the bicubic interpolation algorithm is described as follows:

Zp = f(xp, yp) = ∑ 3
i=0

3−i

∑
j=0

aijxi
pyj

p (4)

We can use the adjacent 4 × 4 points of point A in Figure 2a to calculate the coefficients of the
interpolation function to determine the altitude value of point A.

In Figure 2c, we can realize the visualization of 3D terrain by superimposing the DOM data on the
DEM data. In this study, we used the improved NASA-WorldWind platform; the data source was the
SRTM DEM data at 90-m resolution and the Landsat DOM data at 60-m resolution provided publicly
by NASA, as shown in Figure 2d.

3.2. Threat Modelling

3.2.1. General Types of Threats

No-fly zones, hazardous weather, high-rise buildings and low-altitude control zones need to be
considered when planning routes.

No-fly zones are regions that a UAV cannot fly into. A no-fly zone can be described as the enclosed
area defined by the point set A = {A1, A2, · · · , Am}, m > 2, as shown in Figure 3a.

ISPRS Int. J. Geo-Inf. 2016, 5, 184 5 of 30 

 

DEM and DOM describe discrete space, whereas the real world belongs to contiguous space. 

The information of any position can be obtained by using a spatial interpolation method through the 

adjacent points, and the bicubic interpolation algorithm is described as follows: 

Zp = f(xp,y
p
) = ∑ ∑ aijxp

i y
p
j

3−i

j=0

3

i=0
 (4) 

We can use the adjacent 4 × 4 points of point A in Figure 2a to calculate the coefficients of the 

interpolation function to determine the altitude value of point A. 

In Figure 2c, we can realize the visualization of 3D terrain by superimposing the DOM data on 

the DEM data. In this study, we used the improved NASA-WorldWind platform; the data source was 

the SRTM DEM data at 90-m resolution and the Landsat DOM data at 60-m resolution provided 

publicly by NASA, as shown in Figure 2d. 

3.2. Threat Modelling 

3.2.1. General Types of Threats  

No-fly zones, hazardous weather, high-rise buildings and low-altitude control zones need to be 

considered when planning routes. 

No-fly zones are regions that a UAV cannot fly into. A no-fly zone can be described as the 

enclosed area defined by the point set A = {A1, A2, ⋯, Am}, m > 2, as shown in Figure 3a. 

   
(a) (b) (c) 

Figure 3. (a) 2D No-fly zone; (b) 3D slowly hazardous weather model; (c) 3D threat model of a 500-m 

high TV tower described as {(114.655225, 23.269952), (114.658225, 23.269952), (114.658225, 23.272952), 

(114.655225, 23.272952), 500}. 

High buildings, slowly hazardous weather and low-altitude control zones are low-altitude 

regions that UAVs cannot fly into. Such threats can be described as {{A1, A2, A3, ⋯, Am}, Hmax}, m > 2, 

where Hmax is the upper bound. This type of threat is modelled as observed in Figure 3b,c. These 

threats can be dealt with as terrain data; we transform this type of threat area into terrain before route 

planning. 

3.2.2. Killing Zone of an Air Defense Missile 

The killing zone [23,24] is an important guideline for judging the campaign performance of Air 

Defense Missile Weapon Systems. A killing zone describes an area of space in which a missile can 

destroy a target at no less than a certain probability once the target enters the area. The mathematical 

model of a vertical killing zone is shown in Figure 4a. Horizontal lines define the high and low 

boundaries with heights of Hmax and Hmin, respectively. Dsymin is the minimum slant range of the 

far boundary of the killing zone and Dsymax is the maximum slant range. The minimum slant range 

and the maximum height angle of the near boundary of the killing zone are Dsjmin  and Amax , 

Figure 3. (a) 2D No-fly zone; (b) 3D slowly hazardous weather model; (c) 3D threat model of a 500-m
high TV tower described as {(114.655225, 23.269952), (114.658225, 23.269952), (114.658225, 23.272952),
(114.655225, 23.272952), 500}.

High buildings, slowly hazardous weather and low-altitude control zones are low-altitude regions
that UAVs cannot fly into. Such threats can be described as {{A1, A2, A3, · · · , Am}, Hmax}, m > 2,
where Hmax is the upper bound. This type of threat is modelled as observed in Figure 3b,c. These
threats can be dealt with as terrain data; we transform this type of threat area into terrain before
route planning.

3.2.2. Killing Zone of an Air Defense Missile

The killing zone [23,24] is an important guideline for judging the campaign performance of Air
Defense Missile Weapon Systems. A killing zone describes an area of space in which a missile can
destroy a target at no less than a certain probability once the target enters the area. The mathematical
model of a vertical killing zone is shown in Figure 4a. Horizontal lines define the high and low
boundaries with heights of Hmax and Hmin, respectively. Dsymin is the minimum slant range of the far
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boundary of the killing zone and Dsymax is the maximum slant range. The minimum slant range and
the maximum height angle of the near boundary of the killing zone are Dsjmin and Amax, respectively.
The near boundary and far boundary are the arcs with O as the centre. Figure 4b shows the 3D
visualization model of the missile killing zone.
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3.2.3. Radar Threat Space

Radar plays a very important role in modern air defence systems; it is a key threat to the
penetration of UAVs that needs to be avoided by route planning. Affected by the terrain masking and
the earth curvature, it is difficult for radar to find a target in low-altitude flight.

The radar threat model should refer to the radar detection probability threshold that a UAV can
maximally tolerate. Given the detection probability threshold and radar performance parameters, the
maximum range of radar Rmax can be estimated by the radar equation [25]. Assuming that the radar
is deployed at Ra (x a , ya, Ha) in Ψ3, we transform it into U3 as Ra (X a , Ya, Za), with the direction of
pitch angle θ and azimuth angle β, and we can describe pk (Xk, Yk, Zk) on the boundary of the radar
coverage as: 

Xk = Xa = Rmaxf′ (θ) cos (β)
Yk = Ya = Rmaxf′ (θ) sin (β)

Zk = Za = Rmaxf′ (θ)
(5)

where f′(θ) describes the beam pattern of the radar antenna in the direction of the pitch angle.
We use the Gaussian function to approximate the beam pattern as:

f′(θ) = e−4ln
√

2θ2/θb (6)

where θb is the signal beam width.
The radar threat curved surface can thus be obtained. The probability of radar detection on

this surface is constant. Outside the curved surface, the radar detection probability is less than the
probability threshold and the UAV is regarded as safe. Within the curved surface, the radar detection
probability is higher than the probability threshold and the UAV is not safe.

