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Abstract: In this manuscript, we combined DFT (Density Functional Theory) calculations
(BP86-D3/def2-TZVP level of theory) and a search in the CSD (Cambridge Structural Database) to
analyze the role of halogen–halogen interactions in the crystal structure of fullerene halides. We have
used a theoretical model of a halogenated C60 and evaluated the formation of halogen–halogen
complexes between F, Cl, Br and I derivatives. In addition, we also carried out AIM (Atoms in
Molecules) and NBO (Natural Bonding Orbital) analyses to further describe and characterize the
interactions described herein. Finally, we have carried out a search in the CSD and found several
X-ray structures where these interactions are present and important in governing the crystal packing
of the fullerene halides, thus giving reliability to the results derived from the calculations.
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1. Introduction

The conjunction of a great deal of non-covalent forces is considered key for advances and progress
in the field of Supramolecular chemistry [1,2]. Depth comprehension is crucial for chemists working in
this discipline, since many chemical and biological processes are governed by an intricate combination
of non-covalent interactions, forming the basis of highly specific recognition processes. For instance,
interactions between hosts and guests dictate the formation of assemblies with high affinities, even
in highly competitive media [3–6]. For this reason, a proper description and understanding of
non-covalent interactions between molecules is key for success in this field of research. One of the
classical and well-known supramolecular forces present in many chemical and biological environments
is hydrogen bonding [7]. Similarly, halogen bonding [8] is a non-covalent force that shares strength
and directionality features with hydrogen bonding. In particular, a halogen bond (R−X···Y−Z,
X = halogen, Y = electron-rich atom, Z = any atom) has been defined by the IUPAC as the “evidence
of a net attractive interaction between an electrophilic region associated with a halogen atom in a
molecular entity and a nucleophilic region in another, or the same, molecular entity” [9]. In this
context, the ability of halogen atoms to interact with Lewis bases has been known for some time [10].
For instance, Resnati and colleagues have reported the ability of iodo- and bromo-perfluorocarbons
to form non-covalent interactions with neutral and charged electron donors. In particular, they
demonstrated the ability of halo-perfluoroalkanes to participate as halogen-bond donor moieties in
crystal engineering, unveiling a promising potential of halogen bonding interactions in supramolecular
chemistry [11–19]. Consequently, a series of studies using the Cambridge Structural Database (CSD)
were carried out in order to shed light on the impact of this interaction in solid state chemistry [20,21].
Interest amongst the scientific community has expanded exponentially, due to the recognition of its
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importance in biological systems and the design of new materials, leading to a plethora of theoretical
and experimental studies devoted to this fruitful line of research [22–25]. Apart from the classical
halogen bond, there is growing interest amongst the scientific community to properly understand
weaker halogen–halogen interactions [26], which have shown a promising future as stabilizing agents
of metal complexes [27,28], by governing the formation of novel solid state architectures [29–31] and
even tuning the properties of biological and conjugated materials [32–35]. In this regard, the presence
of both an electron-rich “belt” and an electro-positive σ-hole (Cl, Br and I) are key to describe the two
types of X···X interactions, which are usually classified as either type I and II [36].

On the other hand, preparation of fullerene halides became available some time after the synthetic
path of fullerenes was fully stablished. Research interest in the halogenation of fullerenes comes
from a desire to expand the fundamentals of science, as well as from their key application as suitable
synthons for further derivatization. In this context, halogenation has grown in importance among
synthetic chemists during recent decades, due to the influence of the different addition patterns
caused by different sizes of halogens. Consequently, halogenated fullerenes have been extensively
studied as versatile and powerful synthons in fullerene chemistry. While iodination does not usually
occur, other reactions with lighter halogens yield halogenated fullerenes under relatively mild
conditions [37]. Concretely, one of the first to be investigated was the bromination of C60 in different
organic solvents, yielding three fullerene bromides [38,39]. Related to this, the chlorination of C60 using
iodine monochloride allowed the isolation of two fullerene chlorides, C60Cl6 [40] and C70Cl10 [41],
characterized by NMR spectra. Finally, the fluorination of fullerenes using metal fluorides (among
other fluorination agents) results in a wide range of adducts, from C60F2 to C60F48 [42–45]. Owing to
their relatively high thermal stability, fluorofullerenes (contrary to chloro- and bromofullerenes) have
been extensively investigated by electron impact (EI) mass spectrometry.

