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Abstract: Urban fringe is the transition zone fine grained with urban and non-urban land cover
types. The complex landscape mosaic in this area challenges the land cover classification based on
the remote-sensing data. Spectral signatures are not efficient to discriminate all pixels into classes.
To improve the recognition and handle the uncertainty, this paper provides a novel integrated
approach, based on a fuzzy rough set and evidential reasoning (FRSER), for land cover classification
in an urban fringe area. The approach is implemented on Landsat Operation Land Imager data
covering the urban fringe area of Wuhan city, China. A fuzzy rough set is first used to define a decision
table from multispectral imagery and ground reference data. Then the fuzzy rough information
system is interpreted using the Dempster–Shafer theory, based on an evidential reasoning system.
A final land cover classification with uncertainty is achieved by evidential reasoning. The results
are compared with the traditional maximum likelihood classifier (MLC) and some rough set-based
classifiers including classical rough set classifier (RS), fuzzy rough set classifier (FRS), and variable
precision fuzzy rough set classifier (VPFRS). The better overall accuracy, user’s and producer’s
accuracies, and the kappa coefficient, in comparison with the other classifiers, suggest that the
proposed approach can effectively discriminate land cover types in urban fringe areas with high
inter-class similarities and intra-class heterogeneity. It is also capable of handling the uncertainty in
data processing, and the final land cover map comes with a degree of uncertainty. The proposed
approach that can efficiently integrate the merits of both the fuzzy rough set and DS theory provides
an efficient method for urban fringe land cover classification.

Keywords: fuzzy rough set; evidential reasoning; classification uncertainty; land cover; multispectral
remote sensing

1. Introduction

Urban fringe is the transition zone with an intermixture of urban land use and rural land use.
Studying the land cover and its temporal evolution in the urban fringe area is an important way to
understand the urban sprawl process. Remote sensing, developed over recent decades, has become a
time- and cost-efficient way for mapping the urban fringe area and its changes [1–3]. Over the past
few years, quality remote-sensing imagery with high spatial, spectral and temporal resolution has
become popular in the applications of the earth surface environment. The quality imagery helps
improve the discernibility for the complex landscape mosaic in the urban fringe area. Besides the
quality imagery, the classification techniques used are also important for the urban fringe land cover
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information extraction. The well-established classification techniques will lead to more accurate and
appropriate outcomes for the given remote-sensing imagery [4–6].

With the development of the remote-sensing techniques, a great number of imagery classification
methods have been introduced for land cover extraction. These approaches, supersized and
unsupervised, are established on the wide range of basic or novel recognition algorithms, such
as maximum likelihood, fuzzy logic, decision tree, artificial neural networks, and support vector
machines [7–11]. However, the land cover classification performance cannot be effectively increased by
only improving the recognition algorithms in an urban fringe environment. Because of the complexity
of land cover composition in the urban fringe area and its restricted discernibility in remote-sensing
imagery, land cover classification is accompanied by uncertainty or vagueness. For example, the
urban fringe areas of a typical Chinese city show mosaics of built-up, exposed bare ground for future
construction, and agriculture land cover types such as farmland and fishponds. The post-harvest
farmland has similar spectral signatures with the exposed bare ground and built-up land cover types,
and the fishponds are also similar to the shade of high-rise buildings. The spectral signatures are
not capable of unambiguous classification of all pixels. Most of the previously developed methods
focused on improving recognition and paid less attention to quantifying and modeling uncertainties
during image data processing; therefore, the overall accuracy of the classification may improve to
some degree, but confidence in the final output is unknown for individual pixels or image objects.
The development of new algorithms to quantify uncertainty during classification and improve the
performance is important for urban fringe land cover extraction.

Rough set theory, proposed by Pawlak [12–15], offers a comprehensive approach to analyze and
quantize the uncertainty or vagueness in a decision by computing the lower and upper approximations.
The rough set theory is already being used to handle the limited discernibility in remote-sensing
imagery [16–22]. A rough set-based imagery classifier is a rule-induction system that comprises a set
of features (attributes) and the related decision rules for classification. The features in the system refer
to the spectral bands and its derivations, such as texture and band math. Rough set theory provides
an objective way to minimize the features set and extract classification rules for remote-sensing
imagery [18]. In addition to rule-based decision systems, the rough set method can also be integrated
with other imagery classification methods, such as support vector machines, neural networks, and
particle swarms, to build a hybrid classifier [5,23,24]. Usually, a rough set is used to construct the
decision information system and reduce the features in these applications. The hybrid approaches
are especially attractive because they take the merits both from the rough set and other intelligent
data-mining methods to improve the classification performance [21].