In low-altitude areas, radar signals may be masked by terrain. In Figure 5a, radar beams are partly
masked by terrain and the shaded area represents the area that signals can reach. The visualization of
the radar beam can be constructed as follows:

1. Calculate the detection range of the radar with different sampled pitch angles by using
Equations (5) and (6); this produces a series of sampling points such as A–G, as shown in
Figure 5a.
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2. Connect the radar centre O to the sampling point and obtain a series of sampling points on this
straight line by sampling with short intervals. Then, we transform these sampling points to Ψ3

and compare the altitudes of the sampling points with the terrain. Once the sampling point is
below the terrain, we can determine that the subsequent region cannot be reached by the radar
signal. In Figure 5a, according to the terrain visibility analysis of OD, the boundary point D is
moved to M.
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Figure 5. (a) Radar signal propagation; (b) Earth curvature's influence.

If we calculate the radar coverage directly, the earth curvature will introduce considerable error.
As shown in Figure 5b, O is the earth centre, BD is the horizontal plane, the circular arc CE is the geoid,
and point B is in the same horizontal plane as point A. When B is very near to A, the altitudes of A
and B are approximately the same and may be ignored. However, when B is far from A, the elevation
difference between A and B due to the influence of the earth curvature, ∆H in Figure 5b, cannot be
ignored. L represents the length of AB, R is the average curvature radius of the earth, and ∆H can be
calculated by:

∆H =
√

R2 + L2 − R (7)

When the distance between two points is 100 km, the elevation difference is approximately 785 m
because of the influence of the curvature. First, we need to convert from Ψ3 to U3 when calculating
the boundary of the radar coverage. Then, we can calculate the radar coverage and perform visibility
analysis. Finally, the results are converted back to Ψ3 and the errors caused by the curvature of the
earth have been eliminated.

Figure 6 shows the 3D visualization of the radar network coverage under the influence of the
earth’s curvature.
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3.3. Dynamic Threat

The models presented in Section 3.2 can simulate most of the threats in normal circumstances.
Sometimes the threat movement needs to be considered, for example, the forecast of hazardous weather
such as a typhoon (hurricane) and other predictable dynamic threat areas. At this time, we need to
introduce the dynamic threat model. Based on the general threat model, a time stamp t is introduced,
the property of a dynamic threat at t is described by threatt = {{A1, A2, A3, · · · , Am}, Hmax, t},
m > 2. A full path dynamic threat can be described by

{
threatt1 , threatt2 , · · · , threattn

}
, where the

threat begins at t1 and disappears at tn. As shown in Figure 7a,b, if we want to know the state of a
threat at any time tk, we can calculate it as follows:

1. Search the interval [ti, ti+1] that satisfies ti ≤ tk < ti+1 to find the threatti and threatti+1 . If not
found, then there is no threat area at this time.

2. Given the threat tk = 2.4 shown in Figure 7b, use linear interpolation for threatti and threatti+1

to obtain threattk . As shown in Figure 7b, we can use linear interpolation for the four vertices of
threatti and threatti+1 to obtain threattk .

ISPRS Int. J. Geo-Inf. 2016, 5, 184 8 of 30 

 

2. Given the threat tk = 2.4 shown in Figure 7b, use linear interpolation for threattiand threatti + 1
 

to obtain threattk
. As shown in Figure 7b, we can use linear interpolation for the four vertices of 

threatti and threatti + 1
 to obtain threattk

. 

 
(a) 

 
(b) 

Figure 7. Dynamic threat model. (a) There is a dynamic threat described as {{(99.94497, 27.60066), (99.859, 

27.38197), (99.68604, 27.47941), (99.77718, 27.68262), 3000, 0 s}, {(99.54497, 27.40066), (99.459, 27.18197), 

(99.28604, 27.27941), (99.37718, 27.48262), (99.54497, 27.40066), 3000, 3600 s}, {(99.34497, 27.00066), (99.259, 

26.78197), (99.08604, 26.87941), (99.17718, 27.08262), (99.34497, 27.00066), 3000, 7200 s}}; (b) Perform 

linear interpolation for the dynamic threat to obtain the threat status at any time. 

3.4. Build the Grid Planning Space 

Route planning on the virtual globe platform in this study is based on a graph search algorithm. 

We define a planning graph composed of nodes and edges. The graph needs to effectively express 

threats and terrain features. 

In low-altitude penetration missions, threat models need to be marked. However, real-time 

sampling of a threat body at any point in the planning space will dramatically increase the delay time 

of the planner. This paper introduces a type of grid space with location information, elevation 

information, and other attribute information. 

In Figure 8, the space is divided into a two-dimensional grid by equal intervals of latitude and 

longitude; each node in the grid has eight extension nodes. However, the actual distance represented 

by the equal intervals of latitude and longitude is different. In the virtual globe platform, the planning 

space is actually an irregular eight-connected grid space. 

A UAV flies at the safe height h by default in this space. Each node stores the information 

including [lon, lat, alt, Hmin], where lon and lat represent the longitude and latitude of the node, 

respectively, alt represents the terrain altitude superposed by the high buildings and low-altitude 

control zones, and Hmin is the lowest bound of the radar coverage area or the missile killing zone in 

this area. If the node h that needs to be extended is higher than Hmin, the node will be eliminated. 

As the figure shows, nodes A, B, C and D are in a radar coverage area. However, because of the 

terrain masking effect, points B and C can be used as planning candidate nodes with higher Hmin, 

whereas nodes A and D with low Hmin  will be directly eliminated. As the figure shows, node 

E, F, G and H are in a missile threat area and will be eliminated because of their low Hmin. If the 

current point is located in the no-fly zone, Hmin is set to 0 and the point will be eliminated by the 

Figure 7. Dynamic threat model. (a) There is a dynamic threat described as {{(99.94497, 27.60066),
(99.859, 27.38197), (99.68604, 27.47941), (99.77718, 27.68262), 3000, 0 s}, {(99.54497, 27.40066), (99.459,
27.18197), (99.28604, 27.27941), (99.37718, 27.48262), (99.54497, 27.40066), 3000, 3600 s}, {(99.34497,
27.00066), (99.259, 26.78197), (99.08604, 26.87941), (99.17718, 27.08262), (99.34497, 27.00066), 3000,
7200 s}}; (b) Perform linear interpolation for the dynamic threat to obtain the threat status at any time.

3.4. Build the Grid Planning Space

Route planning on the virtual globe platform in this study is based on a graph search algorithm.
We define a planning graph composed of nodes and edges. The graph needs to effectively express
threats and terrain features.

In low-altitude penetration missions, threat models need to be marked. However, real-time
sampling of a threat body at any point in the planning space will dramatically increase the delay
time of the planner. This paper introduces a type of grid space with location information, elevation
information, and other attribute information.
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In Figure 8, the space is divided into a two-dimensional grid by equal intervals of latitude and
longitude; each node in the grid has eight extension nodes. However, the actual distance represented
by the equal intervals of latitude and longitude is different. In the virtual globe platform, the planning
space is actually an irregular eight-connected grid space.

