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Abstract: A flow duration curve (FDC) is widely used for predicting water supply, hydropower,
environmental flow, sediment load, and pollutant load. Among different methods of constructing an
FDC, the entropy-based method, developed recently, is appealing because of its several desirable
characteristics, such as simplicity, flexibility, and statistical basis. This method contains a parameter,
called entropy parameter M, which constitutes the basis for constructing the FDC. Since M is related
to the ratio of the average streamflow to the maximum streamflow which, in turn, is related to the
drainage area, it may be possible to determine M a priori and construct an FDC for ungauged basins.
This paper, therefore, analyzed the characteristics of M in both space and time using streamflow data
from 73 gauging stations in the Brazos River basin, Texas, USA. Results showed that the M values
were impacted by reservoir operation and possibly climate change. The values were fluctuating,
but relatively stable, after the operation of the reservoirs. Parameter M was found to change inversely
with the ratio of average streamflow to the maximum streamflow. When there was an extreme event,
there occurred a jump in the M value. Further, spatially, M had a larger value if the drainage area
was small.

Keywords: flow duration curve; Shannon entropy; entropy parameter; modeling; spatial and
dynamics characteristic

1. Introduction

A flow duration curve (FDC) is usually constructed empirically by plotting discharge against
the percentage of time the discharge is equaled or exceeded during the year. Discharge from a gauge
station can be daily, weekly, or monthly. The timescale of discharge depends on the use of FDC.
For example, weekly discharge may be adequate for water supply, daily discharge for hydropower,
and monthly discharge for sediment load and pollutant load [1,2]. Nonparametric methods use the
record of discharge for the whole period for constructing an FDC and make no probabilistic statements
about a given calendar or water year, because all the years of record are combined together into a
whole period, so a return period cannot be assigned.

The methods for predicting an FDC are either deterministic or stochastic. For a given year
of streamflow record at a station, an annual flow duration curve (AFDC) can be constructed [3,4].
With AFDCs of all the years at a given station, at each exceedance probability discharge percentiles
can be determined given a return period. This leads to a final FDC with probabilistic statements by
assigning return periods to individual AFDCs.

Singh [5] related dimensionless discharge with drainage area and constructed an exponential
form of FDC using a deterministic model. Vogel and Fennessey [4] used an AFDC to define
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recurrence intervals for FDCs. Cigizoglu and Bayazit [6] modeled FDCs by introducing stream
flow as a product of two variables, which represented the periodic and stochastic components.
Castellarin et al. [7] developed a five-parameter stochastic model which combined annual flow
distribution and standardized the daily flow distribution of the basin to simulate FDC and AFDC
percentiles for the whole period of record. All of these studies made a series of assumptions
because of statistical components, such as variables that are independent and identically distributed.
Singh et al. [8] introduced Shannon entropy theory for modeling FDC, where the entropy of discharge
or the probability density function (PDF) was used to express the uncertainty of flow. This method
needs no fitting for the whole period of discharge record and no assumption about daily flow.
This method contains an entropy parameter M which plays a fundamental role in the derivation of
FDC. The objective of this paper was, therefore, to further study the temporal and spatial characteristics
of the entropy parameter M in the entropy-based method and apply the method to 73 sites in Brazos
River basin, Texas, USA.

2. Materials and Methods

The derivation of the FDC and the study area are described in this section. For the dataset, codes,
and software information used in this paper, please see the Supplementary Materials. For the derivation
of the FDC, first, the entropy of discharge is introduced, then the constraints for the probability density
function (PDF) are determined. Second, entropy maximizing is conducted by using the method of
Lagrange multipliers and solved numerically. Third, the cumulative probability distribution function
(CDF) is embedded in the process and a relationship between the discharge and exceedance period
is derived.