Rough set theory is built on discrete data, and it is not appropriate for handling the continuum
data. However, remote-sensing data contains integer-valued features (e.g., spectral bands) or
real-valued features (e.g., textural information), which are considered as continuums. Therefore,
the discretization of features is an important issue in RS-based imagery classification systems [18].
There are mainly two types of discretion, namely user-defined approaches [25,26] and statistical-based
approaches [27,28], used in practical applications. A user-defined method selects the truncation points
based on the expert knowledge, while a statistical-based method selects the truncation points based on
statistical characteristics, thereby overcoming the subjectivity of a user-defined method [29].

Although rough set theory can handle vagueness or uncertainty, current rough set-based
classification methods also have restrictions with an application to the urban fringe. First, the
discretization for transforming the value of a continuous attribute into a finite number of intervals
may lead to information loss and make the poor spectral signatures worse [20]. Secondly,
the rule-induction-based classification system uses a decision table to identify a finite number of
optimal rules for a classification task. This may lead to a large amount of unclassified pixels in the
urban fringe area [30,31], and the attribute discretization process may intensify the indiscernibility.
Thirdly, combined methods based on rough set theory may avoid unclassified pixels; however, these
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methods cannot produce interpretive measures such as degree of support, plausibility, and uncertainty,
which are useful to indicate the ambiguous urban fringe land cover classification.

The introduction of fuzzy theory into RS-based classification is an efficient way of reducing
information loss and improving discernibility in an urban fringe environment. A gradual change
from membership to non-membership instead of abrupt truncation points for features discretization
can provide a suitable model to reserve the detail information for classification and improve the
discernibility. Fuzzy set theory can also be used to find and quantize the uncertainty in the boundary
between classes [23]. A fuzzy classifier produces a measure of the degree of similarity for every
class, which is also called a class membership. The similarity measure or the membership indicates
the uncertainty between the classes and provides more details about the urban fringe land cover
classification [32]. Fuzzy rough theory, which is an extension of classical rough set theory, provides a
solid foundation for handling a fuzzified rough set [33,34].

The integration of rough sets and different computing methods, especially machine-learning
methods, has become popular in the last ten years. Since the hybrid decision system avoids the simple
rule induction on original datasets, it is more efficient in discernibility for imagery classification [23].
In these hybrid systems, rough set theory is usually used to structure the machine-learning methods.
However, these machine-learning methods cannot handle the vagueness or uncertainty of a rough
set system in an expressive way. The Dempster–Shafer (DS) theory-based evidential reasoning is an
inexact reasoning method that enables representation of the imprecision and uncertainty in a decision
system [35,36]. The DS reasoning system provides a more flexible and general approach to handle the
uncertainty in imagery classification with limited discernibility and has been used in a variety of land
cover classification case studies [37–41]. Therefore, the use of fuzzy rough set theory to construct a
DS classification system may help improve discernibility and measure important factors such as the
degree of support, plausibility, and uncertainty in the urban fringe land cover classification.

In this study, a supervised classification model, based on fuzzy rough set and evidential reasoning
(FRSER), is designed to handle indiscernibility and uncertainty between patterns in urban fringe land
cover classification. In the proposed method, the continuum-valued remote-sensing imagery data
is discretized and integrated into an interval-valued fuzzy information system, and then a new soft
classification method is constructed for the fuzzy rough set in combination with evidential reasoning.
Finally, a method is proposed for measuring the indiscernibility and uncertainty in the classification.

2. Preliminaries

2.1. Fuzzy Rough Set

Let S “ pU, Aq denote an information system, where U is a non-empty finite set of objects called
the universe of discourse and A is a non-empty finite set of attributes. Let R be an equivalence relation
on U, and an equivalence class introduced by U{R, which contains x P U, is denoted by rxsR. Let FpUq
denote the family of all fuzzy subsets of U, for F P FpUq. A fuzzy rough set is a tuple ă RF, RF ą,
where RF and RF of F are fuzzy sets of U{R. The membership functions that define the lower and
upper approximations of the fuzzy rough set can be denoted by [42]

µRFpxq “ inf
yPU

max
!

µFpyq, 1´ µrxsRpyq
)

(1a)

µRFpxq “ sup
yPU

min
!

µFpyq, µrxsRpyq
)

(1b)

Here, µRFpxq and µRFpxq are the membership values of x in RF and RF, respectively, inf and
sup denote the infimum and supremum operator, respectively, µFpyq denotes membership of y P F,
and µrxsRpyq denotes the degree to which x and y are related to R.
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There is an important measure in rough set theory, namely approximation quality. Measures of
the quality of the lower and upper approximations of a fuzzy rough set are given respectively by

qpFq “
CardpRFq
CardpUq

, qpFq “
CardpRFq
CardpUq

(2)

2.2. Evidential Reasoning

The DS theory provides two functions, namely plausibility (Pl) and belief (Bel), to represent the
imprecision and uncertainty in an evidence reasoning system. The plausibility and belief are both
derived from a mass function (m). Let FpUq denote the family of all fuzzy-valued subsets of U, then m
is defined by

m p∅q “ 0,
ÿ

APFpUq

m pAq “ 1 (3)