A UAV flies at the safe height h by default in this space. Each node stores the information
including [lon, lat, alt, Hmin], where lon and lat represent the longitude and latitude of the node,
respectively, alt represents the terrain altitude superposed by the high buildings and low-altitude
control zones, and Hmin is the lowest bound of the radar coverage area or the missile killing zone in
this area. If the node h that needs to be extended is higher than Hmin, the node will be eliminated.
As the figure shows, nodes A, B, C and D are in a radar coverage area. However, because of the terrain
masking effect, points B and C can be used as planning candidate nodes with higher Hmin, whereas
nodes A and D with low Hmin will be directly eliminated. As the figure shows, node E, F, G and H
are in a missile threat area and will be eliminated because of their low Hmin. If the current point is
located in the no-fly zone, Hmin is set to 0 and the point will be eliminated by the planner. Because of
the planning space generated beforehand, the planner can quickly eliminate some infeasible nodes.
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3.4.1. Threat Area Expansion

Considering the navigation error and the route optimization error, as shown in Figure 9a, the
planned route in grid space may intersect the threatened area. We expand the boundary of the threat
models when mapped to the planning space. The low boundary of the radar area and the missile
killing zone are also reduced. Figure 9b shows that the route is safe after expanding the threat area.
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3.4.2. Multi-Granularity Planning Space

The finer granularity of the grid space is because the more nodes in planning space, the more
precise the planning results will be, although the planning will take more time. To obtain a balance
between performance and precision for different application scenarios and navigation performance
parameters of a UAV, different grid sizes need to be used.
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We need resampling to construct different sizes of the grid using DEM data. Common resampling
methods are Box Splines [26], interpolation [27] and the discrete wavelet transform [28]. This
paper uses the bicubic interpolation method of Equation (4) to resample. We generate grid space
with multi-granularity beforehand and choose different grid sizes according to the requirements of
different tasks.

4. Route Planning Method

We propose an improved ACO-based planner that considers the local terrain environment to
obtain the initial route. An ACO algorithm simulates the foraging process of ants in principle, and its
developer used it to efficiently solve the Travelling Salesman Problem [29,30]. The pheromone model
and the probability model are the core of this algorithm [31]. ACO algorithms have been widely used
for pattern classification [32], cloud computing [33], network coding [34], robot path planning [35] and
in other fields. We propose some optimizations to improve the ACO algorithm for the study of the
virtual globe platform and penetration route planning.

4.1. Basic ACO Algorithm [29,30]

The ant colony begins searching for food without being told where the food is. In the process
of moving, ants release pheromones into the environment. When there is no pheromone in the
environment, the ants perform a random walk, and when the pheromone concentration is high, the
ants will move along the pheromone path with a greater probability. If the ant finds food, it will move
along its pheromone path to return to its nest. Along the shorter path, the ants make the roundtrip
more quickly, which is more likely to attract more ants to walk along this path. The pheromone
concentration will thus be further enhanced and eventually the ant colony will walk along the shortest
path. The basic ACO algorithm simulates the pathfinding and feedback processes of the ant colony.

4.1.1. Roulette Wheel Selection Model

The ACO algorithm uses a roulette wheel selection model to simulate the walk choice of ants
in nature. This model has a larger probability to choose adjacent nodes with higher pheromone
concentration; it allows ants to make mistakes that have a small probability and retain the chance to
find a better path. In the model, the ant colony has m ants. The transfer probability pk

ij(t) of an ant
k (0 ≤ k < m) moving from node i to an adjacent node j in the t round of iteration is expressed as:

pk
ij(t) =


τα

ij (t)η
β
ij (t)

∑s∈Jk(i)
τα

is (t)η
β
is (t)

, if jεJk(i)

0, otherwise
(8)

where τij (t) is the residual pheromone of the edge < i, j >. ηij (t) is the heuristic function from node i
to node j; when solving the TSP, ηij (t) = 1/cij. cij reflects the cost of the walk from node i to node j. α
and β are the weights of the pheromone and the heuristic function, respectively. Adjacent nodes Jk (i)
can be chosen by the ant k in node i. According to the planning space defined above, each node has
eight expanding nodes.

4.1.2. Pheromone Updating Model

The pheromone updating model provides a feedback mechanism in the ACO algorithm. After all
the ants have completed an iteration round, pheromones will be left on the path traversed by the ants
and the pheromone concentration is updated as follows:

τij (t + 1) = ρτij (t) +
m

∑
k=1

∆τk
ij(t) (9)
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where ρ is the pheromone retention coefficient (0 ≤ ρ < 1). ∆τk
ij(t) represents the pheromones left at

the edge of < i, j > by the ant k at the iteration of round t and is calculated as follows:

∆τk
ij (t) =

{
1

Lk , if < i, j >∈ Qk

0, otherwise
(10)

where Qk is the set of edges traversed by ant k and Lk is the total cost of the edges.

4.2. Parameter Optimization

In the basic ACO algorithm, the ants do not know the target location. Our application scenario
knows the location of the target and we can thus introduce a heuristic function to guide the ants to
accelerate the iterative process of the algorithm. In the pheromone feedback mechanism of the basic
ACO algorithm, the pheromone left by the less successful ants may interfere with a better result, which
easily causes the algorithm to fall into a local optimum. To solve the UAV problem described in this
paper, we improved the heuristic cost function, pheromone update mechanisms, algorithm efficiency
and other aspects of the algorithm. Additionally, to avoid the ants returning, we set up tabu lists to
mark the nodes that the ants have traversed; the expanding nodes located in the threat area or in the
tabu lists are excluded.

4.2.1. Cost Function

In view of the planning space built in Chapter 3, we introduce the cost function:
W =

n
∑

i=1
w(i−1)i

wij =
lijtraj
lmax

+ ε
hijtraj − hmin
hmax − hmin

(11)

where wij is the cost of the edge < i, j >, lijtraj is the Euclidean length of the edge < i, j >, which
approximately reflects the fuel consumption cost of the UAV, and hijtraj is the average terrain elevation
of node i and j, which is (alt i + altj

)
/2 and reflects the altitude of the route. Because the units of the

fuel consumption cost and height cost are not of the same order of magnitude, they are normalized.
lmax is the largest Euclidean distance of the two adjacent nodes in the grid. Because planning space is
irregular, we set lmax = grid width× 160 KM when the grid width is determined. hmax and hmin are
the highest and lowest elevation of the planning space, respectively. ε is the weight, which determines
the valley-following performance of the planner and enables the UAV to fly as low as possible. Flying
at low-altitude can improve the survival rate of the UAV if the deployment information of the enemy
radar is unknown.