2.1. Derivation of FDC

The derivation of FDC using Shannon entropy is detailed in Singh et al. [8]. For the sake of
completeness, a brief synopsis is given here. The Shannon entropy of discharge (Q) or f (Q) [H(Q)] can
be expressed as:

H = −
∫ Qmax

Qmin

f (Q) ln[ f (Q)]dQ (1)

where Qmin and Qmax are the minimum and maximum discharges, respectively, and f (Q) is the PDF of
Q. The objective is to derive f (Q) by maximizing H for which two constraints are defined as:

C1 =
∫ Qmax

Qmin

f (Q)dQ (2)

C2 =
∫ Qmax

Qmin

Q f (Q)dQ = Q = Qm (3)

where Qm is the mean discharge. Entropy maximizing is done using the method of Lagrange multipliers:

L = −
∫ Qmax

Qmin

f (Q)ln f (Q)dQ − (λ0 − 1)
(∫ Qmax

Qmin

f (Q)dQ − C1)
)
− λ1

(∫ Qmax

Qmin

Q f (Q)dQ − C2
)

(4)

where L is the Lagrangian function, and λ0 and λ1 are the unknown Lagrangian multipliers.
Differentiating Equation (4) with respect to f (Q) and equating the derivative to zero yield the PDF
of Q as:

f (Q) = exp(−λ0 − λ1Q) (5)

Substitution of Equation (5) in Equations (2) and (3) yields the solution for λ0 and λ1:

λ0 = −lnλ1 + ln[exp(−λ1Qmin)− exp(−λ1Qmax)] (6)
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− 1
λ1

− Qminexp(−λ1Qmin)− Qmaxexp(−λ1Qmax)

exp(−λ1Qmin)− exp(−λ1Qmax)
= −Q (7)

The entropy parameter M is defined as λ1Qmax.
In order to construct an FDC, a relation between the CDF of Q and time needs to be hypothesized.

A possible form of CDF can be expressed as:

F(Q) = 1 − a
(

t
T

)b
(8)

where a and b are coefficients, t is the number of days that discharge is being equaled or exceeded,
and T is the total number of days for a year. Parameters a and b can be estimated by empirical fitting
and it is hoped that they will be relatively stable.

Differentiating Equation (8) we obtain:

dF(Q) = f (Q)dQ = −ab
(

1
T

)b
tb−1dt (9)

Substituting Equation (5) into Equation (9), integrating from Q to Qmax, replacing the term exp(λ0)
from Equation (6) and replacing λ1Qmax with M, the final FDC is obtained as:

Q
Qmax

= − 1
M

ln

{
exp(−M)−

[
exp(−M)− exp

(
−MQmin

Qmax

)]
a
(

t
T

)b
}

(10)

Equation (10) contains Qmax, and Qmin which are known from observations, and M which can be
calculated using Equation (7).

2.2. Study Area

The entropy parameter M was determined from observations and its space-time characteristics
were then investigated. It was also related to the drainage area. Then, FDC was constructed and its
reliability was assessed.

The study area was Brazos River basin (Figure 1) which extends from Eastern New Mexico to
Southeastern Texas, up to the Gulf of Mexico. The basin has a length of approximately 1219 km
and a width varying from about 133 km in the High Plains in the upper basin to a maximum of
210 km in the vicinity of the city of Waco, to about 19 km near the city of Richmond in the lower
basin. The basin drainage area is approximately 116,550 square kilometers, with about 111,370
square kilometers in Texas and the remainder in New Mexico [9]. There are 73 gauging stations with
discharge records 50 years long that were analyzed in this paper. Daily maximum, minimum and
mean discharges; and reservoir and gauge station information were collected from the USGS website
(https://waterdata.usgs.gov/nwis).

https://waterdata.usgs.gov/nwis
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3. Results and Discussion

3.1. Flow Duration Curve Estimation

The entropy parameter M is defined as λ1Qmax, where λ1 can be obtained from Equation (7) by
numerical solution with the observed Qmax, Qmin and Q.