According to Denœux [43], the fuzzy belief and plausibility functions are given by

Bel pFq “
ÿ

APFpUq

m pAqN pF{Aq ,@F P FpUq (4a)

Pl pFq “
ÿ

APFpUq

m pAq
ž

pF{Aq,@F P FpUq (4b)

where N pF{Aq and
š

pF{Aq denote the conditional necessity measure and possibility measure,
respectively, and are defined by

N pF{Aq “ inf
xPU

max tµF pxq , 1´ µA pxqu (5a)

ž

pF{Aq “ sup
xPU

min tµF pxq , µA pxqu (5b)

2.3. Interpretation of Evidential Reasoning on Fuzzy Rough Set

Several studies have focused on the relationship between rough set theory and the DS-based
evidential reasoning [44,45]. These studies show that belief (plausibility) functions can be derived from
a classic Pawlak rough set. Moreover, the approximation quality in a rough set is a belief (plausibility)
function [46]. The fuzzy rough set theory is an extension of the classical Pawlak rough set, and it can
therefore be verified that

qpFq “ BelpFq, qpFq “ PlpFq (6)

3. Methodology

3.1. Study Area and Data Processing

A study area covering the urban–rural transition zone located in the northwest of Wuhan was
selected for this study (Figure 1) because it represents a range of typical urban fringe land cover types
in China (built-up, woodland, bare farmland, green farmland, waterbody, and bare ground) with high
inter-class similarities and intra-class heterogeneity. The complex land cover in this area provides
sufficient variability and uncertainty to test the proposed algorithm. One cloud-free scene of Landsat-8
Operational Land Imager (OLI) data, acquired on 17 September 2013 (orbit number 123/39, image size
743 ˆ 619 pixels), was chosen for our experiment (Figure 2). The image was registered to the Universal
Transverse Mercator (UTM) projection using ENVI software based on 66 ground control points, which
were collected from topological maps. The root-mean-square error of the registration process was less
than one-third of a pixel.
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3.2. Problem Formulation and Overview of Method

To integrate the fuzzy rough theory and the DS theory, the proposed urban fringe land cover
classification approach first constructed a fuzzy rough set on remote-sensing imagery and reference
data. The fuzzy rough theory was used to evaluate the spectral signatures and handle the uncertainty.
Then the fuzzy rough set was interpreted to a DS theory-based evidential reasoning system. Final land
cover classification and its related uncertainty were achieved by evidence reasoning.

To facilitate the description on methodology, a decision table of the form S “ pU, C Y Dq
was used to represent the rough set-based classification system, where C “ tA1, A2, ..., Anu and
D “ tX1, X2, ..., Xtuwere condition spectral signatures and final classes, respectively.

The logical flow of the urban fringe land cover classification is shown in Figure 3. The process can
be divided into the following steps: (1) construction of a decision table-based on training samples of
remote-sensing imagery; (2) use of a fuzzy discretization method to transform the continuum decision
table to an interval-valued fuzzy decision table; (3) reduction of the attributes and refinement of the
samples in the decision table; (4) derivation of the belief and plausibility functions from the fuzzy rough
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system for each attribute, and combining the reduced conditional attributes to establish an evidential
reasoning system, and (5) classification of the remote-sensing imagery and accuracy evaluation.
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3.3. Decision Table Construction

The land cover classification scheme included six types: (1) built-up; (2) bare farmland; (3) green
farmland; (4) bare ground; (5) woodland; and (6) waterbody. Spectral bands, Band Math, and image
texture were used to construct the decision table. Eight spectral bands, i.e., coastal (Band 1), blue
(Band 2), green (Band 3), red (Band 4), near-infrared (Band 5), cirrus (Band 9), and two mid-infrared
(Bands 6 and 7), were selected as condition attributes. Based on the report by Xie et al. [22], the Band
Math including band 3 + band 4, band 5 + band 6, band 3–band 5, band 4–band 7, band 2/band 4, and
band 6/band 7 was selected to constitute condition attributes. The textural information for the eight
selected bands was derived from a grey-level co-occurrence matrix mean measurement with 3 ˆ 3 and
5 ˆ 5 windows; there was therefore a total of 30 condition attributes in the initial decision table.

The aerial photography (spatial resolution 0.3 m), performed on 11 June 2013, was used to extract
the training and test data. A dataset comprising 1486 pixels belonging to the six land cover classes
was extracted from the Landsat OLI image by using a random individual point method (Table 1).
The dataset was randomly split into two subsets: one subset (800) was for establishing the decision
table, and the other (686) was for validation of the results. To set up a more accurate classification
model, the training dataset was evaluated and refined from 800 to 730 samples. The training dataset is
overlapped on the OLI image to get the decision attributes of the decision table.
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Table 1. Data acquired and studied in this research.