4.2.2. Heuristic Function and Valley-Following

In the basic ACO algorithm, the ants have difficulty reaching the target successfully because the
cij can only reflect the cost of node i to j, and thus the direction to the end node is unknown. In this
study, a heuristic cost function is introduced that can promote the ant to move towards the target:

ηij (t) = 2 +
Ti − Tj

lmax
(12)

where Tj is the distance between node j and the target point and Ti is the distance between node i and
the end point. If Tj > Ti, the ants are moving farther and farther away from the target and will be
assigned a smaller probability to select this node.

Equation (12) can promote the ants to walk to the destination node; however, the ants cannot use
the local valley terrain information to achieve valley-following. When we analysed the terrain data,
we found that the valley region was continuous, and the enhanced local valley-following algorithm is
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proposed accordingly. The eight adjacent nodes of the current point i are A–H, and the implementation
method is as follows:

1. Calculate the average terrain altitude of A–H points.
2. Compare the average altitude with the altitude of point i; if greater than the threshold δ, the UAV

at point i is located in the mountainous area.
3. If the UAV is located in the mountainous region, the adjacent A–H points are sorted according to

their altitudes, and the 2ε points with highest elevation are set to ηij (t) = 0.
4. If the UAV is located in the non-mountainous region, all the neighbouring nodes are reachable.

After this treatment, ηij can promote movement of the ants to the target point and make full use
of local terrain information.

4.2.3. Pheromone Update Mechanisms

The updating mechanism of the basic ACO algorithm makes it easy for premature results to occur.
The pheromone update strategy we use is as follows:

τij (t + 1) = ρτij (t) + ∆τbest∗
ij (t) (13)

where ∆τbest∗
ij (t) is the pheromone increment of global optimal ant:

∆τbest∗
ij (t) =

{
1

Wbest∗ , if < i, j >∈ Qbest

0, otherwise
(14)

where Qbest is the set of edges traversed by the global optimal ant. Wbest∗ was calculated according
to Equation (11) and is the cost of the global optimal route. To ensure that the nodes that the global
optimal ant did not walk can be reached with a certain probability and to prevent premature results
because of too much pheromone on the global optimal route, we limit the pheromone concentration
to [τmin , τmax]. {

τmax = 1
1−ρ

1
Wbest∗

τmin = τmax
n

(15)

where n is the estimated node number of the global optimal route.

4.2.4. Algorithm Efficiency Improvement

Because of the introduction of the virtual globe platform, every distance calculation needs
to transform between two coordinate systems. To reduce the time cost of the repeated distance
computation of the ACO, we calculate the distance between the adjacent nodes in advance. This paper
introduces a three-dimensional array of off-line storage; the third dimension of the array is used to
store the distance from the current node i to the eight adjacent nodes. Additionally, a two-dimensional
array is used to store the distance between i and the end node.

In the ACO algorithm, the worst performing ant may run a very biased path with a relatively
small probability, thus affecting the overall efficiency of the algorithm. In this paper, the maximum
number of search steps is 10 n; when the search steps of ants exceed the maximum number, the result
is discarded.

4.3. Dynamic Threat Avoidance

When considering dynamic threats, we need to introduce a dynamic threat avoidance algorithm.
To avoid the dynamic threat, the time t of the ant at any node should be known. The ants carry out the
following calculation after walking each step to save the current time.
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Given a UAV flight speed of v, the route point set that the ant walked is {r1, r2, · · · , rk} , k > 1;
when k = 1, the UAV start time is t0. If we know the time tk−1 of the ant at node k − 1, when the
ant walks to route point k we look up the distance of rk−1rk, named lrk−1rk , and the current time
tk = tk−1 + lrk−1rk /v. The time of the ant at any node can thus be determined.

The ants excluded the expanding nodes by the following steps:

1. When the ant k at node i selects the eight expanding nodes, the nodes in the static threat and the
ant’s tabu list are first excluded and we then can obtain the remaining expanding nodes Jk (i).

2. By using the method mentioned above, we calculate the time the ant arrives at every expanding
node j, named tj.

3. We use the method mentioned in Section 3.3 to implement linear interpolation for every dynamic
threat in the dynamic threat set and obtain the threat areas at tj.

4. If the node j is located in any threat area, we exclude this node.

The dynamic threat avoidance algorithm will consume many computing resources; therefore,
we compile two route planning versions during use. When there is no dynamic threat in the
planning scenario, the planning algorithm is used, named MACO, and when we need to consider
the dynamic threat, we introduce the dynamic threat avoidance algorithm and name the planning
algorithm MACOD.

4.4. Route Optimization

The route planned by the ACO algorithms above is composed of a series of broken line segments.
To determine the feasible route, we need to optimize the route by a series of operations.

4.4.1. Route Compression

To avoid frequent turning of the UAV, it is necessary to compress the waypoints, as shown in
Figure 10. When the broken line is compressed, it will be shorter than the original path planned by
the grid search algorithm. By compressing the route, errors are introduced; however, the route is
optimized to a certain extent.

ISPRS Int. J. Geo-Inf. 2016, 5, 184 13 of 30 

 

threat, we introduce the dynamic threat avoidance algorithm and name the planning algorithm 

MACOD. 

4.4. Route Optimization 

The route planned by the ACO algorithms above is composed of a series of broken line segments. 

To determine the feasible route, we need to optimize the route by a series of operations. 

4.4.1. Route Compression 

To avoid frequent turning of the UAV, it is necessary to compress the waypoints, as shown in 

Figure 10. When the broken line is compressed, it will be shorter than the original path planned by 

the grid search algorithm. By compressing the route, errors are introduced; however, the route is 

optimized to a certain extent. 

 

Figure 10. Length changed before and after compression. 

When compressing the waypoints, the adjusted route should not cross the threatened area, and 

the average altitude of the route has not been significantly improved. After deleting waypoint ri, the 

route should meet the criteria: (a) the adjusted route segments {ri−1, ri+1} should not be located in the 

threatened area and (b) the difference value of average altitude between {ri−1,ri+1} and {ri−1, ri, 

ri+1} should not exceed the specified threshold £ . The average altitude is calculated as follows: 

interpolate for the route with interval ∀ in Ʊ3, then transform the interval points to Ψ3 and obtain 

the terrain altitude for them. 

This paper improves the Douglas-Peucker algorithm [36]; the improved algorithm steps are as 

follows: 

1. First, the algorithm compares the distance between each waypoint and the link line of two 

endpoints. If the distance is less than the tolerance ϵ, judge the route segment to determine if it 

meets the conditions (a) and (b) after removing this waypoint. If satisfied, then delete this 

waypoint and if not, then keep this one. 

2. Select the point that has the farthest distance with the link line of two endpoints as the separation 

waypoint such that the route is divided into two segments, and then perform Step 1 recursively 

for these two segments until there is no waypoint to be deleted. 