In this study, our goal was to analyze the energetic and stability properties of type I
halogen–halogen interactions established between fullerene halides. For this purpose, we have
used a reduced model of a halogenated C60 (F, Cl, Br and I) in order to achieve a compromise
between the level of theory and the size of the system. We have explored the formation of both
homodimeric (complexes 5 to 8 in Figure 1) and heterodimeric (complexes 9 to 14 in Figure 1) systems.
In addition, we have performed AIM (Atoms in Molecules) and NBO (Natural Bonding Orbital)
analyses to further characterize the interactions described herein. Finally, we have performed a search
in the CSD (Cambridge Structural Database) in order to find experimental evidence of the impact of
halogen–halogen interactions on the solid state architectures of halogenated C60s.
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2. Results and Discussion

2.1. Preliminary MEP Analysis

We have firstly computed the molecular electrostatic potential (MEP) mapped onto the van der
Waals surface for compounds 1 to 4 (Figure 2). As noted, a positive electrostatic potential region
is found on the extension of the C–X bond for Cl, Br and I derivatives (compounds 2, 3 and 4,
respectively), named σ-hole. The presence of this region makes one expect an attractive interaction
with an electron-rich entity. On the other hand, in the case of compound 1, the MEP value remained
negative over the fluorine atom, thus leading us to expect a repulsive interaction with electron-rich
species from an electrostatic point of view. The MEP values become more positive from F to I, as is
known for halogen bonding interactions, resulting in an expectation of stronger binding energy values
for complexes involving iodine than for the rest of halogens. Finally, it is also worth mentioning that
the MEP value at the negative belt is almost the same for compounds 1 to 4, a result that predicts a
similar electron donor ability between them.
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Figure 2. Molecular electrostatic potential (MEP) surfaces of compounds 1 to 4 used in the study.
Energies at selected points of the surface (0.002 a.u.) are given in kcal/mol.

2.2. Energetic and Geometric Results

Table 1 gathers the interaction energies and equilibrium distances of optimized complexes 5 to 14
(see Figures 1 and 3), computed at the BP86-D3/def2-TZVP level of theory. From the analysis of
these results, several points are worthy of discussion. First, in all complexes, the halogen moieties
are dispersed in an “alternated” conformation. Thus, each halogen atom established a bifurcated
halogen–halogen interaction with two neighboring atoms. This allows for the establishment of
three halogen–halogen interactions in each dimer (see Figure 3). Second, for complexes 6 to 14,
attractive and moderately strong interaction energy values were obtained, ranging between –12 and
–3.5 kcal/mol. In particular, complex 8 involving I achieved the largest binding energy value of the
study (–11.7 kcal/mol). On the other hand, for complex 5 involving F, a slightly repulsive interaction
energy value was obtained (+0.7 kcal/mol), due to the absence of a positive σ-hole over the fluorine
atoms, as shown in the MEP analysis. Since the MEP value over the fluorine atoms is large and
negative (around –20 kcal/mol), other energetic terms, such as induction and dispersion contributions,
compensate the unfavorable electrostatics of the interaction. Third, the binding energy values become
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more favorable as halogen combinations become heavier (see, for instance, complexes 5, 6, 7 and 8).
This is due to a favorable increase in both electrostatics (shown in the MEP analysis) and in the
polarization and dispersion terms, which become more prominent as the polarizability of the system
does. In addition, when comparing both homo- and heterodimeric complexes, a remarkable gain in
binding energy can be observed in the case of fluorine, with a strengthening of about 3 kcal/mol from
the F···F (5) to the F···I (11) interaction. Conversely, for Cl and Br, a reinforcement of around 3 kcal/mol
is observed from the homodimeric systems (complexes 6 and 7, respectively) to the heterodimers
12 and 14, where iodine is involved. Furthermore, in the case of I, the most favorable complex is
the homodimer I···I (complex 8, –11.7 kcal/mol), and any combination with another halogen atom
results in a loss of interaction energy (see, for instance, complexes 13 and 14, –6.3 and –8.6 kcal/mol,
respectively). Finally, in order to validate the results derived from the BP86-D3 method, we performed
some additional complexes using the theoretical model shown in the bottom of Figure 3 and compared
the DFT (Density Functional Theory) results with those obtained using the RI-MP2 method. As noted,
in both cases, the interaction energy values are very similar, giving reliability to the BP86-D3 functional
for dealing with these particular interactions.

Table 1. Interaction energies (∆E, kcal/mol) and equilibrium distances (R1 and R2, Å), and value of the
density at the bond critical point (CP) (102 x $, a.u.) for complexes 5–14 at the BP86-D3/def2-TZVP
level of theory.