Class No. Land Cover Type Description No. of Pixels

Training Set Test Set
1 Built-up Buildings, roads and other impervious surface. 254 239
2 Bare farmland Clear cut post-harvest farmland. 62 47
3 Green farmland Farmland with growing crops. 129 112
4 Bare ground Exposed land for future construction. 80 67
5 Woodland Tree-covered land. 165 121
6 Waterbody Fishponds, lakes and rivers. 110 100

Total 1486

3.4. Attribute Discretization and Fuzzification

Discretization transforms integer-valued OLI image spectral bands and their continuum-valued
derivations into a number of intervals; this is an important data pre-processing approach in rough
set-based remote-sensing imagery classification. Many discretization methods have been developed,
such as equal width, equal frequency, and entropy-based discretization. The arbitrary boundary is
usually used in the discretization process; however, it leads to information loss. To precisely transform
the original information in this study, a fuzzy discretization technique based on the class-attribute
interdependence maximization (CAIM) algorithm [47] was used to discretize the continuous attributes
to a format appropriate for an associated fuzzy rough system. The discretization was broken into two
steps. First, the CAIM algorithm was chosen for supervised selecting truncation points for intervals.
After determining the truncation points, the fuzzy intervals were defined for each attribute.

The fuzzification method reported by Kianmehr et al. [48] was used to fuzzy the intervals.
Let Mi “ tmi1, mi2, ..., minu be the set of centroids of the intervals for a condition attribute Ai. For each
interval, two variables are defined, mL

ij and mG
ij , which denote the average of the values less than

and greater than the centroid of mij, respectively. The discrete intervals of Ai, Ai “ tAi1, Ai2, ..., Ainu,
are bounded by the pairs of numbers

Ai “ trminpiq, mL
i2s, rm

G
i1, mL

i3s, ..., rmG
ipn´1q, maxpiqsu (7)

and the membership function for fuzzy attributes can be given as:
For the first interval Ai1 of attribute Ai, bounded by rminpiq, mL

i2s,

µAi1pxq “

$

’

’

’

&

’

’

’

%

1 if x ď mG
i1

x´mL
i2

mG
i1 ´mL

i2
if mG

i1<x ď mL
i2

0 if x ą mL
i2

(8a)

For the last interval Ain of attribute Ai, bounded by rmG
ipn´1q, maxpiqs,

µAinpxq “

$

’

’

’

&

’

’

’

%

0 if x ď mG
in

x´mL
in

mG
ipn´1q ´mL

in
if mG

ipn´1q ă x ď mL
in

1 if x ą mL
in

(8b)

For the rest of intervals of attribute Ai,
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µAijpxq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

x´mG
ipj´1q

mL
ij ´mG

ipj´1q

if mG
ipj´1q ď x ď mL

ij

1 if mL
ij ă x ď mG

ij
x´mL

ipj`1q

mG
ij ´mL

ipj`1q

if mG
ij <x ď mL

ipj`1q

(8c)

3.5. Attribute Reduction

In multispectral remote-sensing imagery-based land cover classification, spectral bands and their
derived information such as texture may provide hundreds of features. However, not all of these
features are helpful in the classification. The correlation between the features and irrelevant additional
features may result in an inefficient data process, and introduce uncertainty in the classification. Rough
set theory provides the function—attribute reduction—to refine the features in a decision system.
In this study, an attribute-dependence measurement, denoted by γ, was used to select the most useful
attributes for classification purposes [49]. In a fuzzy rough classification system, land cover classes D
depending on spectral signature attributes C is defined by

γCpDq “

ř

xPU
uPOSCpDqpxq

CardpUq
(9)

POSCpDq denotes the positive region for land cover classes D under condition spectral
signaturesC, with membership functions defined by

µPOSCpDqpxq “ sup
FPU{D

µCFpxq (10)

Attribute reduction in the fuzzy decision table is described as follows.
Step 1. Input the discretized decision table S “ pU, CY Dq and the error parameter δ.
Step 2. Let set P “ ∅, γ1 “ 0, and γ2 “ 0.
Step 3. Let set T “ P, and γ2 “ γ1.
Step 4. For @Ai P pC´ Pq, if γPYtAiu

pDq ă γTpDq, then P “ PY tAiu and γ1 “ γPYtAiu
pDq.

Step 5. If |γ2 ´ γ1|ą δ , then go to step 3.
Step 6. Output P.

