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Abstract: This paper systematically investigates the properties of six kinds of entropy-based risk
measures: Information Entropy and Cumulative Residual Entropy in the probability space, Fuzzy
Entropy, Credibility Entropy and Sine Entropy in the fuzzy space, and Hybrid Entropy in the
hybridized uncertainty of both fuzziness and randomness. We discover that none of the risk measures
satisfy all six of the following properties, which various scholars have associated with effective risk
measures: Monotonicity, Translation Invariance, Sub-additivity, Positive Homogeneity, Consistency
and Convexity. Measures based on Fuzzy Entropy, Credibility Entropy, and Sine Entropy all exhibit
the same properties: Sub-additivity, Positive Homogeneity, Consistency, and Convexity. These
measures based on Information Entropy and Hybrid Entropy, meanwhile, only exhibit Sub-additivity
and Consistency. Cumulative Residual Entropy satisfies just Sub-additivity, Positive Homogeneity,
and Convexity. After identifying these properties, we develop seven portfolio models based on
different risk measures and made empirical comparisons using samples from both the Shenzhen
Stock Exchange of China and the New York Stock Exchange of America. The comparisons show that
the Mean Fuzzy Entropy Model performs the best among the seven models with respect to both daily
returns and relative cumulative returns. Overall, these results could provide an important reference
for both constructing effective risk measures and rationally selecting the appropriate risk measure
under different portfolio selection conditions.

Keywords: generalized entropy; properties of risk measures; portfolio selection model

1. Introduction

Portfolio selection has always been an important part of the financial field, and at its core is
the development of effective risk measures. In 1952, Markowitz [1] first proposed using variance to
measure risk and developed the famous mean variance model (MVM) for solving portfolio selection
problems. There are many limitations inherent to this measure of risk, however, such as extreme
weights, parameter estimation instability and so on. To improve upon these limitations, many
subsequent researchers have rewritten the model or developed new risk measure methods including
the half of the variance measure [2], Information Entropy [3], absolute deviation [4], maximum expected
absolute deviation [5], value-at-risk [6], expected shortfall [7,8] and so on.

In the past few years, entropy, as a valid measure of uncertainty, has been extensively applied in
the financial field, especially in portfolio selection [9]. Philippatos and Gressis [10] first established a
mean entropy criteria for portfolios. Nawrocki and Harding [11] discussed how to use entropy
to measure investment performance and introduced the state-value weighted entropy method.
Smimou et al. [12] proposed a simple method to identify the mean entropic frontier. Huang [13]
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established two types of credibility-based fuzzy mean entropy models. Xu et al. [14] developed a
λ Mean-Hybrid Entropy model to study portfolio selection problems with both random and fuzzy
uncertainty. Usta and Kantar [15] presented a multiobjective approach based on a mean variance
skewness entropy portfolio selection model. Zhang et al. [16] contributed the possibilistic mean
semivariance entropy model, in which the degree of diversification in a portfolio was measured by
its possibilistic entropy. Zhou et al. [17] developed a new portfolio selection model, in which the
portfolio risk was measured using Information Entropy and the expected return was expressed using
incremental entropy. Implementing a proportional entropy constraint as the divergence measure of a
portfolio, Zhang et al. [18] studied a multiperiod portfolio selection problem in a fuzzy investment
environment. Yao [19] presented another type of entropy, named Sine Entropy, as a measure of the
variable uncertainty in portfolio selection. Yu [20] compared the mean variance efficiency, portfolio
values, and diversity of the models incorporating different entropy measures. Zhou et al. [21] defined
risk as Hybrid Entropy and proposed a mean variance Hybrid Entropy model with both random and
fuzzy uncertainty. Gao and Liu [22] put forward a risk-free protection index model with an entropy
constraint under an uncertainty framework. In the aforementioned studies, different concepts of
entropy were used to measure portfolio risk. However, the properties of these entropy-based measures
of risk in portfolio selection were not discussed as substantially. In fact, Ramsay [23] introduced
the idea that an effective risk measure function should satisfy the five properties of Risklessness,
Non-negativity, Sub-additivity, Consistency, and Objectivity. Artzner et al. [24] defined the concept
of coherent risk measures and asserted that a rational risk measure should satisfy the four axioms
of Translation Invariance, Sub-additivity, Positive Homogeneity and Monotonicity. Follmer and
Schied [25] introduced the notion of convex risk measures, taking into consideration the fact that the
risk of a position may increase in a nonlinear fashion with the size of the position. Bali et al. [26]
proposed a generalized measure of risk based on the risk-neutral return distribution of financial
securities. The theories associated with the risk measures examined in these studies [23–26] can
provide a useful methodology for studying entropy-based measures of risk. Therefore, this paper
systematically investigates the properties of Information Entropy, Cumulative Residual Entropy, Fuzzy
Entropy, Credibility Entropy, Sine Entropy and Hybrid Entropy, which, together, make up generalized
entropy. The first two methods are in the probability space, the next three methods are in the fuzzy
space, and Hybrid Entropy is in the uncertainty of both fuzziness and randomness.