Complex ∆E R1 R2 102 x $

5 (F···F) +0.7 2.988 3.155 0.48
6 (Cl···Cl) –3.5 3.661 3.787 0.49
7 (Br···Br) –6.9 3.856 3.907 0.55

8 (I···I) –11.7 4.068 4.175 0.67
9 (F···Cl) –1.0 3.311 3.512 0.49

10 (F···Br) –1.9 3.836 3.548 0.50
11 (F···I) –3.0 3.504 3.630 0.59

12 (Cl···Br) –5.0 3.747 3.851 0.53
13 (Cl···I) –6.3 3.880 3.985 0.56
14 (Br···I) –8.6 3.960 4.072 0.61

2.3. AIM and NBO Analyses

We have used the Bader’s theory of “atoms in molecules” [46] (AIM) to characterize the
non-covalent interactions present in complexes 5–14. A bond critical point (CP) and a bond path
connecting two atoms is unambiguous evidence of interaction. The AIM distribution of critical points
and bond paths computed for some complexes is shown in Figure 4. As noted, in all cases, two
symmetrically distributed bond CPs connect the halogen atoms of both moieties, thus characterizing
the bifurcated halogen–halogen interactions. In addition, six ring CPs emerged due to the formation of
several supramolecular rings between the halogen atoms. Finally, a cage CP connecting both halogen
moieties is also observed (shown as a green dot in Figure 4), further characterizing the interaction.
It is also worth mentioning that no other bond paths and bond CPs were found during the analysis,
meaning that halogen–halogen interactions are the only source of stabilization in these complexes.
Finally, the value of the Laplacian in all cases is positive, as it is common in closed shell calculations.

In order to study the importance of orbital contributions in explaining the halogen–halogen
complexes described above, we have performed Natural Bond Orbital (NBO) calculations focusing
our attention on the second-order perturbation analysis, due to its usefulness in the analysis of
donor–acceptor interactions [47]. The results are summarized in Table 2 and from the inspection of
the results some interesting issues arise. First, for complexes 6 to 14, a common behavior is observed:
that is, the main orbital contribution comes from the interaction between the lone pairs (LP) of
the halogen atom to the antibonding (BD*) C–X orbital. It is also important to mention that both
monomers in complexes 6–14 participate as orbital donor and acceptor entities, with the only exception
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being complex 10, where only one orbital contribution from the lone pair (LP) of the Br atom to the
antibonding (BD*) C–F orbital is observed. In addition, the magnitude of the orbital contributions
becomes larger from lighter (see complexes 6, 9 and 10) to heavier halogen (for instance, complexes
7, 12 and 13) systems, in agreement with the results derived from the energetic analysis discussed
above. Keeping in mind that the orbital contribution is usually overestimated by the NBO method, the
values gathered in Table 2 for the complexes involving the heavier halogens are not small compared
to the total interaction energies (See Table 1), thus indicating that orbital effects are not negligible in
these complexes.
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Figure 4. Distribution of critical points (red spheres) and bond paths for complexes 5, 10 and 13 at the
BP86/def2-TZVP level of theory. Bond, ring and cage CPs are represented by red, yellow and green
spheres, respectively. The values of the charge density ($) at the bond critical points that emerge upon
complexation are indicated in a.u.
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Table 2. Donor and acceptor natural bonding orbitals (NBOs) with an indication of the second-order
interaction energy E(2) (kcal/mol) and type of interaction for complexes 5–14.

Complex Donora Acceptor E(2)

5 –b –b –b

6 LP Cl BD* C–Cl 1.50
7 LP Br BD* C–Br 3.18
8 LP I BD* C–I 5.88

9 LP F
LP Cl

BD* C–Cl
BD* C–F

0.15
0.27

10 LP Br BD* C–F 0.54

11 LP F
LP I

BD* C–I
BD* C–F

0.39
0.77

12 LP Cl
LP Br

BD* C–Br
BD* C–Cl

2.40
1.05

13 LP Cl
LP I

BD* C–I
BD* C–Cl

1.35
1.56

14 LP Br
LP I

BD* C–I
BD* C–Br

1.95
2.34

a LP, BD* stand for lone pair and anti-bonding orbital, respectively, b Nothing above threshold.