3.6. Evidential Reasoning Based on Fuzzy Rough Set

According to Equation (6), the fuzzy rough set was interpreted to a DS theory-based evidential
reasoning system. Based on Smets’s study on fuzzy-event-based condition belief and plausibility [50],
the condition belief and plausibility of a land cover type X on a spectral signature A can be defined as

Bel pX{Aq “
BelpXY Aq ´ BelpAq

1´ BelpAq
(11a)

Pl pX{Aq “
PlpXX Aq

PlpAq
(11b)

Combining all the condition values will give the total belief and plausibility of land cover type X

Bel pXq “
n
ÿ

i“1

Bel pX{AiqPpAiq (12a)
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Pl pXq “
n
ÿ

i“1

Pl pX{AiqPpAiq (12b)

For a DS theory-based imagery classification system, the combined total belief indicates the
lower boundary of the support to a certain class, and the combined total plausibility indicates the
upper boundary; and the range rBel, Pls is referred to as an interval of uncertainty for the given
conditions. The most popular decision criteria of the final class in a DS theory-based system are
maximum plausibility, maximum belief, and maximum belief without overlapping [51]. In this study,
the decision rule was based on the maximum plausibility, which was mentioned to be the best by some
authors [52]. The range of rBel, Plswas used to measure the uncertainty.

Let S “ pU, PY Dq denote the reduced decision table, where P “ tA1, A2, ..., Amu for reduced
condition attributes. Let Ipx, yq denote the remote-sensing image to be classified, where px, yq denote
the column and row number of an image pixel. The fuzzy rough set-based evidential reasoning
algorithm is described as follows.

Step 1. Input-reduced decision table S “ pU, PY Dq and the remote-sensing image Ipx, yq.
Step 2. Let Aij denote an interval of attribute Ai. Calculate Bel

`

Xk{Aij
˘

and Pl
`

Xk{Aij
˘

values
for all intervals of attributes based on training samples.

Step 3. Combine Bel
`

Xk{Aij
˘

for Bel pXkq and Pl
`

Xk{Aij
˘

for Pl pXkq:

BelpXkq “

m
ÿ

i“1

ÿ

j

tBel
`

Xk{Aij
˘

ˆ PpAijq ˆ µAijpIpx, yqqu (13)

and

PlpXkq “

m
ÿ

i“1

ÿ

j

tPl
`

Xk{Aij
˘

ˆ PpAijq ˆ µAijpIpx, yqqu (14)

where PpAijq is the prior probability of the interval j, and µAijpIpx, yqq is the fuzzy membership of pixel
Ipx, yq, belonging to interval j.

Step 4. Decide the classification of Ipx, yq based on maximum belief plausibility.
Step 5. Output the classification and the uncertainty.

3.7. Accuracy Assessment and Comparison

Finally, the whole study area was classified using the trained model, and the test set in Table 1
was used to validate the classification. The results obtained using the proposed FRSER classifier were
compared with those obtained using the classical maximum likelihood classifier (MLC), classical
rough set classifier (RS), fuzzy rough set classifier (FRS), and variable precision fuzzy rough set
classifier (VPFRS), to assess its efficiency in handling vagueness or uncertainty in classification. The
RS, FRS, and VPRFS classifiers used in the experiment were set to have the same discretization and
fuzzification processes as the FRSER classifier, in order to enable comparison of the results. The
VPFRS classifier is an extension of the RS and FRS. Comparing to strict approximation in the RS and
FRS, the VPRFS allows errors in classification. Due to the confusion of the spectral signature in a
complex urban fringe environment, admission of some errors in training stage will help improve the
discernibility. The precision parameter β in the VPFRS method was set at 0.23 to achieve the highest
classification accuracy.

4. Results and Discussion

4.1. Comparison of Classification Accuracy

The total attribute number in the decision table was reduced from 30 to 21 to remove the confusion
and redundancy in the spectral signatures. Comparing with the original dataset, the consistency of
the reduced dataset is 0.9875 for the training set. Based on this consistency-preserving reduction,
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six spectral bands (Band 1, 3 and 5–8), four 3 ˆ 3-window texture signatures (Band 1, 2, 4, and 6),
five 5 ˆ 5-window texture signatures (Band 3–5, 7 and 8) and all band math signatures were selected
for the OLI imagery classification. The texture and band math signatures derived from the original
spectral bands help to improve the discernibility of the land cover to some degree. The reduced
decision table can unambiguously separate 97.12% pixels into classes of the training set, while eight
spectral bands can only separate 92.47% of them.

The confusion matrices for the MLC, RS, FRS, VPRFS and proposed FRSER classifiers are shown
in Table 2. Based on the overall accuracies and kappa coefficients, FRSER (overall accuracy 84.99%,
kappa coefficient 0.81) gave better results than MLC (overall accuracy 72.89%, kappa coefficient
0.67), RS (overall accuracy 77.11%, kappa coefficient 0.70), and FRS (overall accuracy 79.59%, kappa
coefficient 0.76), and similar results to VPRFS (overall accuracy 83.09%, kappa coefficient 0.80). All the
rough set-based classifiers performed better than the classical MLC classifier. Extensions to the rough
set, such as fuzzy and variable precisions, also improved the classification. The overall accuracies
increased significantly from 77.11% for the RS classifier to 79.59 for the FRS classifier, and 83.09% the
VPRFS classifier.

Table 2. Confusion matrices obtained for test sets classified using MLC, RS, FRS, VPFRS, and FRSER.