Using Equation (10) and the observed data, an FDC was constructed using the entropy parameter
M, as shown in Figure 2.
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First, the FDC of a specific year for a station was analyzed. Taking station 08093100 as an
example, for 2009, M, calculated from Equation (7), equaled 10.47. After constructing the FDC for
observations, parameters a and b were calculated using Equation (8) as a = 1.021 and b = 0.778.
Substituting M, Qmax, Qmin, a, and b in Equation (10), we estimated the FDC. The correlation coefficient
(R2) between the observed and estimated FDCs was 0.969, which showed a good agreement, as shown
in Figures 3 and 4.
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Figure 4. FDC of station 08093100 in 2009.

Second, the FDC was predicted for a particular hydrologic year using average values of M, a, and b
for one station. For station 08093100, a, b, and M were calculated for each year and their histograms
were constructed, as shown in Figures 5 and 6, and then their average values were estimated for
the station. For the prediction of FDC, we needed to estimate Qmax, Qmin, and Q first by fitting the
gamma distribution to each data set, as shown in Figures 7–9. For return periods of 1.3-year, 1.4-year,
and 1.8-year, the estimated Qmax, Qmin, and Q with 95% confidence intervals were calculated, as shown
in Table 1. The observed hydrologic years of 1.3-year, 1.4-year, and 1.8-year return periods were 2003,
2009, and 1994. The reason why we chose these years is that we wanted to focus on simulation for the
recent years using parameters for a station. In addition, it showed that not all the stations followed
good fitting, which is explained at the end of this section. Then, FDCs were predicted and compared
with observed FDCs. The R2 values of the predicted and observed FDCs were 0.979, 0.969, and 0.960,
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respectively. Figures 10–12 show that 95% intervals covered most of the observed data. The same was
done for other stations in the basin.

Table 1. Qmax , Qmin, a, b, and M for different water years for station 08093100.

Water Year Year Qmax Qmin LI Qmax LI Qmin UI Qmax UI Qmin a b M R2

1.3 2003 121.26 0.21 44.89 0.08 302.58 0.54
1.02 0.89 9.88

0.979
1.4 2009 169.09 0.3 68.16 0.12 395.75 0.7 0.969
1.8 1994 257.14 0.46 114.31 0.2 558.27 0.99 0.96

Note: LI means lower interval, UI means upper interval, discharge unit is m3/s.
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Figure 5. Relative frequency of parameter a at station 08093100.
Entropy 2017, 19, 654  6 of 14 

 

 
Figure 6. Relative frequency of parameter b at station 08093100. 

 
Figure 7. Gamma distribution fitting of the maximum discharge for station 08093100. 

 
Figure 8. Gamma distribution fitting of the mean discharge for station 08093100. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.445 0.575 0.705 0.835 0.965 1.095 1.225

re
la

tiv
e 

fr
eq

ue
nc

y

b

Figure 6. Relative frequency of parameter b at station 08093100.
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Figure 12. Estimation of the FDC for year 1994 using average M, a, and b values of station 08093100.

It was observed that the predicted FDCs fit well at most of the stations when discharges were
relatively small, but were slightly poorer in the parts having large discharge values. Prediction for each
year showed that R2 was not always good. Figure 13 showed a good fit for the relationship with the
ratio of Q and Qmax. When Q/Qmax ≥ 0.10, R2 ≥ 0.90. Further investigation could focus on making
adjustments for better FDC prediction.
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3.2. Time Variability of M