4.4.2. Smooth Route Turning 

After compression, the route still consists of broken lines. The UAV cannot smoothly complete 

the turning process. There are some common segment fitting methods, such as the Dubins curve [15] 

and the Bézier curve [2], and some of the authors do not smooth the broken line [12]. In fact, a Fly-by 

Fix or Fly-over Fix [22] is usually used in PBN flight procedures for turning. In this study, we use the 

Fly-by Fix for UAV smooth turning. In Figure 11a, DTA is the length of the minimum straight route 

segment required by the Fly-by Fix; it is determined by the flight speed, turning angle and other 

parameters and is calculated as follows: 

Figure 10. Length changed before and after compression.

When compressing the waypoints, the adjusted route should not cross the threatened area,
and the average altitude of the route has not been significantly improved. After deleting waypoint
ri, the route should meet the criteria: (a) the adjusted route segments {ri−1, ri+1} should not be
located in the threatened area and (b) the difference value of average altitude between {ri−1, ri+1}
and {ri−1, ri, ri+1} should not exceed the specified threshold £. The average altitude is calculated as
follows: interpolate for the route with interval ∀ in U3, then transform the interval points to Ψ3 and
obtain the terrain altitude for them.

This paper improves the Douglas-Peucker algorithm [36]; the improved algorithm steps are
as follows:
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1. First, the algorithm compares the distance between each waypoint and the link line of two
endpoints. If the distance is less than the tolerance ε, judge the route segment to determine if
it meets the conditions (a) and (b) after removing this waypoint. If satisfied, then delete this
waypoint and if not, then keep this one.

2. Select the point that has the farthest distance with the link line of two endpoints as the separation
waypoint such that the route is divided into two segments, and then perform Step 1 recursively
for these two segments until there is no waypoint to be deleted.

4.4.2. Smooth Route Turning

After compression, the route still consists of broken lines. The UAV cannot smoothly complete the
turning process. There are some common segment fitting methods, such as the Dubins curve [15] and
the Bézier curve [2], and some of the authors do not smooth the broken line [12]. In fact, a Fly-by Fix or
Fly-over Fix [22] is usually used in PBN flight procedures for turning. In this study, we use the Fly-by
Fix for UAV smooth turning. In Figure 11a, DTA is the length of the minimum straight route segment
required by the Fly-by Fix; it is determined by the flight speed, turning angle and other parameters
and is calculated as follows: {

R = (min[500,VKTAS + VKTW])2

tan(θ) × 68625.4
DTA = R × tanα

2

(16)

where R is the turning radius, VKTAS is the true airspeed, VKTW is the tailwind, and θ is the slope angle.
UAV flight tends to avoid frequent rising or descending. If a UAV needs to fly from the waypoint

A to waypoint B with different elevations, the UAV should rise/descend with maximum lifting angle
to the horizontal line of B and then maintain level flight to B.
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4.4.3. Route Buffer Area

The route buffer area provides a vertical and horizontal buffer for the route for UAV safety. For the
shadow regions shown in Figure 11b, the route buffer area regards the route as the centre line, with a
width of 4 × RNP, and the height is a rectangular buffer needed to override the obstacle (ROC). We do
interpolation for the entire buffer. If the altitude difference between the interpolation point and the
terrain is less than ROC, the height of the waypoint needs to be increased so that the route buffer area
does not intersect the terrain and the threat zone.

5. Results and Discussion

In this chapter, we first introduce the platform and parameters in Section 5.1. Pilot experiments
with the route planner are reported in Sections 5.2–5.4. In Section 5.5, we compare six types of
planners. To compare the different algorithms, we do not introduce dynamic threats and dynamic
threat avoidance algorithms from Section 5.1 to Section 5.5. The planner in this paper is currently
named MACO-pl. In Section 5.6, we introduce the dynamic threat and evaluate the performance
of MACOD-pl.
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5.1. Platform and Parameters

On the basis of the above methods, we developed a route planning system based on a virtual
globe platform. This system provides interactive functions such as parameter input, route generation,
route editing, route evaluation, threat modelling, data management, flight simulation and so on. Some
interactive screenshots can be found in Appendix A. All of the route planning experiments that follow
were completed on our route planning platform. The hardware environment was as follows: CPU:
Core i7-4790; memory: 8GB DDR3 1600 MHz. The flight parameters of the UAV are shown in Table 1.

Table 1. The UAV flight parameters.

VKTAS (km/h) VKTW (km/h) Maximum Lifting Angle h, ROC (m) RNP (nmi) Turning Fix

350 0 20◦ 400 0.25 Fly-by Fix

The route buffer area width was 2 × RNP = 0.5 nmi, and hmax and hmin were 5000 and 0,
respectively. The algorithm processing time was the average time of the three experiments. The
implementation of the algorithm used different programming skills, programming languages and
compilers, all of which have large impacts on performance; as a result, the processing time can only be
used as a reference.

Much literature research and discussion was reviewed for the selection of parameters in the ACO
algorithm [37]. The selection of parameters was based on a large number of experiments. For a specific
application, the ACO algorithm requires many experiments to determine better parameters. Through
experiments, we found that the processing time of the ACO algorithm was inversely proportional to
the evaporation coefficient. With the increase of the evaporation coefficient, the positive feedback effect
of pheromones was increased. However, the increase of the evaporation coefficient may cause the
algorithm to sink into a local optimum. If the number of ants is too small, the algorithm may terminate
prematurely; however, too many ants can increase the time of algorithm iterations. In this study,
the parameters of the pheromone were: retention coefficient: ρ = 0.7; weight coefficient: α = 1,
β = 4; ant number: 30; iteration number: 200; node number n between the start point and end point;
threshold δ = 10 m; local uplift threshold in route compression: £ = 10 m; and interpolation interval:
∀ = 100 m.

This experiment used five coordinate groups, as shown in Table 2.

Table 2. Experimental coordinate groups.

Serial Number
Start Point End Point Lmin HavT

(x, y, H) (x, y, H) (km) (m)

1
99.96463◦ 99.43347◦

110.613 2339.9326.88202◦ 27.75616◦

1819.58 m 2530.68 m

2
90.86051◦ 94.46516◦

350.051 4492.9529.30996◦ 29.42218◦

3573.99 m 2951.15 m

3
121.84255◦ 119.05692◦

342.512 4.4930.98066◦ 32.95193◦

21.51 m 14.17 m

4
99.44990◦ 118.45611◦

1909.435 1186.3727.81014◦ 25.09058◦

1723.22 m 397.35 m

5
109.78029◦ 120.41494◦

2259.830 203.7118.85893◦ 37.01404◦

445.07 m 132.31 m
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The planning space needs to be generated in advance, and the altitude property of the node can
be stored off-line and can be used based on need. In this study, we generated a multi-granularity
planning space; the pre-generated longitude range was [90, 125] and the pre-generated latitude range
was [15, 45], corresponding to more than 10,000,000 square kilometres of planning area. At a grid
width of 0.01◦, the number of nodes was 10,500,000, and the grid space required approximately 5 min
to be generated in the experimental machine. Before the implementation of the planning algorithm,
we could load the corresponding offline block based on the size of the planning space.