Class 1 1 2 3 4 5 6 User’s Accuracy (%)

FRSER: overall accuracy = 84.99%, kappa = 0.81
1 200 3 0 8 5 1 92.17
2 20 42 0 6 0 0 61.76
3 3 0 89 0 10 2 85.58
4 7 1 0 52 0 0 86.67
5 8 1 21 0 105 2 76.64
6 1 0 2 1 1 95 95.00

Producer’s accuracy (%) 83.68 89.36 79.46 77.61 86.78 95

MLC: overall accuracy = 72.89%, kappa = 0.67
1 145 7 0 7 3 1 88.96
2 38 37 0 9 2 0 43.02
3 2 0 71 0 11 2 82.56
4 37 2 0 50 0 0 56.18
5 15 1 39 0 103 3 63.98
6 2 0 2 1 2 94 93.07

Producer’s accuracy (%) 60.67 78.72 63.39 74.63 85.12 94

RS: overall accuracy = 77.11%, kappa = 0.70
Unclassified 0 0 1 0 0 0

1 212 17 4 28 15 2 76.26
2 0 10 0 0 0 0 100.00
3 2 0 86 0 7 0 90.53
4 13 12 0 32 1 0 55.17
5 8 0 12 5 93 2 77.50
6 4 8 9 2 5 96 77.42

Producer’s accuracy (%) 88.70 21.28 76.79 47.76 76.86 96

FRS: overall accuracy = 79.59%, kappa = 0.76
Unclassified 3 0 4 2 6 0

1 200 0 1 17 7 2 88.11
2 4 47 0 2 0 0 88.68
3 3 0 71 1 10 1 82.56
4 15 0 0 44 0 0 74.58
5 9 0 31 0 90 3 67.67
6 5 0 5 1 8 94 83.19

Producer’s accuracy (%) 83.68 100.00 63.39 65.67 74.38 94
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Table 2. Cont.

Class 1 1 2 3 4 5 6 User’s Accuracy (%)

VPFRS: overall accuracy = 83.09%, kappa = 0.80
Unclassified 3 0 1 1 1 1

1 196 0 0 13 3 1 92.02
2 7 47 0 4 2 0 78.33
3 3 0 91 0 13 1 84.26
4 13 0 0 47 0 0 78.33
5 15 0 17 1 94 2 72.87
6 2 0 3 1 8 95 87.16

Producer’s accuracy (%) 82.01 100.00 81.25 70.15 77.69 95
1 Class numbers 1 to 6 refer to those in Table 1.

In addition to the overall classification accuracies, the classification performance of each classifier
with respect to individual classes is examined. There was an improvement in the accuracy for almost
all individual classes using the proposed FRSER classifier compared with those using the MLC
classifier. For the bare farmland, bare ground, green farmland, and woodland classes, the user’s
and producer’s accuracies of the RS, FRS, and VPRFS classifiers were not stable, and some of them
were even lower than that of the MLC. Because the signatures of these classes were similar, it was
difficult to set up classification rules for them. However, the performance improved when fuzzification
and variable precision processes were introduced into the rough set classifier. The individual class
accuracies achieved with the FRS clarifier were significantly better than those obtained using the
RS classifier, and the VPRFS gave better accuracies than the FRS classifier. The proposed FRSER
classifier performed better than the VPRFS classifier for most individual class accuracies, except the
producer’s accuracies for bare farmland and green farmland, and user’s accuracy for bare farmland.
The producer’s accuracies for the built-up class were less than 85% for all classifiers. Because of the
highly heterogeneous composition of the built-up class, it was easily misclassified to other classes such
as bare ground, bare farmland, and waterbody.

4.2. Result Classification Using Fuzzy Rough Set and Evidential Reasoning (FRSER)

The proposed FRSER classifier was used to generate a land cover map from the OLI image using
a decision rule based on maximum plausibility (Figure 4a). Figure 4b shows that the classification
uncertainties ranged from 0.0 to 0.65. The pixels with uncertainties less than 0.1 were dominated by
the waterbody land cover, which indicates that waterbody classification confidence was higher than
those for the other classes using remote-sensing spectral characteristics in the study area. Over 90% of
the pixels of the waterbody land cover had uncertainties less than 0.1. The built-up class also had low
average uncertainties for most pixels: over 60% had uncertainties less than 0.1. A few built-up-type
pixels had high uncertainties. One possible reason for these high uncertainties in built-up pixels is
that built-up land cover showed high intra-class heterogeneity because of its complex composition.
The pixels of the rest of the land cover types had high uncertainties, because of the similarities between
the inter-class signatures of woodland and green farmland, and between those of bare farmland and
bare ground. The uncertainties of the pixels from the woodland and green farmland classes were lower
than those from the bare farmland and bare ground classes, because these two classes can be partly
discriminated based on textural information.