The stream flow changes because of natural and anthropogenic factors, such as reservoir operation
and climate change. First, we mapped the locations of reservoirs in the basin and analyzed the impact
of reservoir on the time variability of M values. Reservoir locations, in part, are shown in Figure 14.
As an example, we picked three stations, 08093100, 08099500, and 08093360, which were downstream of
Whitney reservoir, Proctor reservoir, and Aquilla reservoir, respectively. The M values of these stations
are shown in Figure 15a–c. For station 08093100, before 1951, the M value fluctuated, while after
1951 it was relatively stable because of the impact of the Whitney reservoir operation. The mean
M value was 11.15 for the whole period, while the mean M value after 1951 was 9.88. It can be
seen that the reservoir operation had a 12.85% influence on the M values for this station. However,
our interest was in the period after 1951. Stations 08099500 and 08093360 had the same situation as did
station 08093100, that is, the M values were fluctuating before the reservoir operation, but were stable
thereafter. These stations were affected by the reservoirs by 189.15% and 43.82%, respectively. Similarly,
there were other reservoirs in the basin which had an impact on the stations downstream of the
reservoirs. For further analysis, we just chose record periods after the reservoir impact. After removing
the impact of reservoirs, it was observed that the M values were relatively stable with time. At some
stations, however, the M values jumped or fluctuated in some particular years.
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Figure 15. (a) M dynamics at station 08093100; (b) M dynamics at station 08099500; and (c) M dynamics
at station 08093360.

Second, we determined the effect of climate change on the M values. M was defined as the
Lagrange multiplier λ1 times Qmax, as expressed by Equation (6), which relates it to Qmax, Qmin,
and Q. Though Equation (6) is slightly complicated, it can be simplified by setting Qmin equal to zero,
which can usually be assumed to be near zero (it is true at most of the stations in the Brazos River
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basin). Then we found that M had an inverse relation with the ratio of Q and Qmax, as shown in
figures plotting M and the ratio (Figures 16 and 17)

Entropy 2017, 19, 654  10 of 14 

 

 

 

Figure 15. (a) M dynamics at station 08093100; (b) M dynamics at station 08099500; and (c) M 
dynamics at station 08093360. 

Second, we determined the effect of climate change on the M values. M was defined as the Lagrange 
multiplier λ1 times 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, as expressed by Equation (6), which relates it to 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑄𝑄� . Though 
Equation (6) is slightly complicated, it can be simplified by setting 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 equal to zero, which can 
usually be assumed to be near zero (it is true at most of the stations in the Brazos River basin). Then 
we found that M had an inverse relation with the ratio of 𝑄𝑄�  and 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, as shown in figures plotting 
M and the ratio (Figures 16 and 17) 

 
 

 
Figure 16. Correlation between M values and the ratio of 𝑄𝑄�  and 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 at station 08089000. 

0

50

100

150

200

250

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

M

Year

(b)

0

20

40

60

80

100

120

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

M

Year

(c)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

10

20

30

40

50

60

70

80

1920 1940 1960 1980 2000 2020
Year

M Value Ratio of Mean to Max

Figure 16. Correlation between M values and the ratio of Q and Qmax at station 08089000.Entropy 2017, 19, 654  11 of 14 

 

 

Figure 17. Powered relationship between M value and ratio of  and  at station 08089000. 

Upon calculating M, the effect of climate change was determined. Studies on the impact of 
climate change on river discharge show that different parts of the basin have different impacts [10,11]. 
Discharge in a river can increase or decrease due to the impact of climate change and so can the ratio 
of  and . Taking station 08089000 as an example, it can be seen from Figure 3 that the relation 
between M and the ratio had a correlation coefficient of −0.74, indicating that a high ratio is usually 
related to a low M value. At the same time, it was noticed that the M value had a dramatic jump in 
1978 when Tropical Storm Amelia happened and caused a large storm in Texas [12]. It can be seen 
from Figure 18 that, in 1978, where there was an impact of the storm, there was a jump in the M value. 
This showed how M values reflected the change in flow characteristics related to the weather.  

 
Figure 18. M values in 1978 compared to the mean M value. 

The next step was to determine what other characteristics could be related to the M values, 
because the final goal was to apply this method to ungauged basins.  
  

y = 1.0442x-0.999

R² = 0.9848

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40 50 60 70

Q
m

/Q
m

ax

M values
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Upon calculating M, the effect of climate change was determined. Studies on the impact of
climate change on river discharge show that different parts of the basin have different impacts [10,11].
Discharge in a river can increase or decrease due to the impact of climate change and so can the ratio
of Q and Qmax. Taking station 08089000 as an example, it can be seen from Figure 3 that the relation
between M and the ratio had a correlation coefficient of −0.74, indicating that a high ratio is usually
related to a low M value. At the same time, it was noticed that the M value had a dramatic jump in
1978 when Tropical Storm Amelia happened and caused a large storm in Texas [12]. It can be seen
from Figure 18 that, in 1978, where there was an impact of the storm, there was a jump in the M value.
This showed how M values reflected the change in flow characteristics related to the weather.
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The next step was to determine what other characteristics could be related to the M values,
because the final goal was to apply this method to ungauged basins.