Figure 12 shows the planning area of the first experimental coordinate group; the area is
surrounded by the points (100.284, 27.622), (100.047, 26.723), (99.093, 26.920), (99.295, 27.812). Points A
and B were the start and end points, respectively.ISPRS Int. J. Geo-Inf. 2016, 5, 184 16 of 30 
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5.2. Get the Initial Route

The parameter ε balances the valley-following ability and the length of the route. Different
experimental results can be obtained by setting different coefficients. The initial altitude of the route is
the sum of the node elevation and the ROC value. The experimental results are shown in Figure 13 and
Table 3. It can be concluded that when ε was relatively high, the valley-following performance of the
algorithm was better. However, a higher ε will increase the difficulty for an ant to reach the end point,
which also increases the running time of the algorithm. When ε was 0, the algorithm calculated the
shortest path; however, the path was longer than the shortest path in the continuous world because
of the impact of irregular topography and the grid space. When ε ≥ 3, a feasible solution may not
be obtained. Suitable values of ε can be selected according to the application requirements. For the
following experiments we chose ε = 2.

Table 3. Comparison results for different coefficients.

Coefficients
(ε)

Planning Time
(s)

Lroute
(km)

havT
(m)

Waypoint
Number

Compared with
Lmin

Compared with
HavT

0 1.01 118.428 2488.07 86 +7.07% +6.33%
0.5 1.09 119.074 2351.98 87 +7.65% +0.51%
1 1.20 119.924 2152.15 88 +8.42% −8.03%

1.5 1.29 119.995 2138.84 89 +8.48% −8.59%
2 1.37 120.617 2058.38 90 +9.04% −12.03%

2.5 1.55 123.085 2028.94 92 +11.28% −13.29%
3 N/A
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Figure 13. Experiment results with different height cost coefficients ε. (a) ε = 0; (b) ε = 1; (c) ε = 2;
(d) ε = 2.5.

Figure 14 shows the convergence results of the MACO algorithm when ε = 2.
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5.3. Route Optimization

5.3.1. Route Compression

The results of Figure 13c were first optimized by compression. As shown in Figure 15 and Table 4,
different results were obtained by setting a different tolerance ε.

Table 4 shows that the length of the compressed route may have been shorter than the shortest
path obtained by the ACO algorithm in Table 3.

There are both advantages and disadvantages in the influence of tolerance, and the tolerance
should be selected based on the actual needs.

ISPRS Int. J. Geo-Inf. 2016, 5, 184 18 of 30 

 

There are both advantages and disadvantages in the influence of tolerance, and the tolerance 

should be selected based on the actual needs. 

  
(a) (b) 

  
(c) (d) 

Figure 15. Comparison results for different tolerances ϵ. (a) ϵ = 0.25 nmi; (b) ϵ = 0. 50 nmi; (c) ϵ = 0.75 

nmi; (d) ϵ = 1.00 nmi. 

Table 4. Comparison results for different tolerances. 

ϵ (nmi) Lroute (km) havT (m) Waypoint Number Compared with Lmin Compared with HavT 

0.25 120.129 2063.33 34 +8.60% −11.82% 

0.50 117.172 2060.58 16 +5.93% −11.94% 

0.75 116.003 2141.67 9 +4.87% −8.47% 

1.00 115.061 2120.13 6 +4.02% −9.39% 

5.3.2. Smooth Route Turning 

As Figure 16 shows, we used Equation (16) and Fly-by Fix to address all UAV turning corners. 

With respect to the results of Figure 16, the route length after adjustment was 115.495 km with an 

average terrain height of 2142.80 m. The turning curve is a set of route control points with an interval 

of 50 m. 

Figure 15. Comparison results for different tolerances ε. (a) ε = 0.25 nmi; (b) ε = 0.50 nmi;
(c) ε = 0.75 nmi; (d) ε = 1.00 nmi.

Table 4. Comparison results for different tolerances.

ε (nmi) Lroute (km) havT (m) Waypoint Number Compared with Lmin Compared with HavT

0.25 120.129 2063.33 34 +8.60% −11.82%
0.50 117.172 2060.58 16 +5.93% −11.94%
0.75 116.003 2141.67 9 +4.87% −8.47%
1.00 115.061 2120.13 6 +4.02% −9.39%

5.3.2. Smooth Route Turning

As Figure 16 shows, we used Equation (16) and Fly-by Fix to address all UAV turning corners.
With respect to the results of Figure 16, the route length after adjustment was 115.495 km with an
average terrain height of 2142.80 m. The turning curve is a set of route control points with an interval
of 50 m.
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Figure 16. Turning, falling and rising corner adjustment. (a) Before turning corner adjustment; (b) After
turning corner adjustment.

5.3.3. Route Buffer Areas

Figure 17a is the result of the introduction of route buffer zones. A route segment that does not
meet the flight safety requirements is marked in red. Figure 17b is the result after height adjustment.
After the introduction of the route buffer zone, the route length was adjusted to 115.609 km with an
average height of 3228.90 m, and the terrain average height was 2142.50 m. Figure 18 is the vertical
figure of route and terrain. The Terrain Altitude-curve is the terrain altitude that the planning route
passes through, and the 2RNP Terrain Altitude-curve is the highest terrain altitude within the 2RNP
range. The initial route was unsafe; we obtained a safe route that could meet the safety requirements
after adjusting the elevation.

After route optimization, LUS = 0; however, the average height of the route changed and the
average terrain height passed through by the UAV also changed. Errors introduced by the optimization
process may cause a route to pass through a threat area, as was mentioned in Section 3.4.1, and the
threat area should thus be expanded when it is mapped into the planning space. The expansion width
of the threat zone should be greater than the navigation performance error (0.5 nmi); the width of the
corresponding expansion in the 0.01◦ grid width planning space was 1 node.
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5.4. Multi-Granularity Results

In Section 3.4.2, we introduced a multi-granularity planning space suitable for different
applications. Based on different grids, the experimental results are shown in Table 5.

Table 5. Comparison of results with different granularity.