The average uncertainties are 0.16, 0.40, 0.30, 0.39, 0.28 and 0.04 for built-up, bare farmland,
green farmland, bare ground, woodland and waterbody types, respectively. There exists a close
correlation between the average uncertainties and the training set-based accuracy assessments (Table 2).
The high accuracy land cover types, waterbody and built-up, show low uncertainty degree in final land
cover map, while low accuracy land cover types, such as bare ground and bare farmland, show high
uncertainty degree. Since the uncertainties and training set-based accuracy assessments are separately
derived from the original signatures of the pixels and the training set, both these two assessments can
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be used to represent the accuracy of the classification. The difference of these two assessments is that
the uncertainty is for individual pixels in the image, while training set-based accuracy measure is only
on classes.Remote Sens. 2016, 8, 304 12 of 17 
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4.3. Comparison of Land Cover Estimations

The estimated land cover areas obtained using the five classifiers are shown in Table 3.
The proposed FRSER classifier avoided unclassified areas where the multispectral data were insufficient
to assign a pixel to a certain category; the non-classified areas estimated using the RS, FRS, and
VPRFS classifiers were 495; 1083; and 1470 ha, respectively. For the RS, FRS, VQRS, and proposed
FRSER classifiers, the estimated bare farmland cover increased by 0.1%, 3.8%, 5.7%, and 11.2%,
respectively, and the estimated green farmland cover increased by 11.7%, 13.2%, 13.3%, and 15.0%,
respectively. In contrast, the estimated bare ground cover decreased by 10.7%, 5.7%, 4.8%, and 3.2%,
respectively. There was no clear trend in the estimated built-up, waterbody, and woodland covers, and
they remained relatively constant for these classifiers. Considering the poorly distinguishable class
signatures of bare farmland and bare ground, and of green farmland and woodland, the estimated cover
changes for these classes indicated difficulties in classifying their pixels. The changes in the estimated
cover areas and corresponding classification accuracies in Table 3 show an increase in classification
accuracies in the individual classes of bare farmland, bare ground, and green farmland. The MLC
classifier also avoided unclassified cover using a decision rule of maximum a posteriori probability.
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Table 3. Estimated land cover areas obtained using MLC, RS, FRS, VPFRS, and FRSER.

Class 1 MLC RS FRS VPFRS FRSEF

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) %

1 9883 23.9 15,662 37.8 15,380 37.2 13,866 33.5 13,913 33.6
2 5157 12.5 59 0.1 1587 3.8 2372 5.7 4627 11.2
3 5606 13.5 4824 11.7 5449 13.2 5504 13.3 6207 15.0
4 3872 9.4 4429 10.7 2364 5.7 1989 4.8 1343 3.2
5 9567 23.1 5931 14.3 8375 20.2 8359 20.2 8359 20.2
6 7308 17.7 9993 24.1 7155 17.3 7833 18.9 6944 16.8
7 - - 495 1.2 1083 2.6 1470 3.6 - -

1 Class 7 denotes unclassified area and other class numbers refer to those in Table 1.

4.4. Comparison of Overall Performance Characteristics

Based on the case study urban fringe area, the overall performance characteristics of the classifiers
were compared (Table 4). The VPRFS and the proposed FRSER get the highest classification accuracy.
The high accuracy, however, is at the cost of the more complex algorithm. FRS and VPRFS are
extensions of the classical RS classifier, so they lead to the more accurate results. All rough set-based
classifiers get higher accuracy than that of MLC. In this study, only the proposed FRSER provides
the uncertainty measure of the classification, and only the VPRFS needs an extra error permission
parameter for optimizing the algorithm. Besides the FRSER and MLC, all other rough set-based
classifiers leave unclassified pixels.

Table 4. Overall performance characteristics comparison of MLC, RS, FRS, VPFRS, and FRSER.

Classifier Accuracy Uncertainty
Measure

Unclassified
Pixels Complexity Extra

Parameters

FRSER High Yes No High No
MLC Low No No Low No

RS Medium No Yes Low No
FRS Medium No Yes Medium No

VPFRS High No Yes High Yes

5. Discussion

The rule-induction-based classifiers RS, FRS, and VPRFS left unclassified samples in the urban
fringe study area because of the restraints of the classification rules. A set of samples might not meet
the requirements of the class rules, and were therefore left unclassified. The number of unclassified
samples remaining in the test set for the RS, FRS, and VPRFS classifiers were 1, 15, and 7, respectively.
A fuzzy rough set gave more unclassified samples than did a hard crisp rough set. The FRS and VPRFS
classifiers preserved more accurate information as conditional attributes, which led to more rigorous
rules; therefore, the number of samples that did not meet any of the rules increased. The classification
results for the original image illustrate this point well (Table 2). The unclassified areas for the RS, FRS,
and VPRFS classifiers represented 1.2%, 2.6%, and 3.6%, respectively. More accurate and rigorous rules
led to more unclassified pixels.