2.4. CSD Search

We have explored the CSD to find evidence of the importance of halogen–halogen interactions
in the crystal structures of halogenated fullerenes. We have found 127 fullerene halide structures,
32 of which correspond to C60 derivatives. Some relevant examples are shown in Figure 5. First,
the crystal structure of IGOKEU (C60F36) [48], obtained by fluorination of C60 with MnF3/K2NiF6

at 480◦C, was characterized by both 19F NMR spectrum and single crystal X-ray analysis. In this
structure, the large number of sp3 carbon atoms causes a deformation of the otherwise spherical C60.
As noted, F···F interactions between fullerene units are key to stabilize its solid state architecture, thus
governing the formation of the crystal packing. Second, the crystal structure of JUHJIF [39], obtained
by reaction of C60 and liquid bromine at ambient temperatures, presents several Br···Br interactions
involving neighboring C60 units. In this example, the Br atoms from the interacting regions of the two
fullerene halides are dispersed in an “alternated” conformation, similar to the geometries retrieved
from calculations. Third, in ELOWUY [49], a fullerene chlorobromide (C60Cl12Br12) shows the presence
of several Cl···Br interactions, which control the stability of the crystal packing. This is a good example
that demonstrates the existence of “mixed” halogen–halogen interactions in fullerene derivatives.
It is also worth pointing out that each fullerene halide is surrounded by seven neighboring units in
IGOKEU and 12 in JUHJIF and ELOWUY structures, emphasizing the importance of these noncovalent
forces as a stability source in the solid state.

Finally, the interaction energy values for some fullerene halide dimers were calculated
(see Figure 5) and in all cases favorable and moderately strong values were obtained. The binding
energy values lie within the range of the interactions described herein (~10 kcal/mol) and the distances
observed in the crystal structures are in agreement with those derived from calculations, thus giving
reliability to the results retrieved from the theoretical models. In particular, the Br···Br interaction was
shown to be more favorable than the Cl···Br interaction (–11.8 and –10.6 kcal/mol, respectively), in
agreement with the energetic results discussed above (see complexes 7 and 12, respectively). On the
other hand, in the case of the F···F interaction, the energy value obtained was larger than the that
retrieved from calculations, owing to a large number of F···F interactions established and to the large
polarizability of the fullerene moiety.
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and (c) C60Br12Cl12. Distances in angstroms. The Cambridge structural database (CSD) codes are
also indicated.

3. Theoretical Methods

The geometries of the complexes studied herein have been fully optimized at the
BP86-D3/def2-TZVP level of theory. The calculations have been performed by using the program
TURBOMOLE version 7.0 [50]. We have used the BP86 functional with the latest available correction
for dispersion (D3) [51]. The C3 symmetry point group has been used in the optimization of the
complexes. We have also computed the interaction energies for a series of halogenated cyclohexane
molecules using both RI-MP2 and BP86-D3 methods as a validation tool. These interaction energies
were calculated with correction for the basis set superposition error (BSSE) by using the Boys–Bernardi
counterpoise [52]. For complexes 5 to 14, the BSSE correction was not applied. The MEP surfaces were
plotted using an isovalue of 0.002 a.u. (99.4% electron density). Bader’s “Atoms in molecules” (AIM)
theory has been used to study the interactions discussed herein by means of the AIMAll calculation
package [53]. The NBO analysis was performed at the HF/def2-TZVP level of theory, by means of
the Gaussian 09 calculation package [54]. Finally, single point calculations of IGOKEU, JUHJIF and
ELOWUY X-ray structures were computed at the BP86-D3/def2-SVP level of theory.

4. Conclusions

In this manuscript, we have analyzed the impact of halogen–halogen interactions in the solid
state of halogenated fullerenes. We have used a partial model of C60 and F, Cl, Br and I as halogen
substituents. For all moieties, we have explored the formation of homo- and heterodimeric systems.
The strength of the interaction ranges from slightly repulsive (+0.7 kcal/mol for F···F interaction) to
moderately strong (−11.7 kcal/mol for I···I interaction) and it becomes more favorable from lighter to
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heavier halogen combinations, due to an increase in both electrostatics and polarizability of the system.
Moreover, we have performed AIM (Atoms in Molecules) and NBO (Natural Bonding Orbital) analyses
to further describe and characterize the interactions presented herein. Finally, several experimental
examples were retrieved from the CSD (Cambridge Structural Database) in order to give reliability to
the results derived from calculations, and to highlight the importance of these interactions in the X-ray
solid state structure of fullerene halides.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/7/7/191/s1,
Cartesian coordinates of the complexes and results from the CSD search.
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