Grid Width ε (nmi) Processing Time (s) Lroute (km) havT (m) Compared with Lmin Compared with HavT

0.007◦ 0.75 2.15 115.117 1975.70 +4.07% −15.57%
0.007◦ 0.50 2.15 116.899 1947.84 +5.68% −16.76%
0.006◦ 0.75 2.73 114.404 1979.44 +3.43% −15.41%
0.006◦ 0.50 2.73 117.060 1953.05 +5.83% −16.53%
0.005◦ 0.75 3.21 114.086 1942.91 +3.14% −16.97%
0.005◦ 0.50 3.21 115.603 1905.73 +4.51% −18.56%
0.004◦ 0.75 4.24 114.403 1955.89 +3.43% −16.41%
0.004◦ 0.50 4.24 115.523 1923.16 +4.44% −17.81%
0.003◦ 0.75 6.18 114.498 1961.64 +3.51% −16.17%
0.003◦ 0.50 6.18 115.300 1925.10 +4.24% −17.73%
0.002◦ 0.75 7.37 115.033 1973.27 +4.00% −15.67%
0.002◦ 0.50 7.37 115.711 1961.85 +4.61% −16.16%

As the grid width was reduced and the planning space became closer to the real world, the
route we obtained was more consistent with reality. The algorithm ran slower; however, when the
grid width was reduced to a certain value limited by factors such as the input parameters and the
experimental terrain data source, the results no longer improved. In the experiment scene shown in
Figure 19, a better effect was achieved when grid width was 0.005◦ and ε was 0.50 nmi. The following
experiments are based on these parameters.
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Figure 19. (a) The optimal result for grid width = 0.005◦, ε = 0.50 nmi, ε = 2, terrain average
altitude = 1905.73 m, and average altitude of the route after introducing the route buffer = 2698.37 m;
(b,c) are local route details.

5.5. Comparison Experiments

On our virtual globe platform we also implemented the route planner of the basic ACO pheromone
model named ACO-pl and the Rank-based pheromone model named RAS-pl. The number of retaining
ants of RAS-pl was 5. We used the local valley-following method described in Section 4.2.2 and the
shortest distance from the target as the heuristic function to realize an A* based planner, named A*-pl.

Additionally, we implemented the planners based on PSO and EA, named PSO-pl and EA-pl,
respectively. Because these two methods use the dimension-reduction encode method to achieve
evolutionary computation, the local valley-following method in Section 4.2.2 was not applicable. This
study used the minimal flight altitude method in [12] to update the average altitude of the route.
Because of the interval difference between adjacent waypoints, interval interpolation for the route
was needed when calculating the average altitude. In the following experiments, the inertial weight
coefficient of PSO-pl was linear from 0.9 to 0.4. The iteration count of PSO-pl and EA-pl was 200 and
the population size was 30.

When implementing the six types of planners, this study used data structures to store
pre-calculated distances between the adjacent nodes and pre-calculated distances between each node
and the end node. The adjacent waypoints in MACO-pl, ACO-pl, RAS-pl and A*-pl are adjacent
nodes in the grid planning space, as shown in Figure 20a. The algorithm proposed and used in this
study achieved computational acceleration. While the adjacent waypoints in PSO-pl and EA-pl are
not necessarily adjacent nodes, as shown in Figure 20b, the waypoints P and Q can only move in
two directions. At this point, P and Q are not adjacent nodes and thus distances must be calculated.
Although the waypoints Q and H are adjacent nodes, we can obtain the distance between Q and H by
a table lookup.
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RAS, A*; (b) PSO, EA.

The comparison experiments used the same grid size and UAV parameters and were conducted
for different coordinate groups. The results are shown in Table 6 and Figure 21.

Table 6. Planning results of 1–5 coordinate groups.

Serial
Number Method Processing

Time (s) Lroute (km) havT (m) Compared
with Lmin

Compared
with HavT

1 MACO-pl 3.21 115.603 1905.73 +4.51% −18.56%
1 ACO-pl 10.07 118.831 2262.32 +7.43% −3.32%
1 RAS-pl 5.66 117.267 1914.28 +6.02% −18.19%
1 A*-pl 2.16 116.875 1916.29 +5.66% −18.10%
1 PSO-pl 9.78 118.679 2177.42 +7.29% −6.94%
1 EA-pl 10.84 119.441 2190.32 +7.98% −6.39%
2 MACO-pl 12.39 398.782 3471.04 +13.92% −22.74%
2 ACO-pl 38.48 389.907 4074.93 +11.39% −9.30%
2 RAS-pl 20.40 399.823 3623.61 +14.22% −19.35%
2 A*-pl 148.14 396.934 3681.73 +13.39% −18.05%
2 PSO-pl 40.02 386.679 4081.56 +10.46% −9.15%
2 EA-pl 41.28 385.041 4094.39 +10.00% −8.87%
3 MACO-pl 10.96 362.433 2.85 +5.82% −36.53%
3 ACO-pl 36.42 368.345 2.98 +7.54% −33.63%
3 RAS-pl 18.67 365.184 2.93 +6.62% −34.74%
3 A*-pl 116.23 363.245 2.94 +6.05% −34.52%
3 PSO-pl 39.57 366.176 4.01 +6.91% −10.69%
3 EA-pl 38.95 364.504 3.95 +6.42% −12.03%
4 MACO-pl 80.12 2115.333 1043.90 +10.78% −12.01%
4 ACO-pl 201.15 2135.830 1097.04 +11.85% −7.53%
4 RAS-pl 149.98 2136.106 1063.77 +11.87% −10.33%
4 A*-pl N/A
4 PSO-pl 278.26 2104.857 1137.25 +10.23% −4.14%
4 EA-pl 299.38 2109.891 1131.32 +10.50% −4.64%
5 MACO-pl 78.84 2371.012 84.59 +4.92% −58.48%
5 ACO-pl 197.43 2401.023 116.56 +6.25% −42.78%
5 RAS-pl 136.01 2390.174 85.99 +5.76% −57.79%
5 A*-pl N/A
5 PSO-pl 301.44 2398.322 127.76 +6.13% −37.28%
5 EA-pl 279.64 2388.459 134.31 +5.69% −34.07%
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Figure 21. Planning results of 1–5 coordinate groups. (a) Processing time (s); (b) Comparison with
Lmin; (c) Comparison with HavT.

The pheromone evaporation model of ACO-pl easily resulted in the local route planning optimum.
Compared with ACO-pl, RAS-pl used the results of higher ranking ants and had better exploration
ability. The A* algorithm is highly efficient in solving a simple shortest path problem; however,
the performance of this algorithm was reduced when the local terrain was introduced. A*-pl can have
good solutions in small scenes; however, its open table became increasingly large when the scene
became larger and more complex. Although we introduced a binary heap to speed up the query,
it remained very difficult to find a solution. The valley-following abilities of EA-pl and PSO-pl were not
as good; however, the performance for the height and length of these methods was relatively balanced.
Moreover, EA-pl and PSO-pl were less efficient than MACO-pl because of frequent interpolation and
distance calculation. Compared with the A* algorithm, intelligent planners have advantages in solving
large-scale complex problems. We demonstrated by the comparisons that MACO-pl produced a better
solution and that the algorithm was more efficient.