A rough set provides a method for handling uncertainty in decision systems by using upper
and lower approximations. However, a rough set is a rule induction system, and it leads to a large
amount of unclassified pixels in remote-sensing image classification. In an urban fringe area, the
inter-class similarities and intra-class heterogeneity of the class signatures make it difficult to set up
rules to classify all pixels efficiently. In our study, the three rough set-based rule induction classifiers,
RS, FRS, and VPRFS, all gave large unclassified areas, representing 1.2%, 2.6%, and 3.6% of the
study area, respectively. Although FRS and VQRS performed better than RS in terms of overall
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accuracy and kappa coefficient, they left more unclassified areas. The fuzzification and variable
precision processes preserve more detailed information than simple arbitrary discretization processes
do. However, the more complicated and detailed information makes the rule decision system more
complex. This improves the overall classification accuracy, but the rigorous classification rules lead to
an increase in the number of unclassified pixels.

Integrating a rough set with other classifiers can avoid the large amount of unclassified pixels,
and improve the classification accuracy. In these integrated classifiers, a rough set is usually used
to structure other machine-learning classifiers such as neural networks. Although this type of
integrated classifier might improve the overall accuracy, it is hard to tell to what degree the final
results can be trusted, because the uncertainty handled in the rough set is not maintained in the
final machine-learning classifiers. The uncertainty measure of the final classification of the pixels is
particular important for urban fringe land cover extraction, since the complex landscape mosaics do not
provide unambiguous spectral signatures to separate the pixels into classes. The greatest merit of the
proposed classifier is its ability to handle the uncertainty from construction of the information system
through to the final results. The equations in Section 2.3 show that a fuzzy rough set information system
can be well interpreted as an evidential reasoning system based on the DS theory. The interpreted
evidential reasoning system can also handle uncertainty using plausibility and belief functions. A soft
classification based on plausibility and belief can be made, and a hard classification can be derived by
applying a maximum rule to the soft one. The soft and hard classifications both come with uncertainty
degrees represented by the range between belief and plausibility. The results of the experiment also
show that the classification accuracy of the proposed classifier is greater than those of the rough set
classifiers in an urban fringe environment.

The proposed FRSER classifier enables the incorporation of different sources of information for
classification at different stages of the process. During construction of the decision table, except for the
spectral bands and their derivations such as Band Math and textures, auxiliary geographic datasets
including digital elevation models can be resampled to compatible raster bands and incorporated as
conditional attributes in the decision table. During the evidential reasoning stage, the DS theory allows
incorporation of non-geographic datasets, such as expert knowledge, into the classification process.
Formal and well-documented expert knowledge can be directly added to the system using Equation
(12). The proposed classifier therefore provides a flexible structure for incorporating different sources
of information at different stages, and can be easily extended to a hybrid classifier. Considering the
poor spectral signatures in urban fringe environment, the capability of combining different sources of
information for classification is really an advantage of the proposed approach for urban fringe land
cover classification.

The FRSER classifier is very sensitive to the training samples; therefore, these must be carefully
evaluated. The plausibility and belief functions in the DS reasoning system are derived from upper and
lower approximations of the rough set system, respectively. The upper and lower approximations are
decided for each individual sample in the decision table using Equation (1) (which use the Inf and Sup
operators). Therefore, a change in a single sample may result in drastic changes to the approximations.
In our study, because of the complex land cover composition in urban fringe area, the spatial clustering
characteristics of the class signatures had to be carefully studied, and samples on the margin were
eliminated. The training dataset was finally refined from 800 to 730 samples.

6. Conclusions

In this study, the intrinsic inter-class similarities and intra-class variabilities in the urban fringe
land cover classification were addressed using a classification framework based on the integration of a
fuzzy rough set and Dempster–Shafer (DS)-based evidence reasoning. Compared with the maximum
likelihood (MLC), rough set (RS), fuzzy rough set (FRS), and variable precision fuzzy rough set
(VPRFS) classifiers, the proposed fuzzy rough set and evidential reasoning (FRSER) classifier leads to
better discrimination of classes and thus an improvement in the overall classification accuracy in a
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complex urban fringe environment. Although there is no great improvement in the accuracy achieved
with the FRSER classifier compared with those obtained using newly developed complex methods
such as VPRFS, it has some merits. The uncertainty during data processing is well modeled by the
FRSER classifier, and the degree of uncertainty in the final results reflects the classification confidence.
The flexible structure of the proposed framework also makes it easy to extend and incorporate different
sources of information to set up a hybrid classifier. However, the proposed method also has its
drawbacks, e.g., it is very sensitive to the training samples. Besides the function for evaluating the
attributes, rough set theory also provides the function for evaluating individual samples in the decision
table. It provides the basis for selecting and refining the training samples to set up more appropriate
spectral signatures in a complex urban fringe environment. Future work on the proposed FRSER
classifier will focus on improving its robustness toward training samples.
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