3.3. Spatial Variability

After calculating the M values for 73 stations and considering the impact of reservoirs, the mean
M value was computed for each station. It was found that the M values ranged from 8.14 to 123.72.
The lowest value occurred at gauge 08116650, which is located in the downstream part of the basin,
and the highest value occurred at gauge 08086290, which is located in the middle-upper part of the
basin. It can be seen from the map that most of the area in the upstream part had higher M values,
higher than 55, the middle part had a range from 45 to 55, and the downstream areas had M less than
45. This showed a trend of decreasing M values from the upstream to the downstream part. It seems
that the M values changed spatially because the drainage area changed, as shown in Figure 19, where if
there was a small drainage area, then there was a large M value contour.
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Fuller [13] developed a relation between Qmax and Q as:

Qmax − Q
Q

= 1.5A−0.3 (11)

where A is the drainage area (square kilometers). This relationship indicates that the ratio of Q and
Qmax would increase with an increase in the drainage basin size. Since M has an inverse relation with
the ratio of Q and Qmax, M also has an inverse relation with basin size, which can be reflected by the
correlation coefficient −0.536 and the plot of M versus the drainage size (drainage area) in Figure 20.
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3.4. Test for Ungauged Stations

We used station 08098290, assuming it as an ungauged station to test for the reliability of applying
the function. First, following the schematic in Figure 2 and using the records from the station,
we obtained the M value as the true value. Second, we estimated the M value using Equation (12):

log(M) = −0.112[log(A)]2 + 0.481 log(A) + 1.387 (12)

where A is the drainage area in square kilometers. The M value derived from records of observed data
was 13.26. The M value simulated from the function was 14.23, which had a 7.31% difference. Third,
we used both M values to form an FDC, compared to the empirical FDC, respectively, and calculated
R2 for both sides. Using the calculated M value led to a mean R2 = 0.91, which ranged from 0.70 to 0.99,
and simulated M led to mean R2 = 0.89 which ranged from 0.68 to 0.95 which had a 2.20% difference
with the calculated one. At last, we applied Equation (12) to all the stations in the basin and got
simulated M for all the stations. The mean R2 = 0.86 for the basin ranged from 0.58 to 0.93, while the
calculated M from the records led to an R2 = 0.88 and ranged from 0.61 to 0.95, which showed a
mean difference between the results from the calculated and simulated M of 2.32%. Those test results
indicated that the function can be applied to other ungauged stations.

4. Conclusions

This study analyzed in time and space the entropy parameter M which is basic to the
entropy-based method for constructing the flow duration curve. Upon analysis of 73 stations in
the basin, M ranged from 8.14 to 123.72, and was apparently impacted by anthropogenic and natural
factors. Temporal patterns changed because of reservoir operation and flow characteristics. At the
same time, M changed spatially with the drainage area. By analyzing the spatial and temporal
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characteristics of M, a relation between M and drainage area was developed, a log-based function
was fitted as y = −0.112x2 + 0.388x + 1.567, which can be used in other basins. For most of the years,
the average M yielded a good agreement between predicted and observed FDCs, where the mean R2

was 0.92. Some years did not have good fit, especially in large discharge parts of the FDC; the reason
why this occurred should be studied further. The procedure of applying the entropy parameter M for
modeling the FDC can be extended to other basins. Further studies such as the adaptation to other
basins, and improvement for the goodness of fit should be investigated.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/12/654/s1,
Section 1: Data Availability, Section 2: Code and Software.
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