Figure 22 shows the results of MACO-pl. In the area of Figure 22a, the planner could track the
trend of the terrain in the valley, which reflects better terrain tracking ability. Figure 22b is mostly a
plains area, and the trend of the route was relatively straight. Figure 22c,d show the planning results
in large-scale planning scenarios. Figure 23 shows some local details of these routes.
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Figure 22. Planning results of 2–5 coordinate groups using MACO-pl. (a) Coordinate group 2;
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After marking the radar zone, no-fly zone, and missile threat zone, we did experiments on
coordinate groups 1, 2, 4, and 5. Table 7 and Figure 24 show the results of different planners.
We demonstrated that the MACO-pl had a better solution. Figure 25 shows local results by MACO-pl
of four coordinate groups after plotting threatened areas. The planned routes could make use of the
terrain condition to avoid the threatened area.

Table 7. Planning results in threat environments.

Serial
Number Method Processing

Time (s)
Lroute
(km) havT (m) LFA (km) Compared

with Lmin

Compared
with HavT

1 MACO-pl 5.63 136.480 2725.64 0 +23.39% +16.48%
1 ACO-pl 17.02 138.737 2870.48 0 +25.43% +22.67%
1 RAS-pl 9.39 137.158 2757.80 0 +24.00% +17.86%
1 A*-pl 5.27 136.497 2789.72 0 +23.40% +19.22%
1 PSO-pl 29.84 138.528 2955.42 0 +25.24% +26.30%
1 EA-pl 31.15 137.917 2918.81 0 +24.68% +24.74%
2 MACO-pl 20.85 421.922 4379.01 0 +20.53% −2.54%
2 ACO-pl 75.35 431.943 4687.66 0 +23.39% +4.33%
2 RAS-pl 37.28 423.871 4470.49 0 +21.09% −0.50%
2 A*-pl 326.92 422.775 4450.11 0 +20.78% −0.95%
2 PSO-pl 91.49 430.563 4716.47 0 +23.00% +4.97%
2 EA-pl 99.02 428.719 4671.99 0 +22.47% +3.98%
4 MACO-pl 127.39 2250.836 1086.37 0 +17.88% −8.43%
4 ACO-pl 391.50 2301.760 1143.74 0 +20.55% −3.59%
4 RAS-pl 271.98 2284.541 1109.44 0 +19.64% −6.49%
4 A*-pl N/A
4 PSO-pl 401.32 2304.283 1217.07 0 +20.68% +2.59%
4 EA-pl 384.56 2300.575 1203.64 0 +20.48% +1.46%
5 MACO-pl 84.26 2438.912 86.22 0 +7.92% −57.68%
5 ACO-pl 209.92 2494.026 119.14 0 +10.36% −41.51%
5 RAS-pl 140.15 2477.678 86.85 0 +9.64% −57.37%
5 A*-pl N/A
5 PSO-pl 329.48 2489.205 129.49 0 +10.15% −36.43%
5 EA-pl 286.77 2503.418 136.61 0 +10.78% −32.94%
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5.6. Experiments on Dynamic MACO 

This section introduces the dynamic threat area discussed in Section 3.3. Based on MACOD-pl, 

we used coordinate group 1 to test the algorithm. Considering that the route optimization algorithms 

would bring approximately 1%–3% error to the initial route length, which is approximately 1–4 km 

under the current scenario, the maximum time error was approximately 40 s, and the moving speed 

of the dynamic threat area in the figure was approximately 12.6 m/s. The maximum error range was 

thus approximately 510 m. To ensure route safety, the boundary of the dynamic threat area was 

expanded by 0.01°. As shown in Figure 26 and Table 8, when the start time of the UAV was not the 

same, the UAV could meet the threat at different times and places, and the planned routes were thus 

different. When the start time of the UAV was between 0 and 2000 s, the dynamic threat area would 

block the UAV from flying in the valley area. When the start time of the UAV was 3000 s, the dynamic 

threat area would pass through the valley area and the result of route planning was similar to the 
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5.6. Experiments on Dynamic MACO

This section introduces the dynamic threat area discussed in Section 3.3. Based on MACOD-pl,
we used coordinate group 1 to test the algorithm. Considering that the route optimization algorithms
would bring approximately 1%–3% error to the initial route length, which is approximately 1–4 km
under the current scenario, the maximum time error was approximately 40 s, and the moving speed of
the dynamic threat area in the figure was approximately 12.6 m/s. The maximum error range was thus
approximately 510 m. To ensure route safety, the boundary of the dynamic threat area was expanded
by 0.01◦. As shown in Figure 26 and Table 8, when the start time of the UAV was not the same, the UAV
could meet the threat at different times and places, and the planned routes were thus different. When
the start time of the UAV was between 0 and 2000 s, the dynamic threat area would block the UAV from
flying in the valley area. When the start time of the UAV was 3000 s, the dynamic threat area would
pass through the valley area and the result of route planning was similar to the result without the
threat. Because of the introduction of dynamic threats, the dynamic threat avoidance algorithm needed
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to consume many computing resources, and the operating efficiency of the MACOD-pl algorithm was
much lower than that of the MACO-pl algorithm.

Table 8. The results of different start times under dynamic threats.

Start Time (s) Planning Time (s) Lroute (km) havT (m) Compared with Lmin Compared with HavT

0 10.01 133.850 2112.65 +21.01% −9.71%
1000 12.14 135.633 2724.18 +22.62% +16.42%
2000 12.89 136.204 2725.49 +23.14% +16.48%
3000 9.49 115.377 1906.71 +4.31% −18.51%
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6. Conclusions and Future Work

This paper presented an improved ACO-based planner based on the virtual globe platform
to solve the route planning problem in risk environments. We developed a route planning system
and realized six different planners in the static threat. By experimental analysis, we demonstrated
that our optimum planner had better performance in terms of fuel consumption, terrain masking,
and risk avoidance. Finally, we demonstrated the effectiveness of MACOD-pl in the dynamic threat
environment. Benefiting from the virtual globe platform, the method presented in this paper can
achieve route planning globally and meet the current maximum combat radius of UAVs in battlefields.
The planned route can effectively avoid various threats and, by changing the parameters, the planner
is suitable for military penetration, search-and-rescue, and many other scenarios. Our route planning
system can perform not only automatic planning but also route editing and storage, flight simulation
experiments, and other tasks.

Many other types of planning algorithms exist; for example, some algorithms use a rotated
coordinate frame to reduce the dimension of the problem [12,18]. Further research on how to apply
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other algorithms to the virtual globe platform and efficiently obtain better results would be worthwhile,
as well as further research on the model of different dynamic threats and the efficient use of dynamic
threat avoidance algorithms.
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