The rest of this paper is organized as follows: Section 2 presents some basic properties of risk
measures. We comprehensively discuss properties of risk measures based on generalized entropy in
Section 3. In Section 4, we develop seven different portfolio selection models and make empirical
comparisons using samples from industries in the Shenzhen Stock Exchange of China and the New
York Stock Exchange. Finally, Section 5 details the conclusions of this paper.

2. Some Basic Properties of Risk Measures

Let X be a random variable describing outcomes of a risky asset, and let Ω be the set of all X. ρ is
a mapping from Ω onto R, i.e., ρ : Ω→ R . X ∈ Ω is considered risk-less if and only if X is a constant
with a probability of one, that is, there exists a constant a such that P[X = a] = 1. ρ(X) denotes the
risk value for the asset outcomes, X. The properties of ρ(X) in [23–25] can be defined as follows:

(1) Sub-additivity. For X1, X2 ∈ Ω, we have ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).
(2) Consistency. For X ∈ Ω, a ∈ R, we have ρ(X + a) = ρ(X).
(3) Monotonicity. For X, Y ∈ Ω, with X ≤ Y, we have ρ(X) ≥ ρ(Y).
(4) Translation Invariance. For X ∈ Ω , a ∈ R, we have

ρ(X + a · r) = ρ(X)− a

where the particular risk-free asset is modeled as having an initial price of 1 and a strictly positive
price, r(or total return), in any state at date, T.
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(5) Positive Homogeneity. For X ∈ Ω, λ ≥ 0, we have ρ(λX) = λρ(X).
(6) Convexity. For λ ∈ [0, 1], and X, Y ∈ Ω, we have

ρ(λX + (1− λ)Y) ≤ λρ(X) + (1− λ)ρ(Y).

Definition 1. A risk measure ρ(X) is called a monetary risk measure if ρ(0) is finite, and if ρ(X) satisfies the
axioms of Monotonicity and Translation Invariance [27].

Definition 2. A risk measure ρ(X) satisfying the four axioms of Translation Invariance, Sub-additivity, Positive
Homogeneity, and Monotonicity is called a coherent measure of risk [24].

Definition 3. A risk measure ρ(X) satisfying the axioms of Positive Homogeneity, Consistency and
Sub-additivity is called a deviation measure of risk [28].

Definition 4. A risk measure ρ(X) satisfying the axioms of Translation Invariance, Monotonicity and Convexity
is called a convex measure of risk [25].

3. Properties of Risk Measures of Generalized Entropy

We will sequentially explore the properties of the six kinds of entropy-based risk measures:
Information Entropy, Cumulative Residual Entropy, Fuzzy Entropy, Credibility Entropy, Sine Entropy
and Hybrid Entropy.

3.1. Information Entropy

Definition 5. Suppose that X is a continuous random variable with a probability density function f (x). Then,
its Information Entropy is defined as follows [29]:

H = −
∫ +∞

−∞
f (x) ln[ f (x)]dx (1)

The Information Entropy of a discrete random variable X can be defined by H = −∑n
i=1 Pi ln Pi,

where Pi = P(X = xi), 0 ≤ Pi ≤ 1(i = 1, 2, . . . , n), ∑n
i=1 Pi = 1.

The properties of Information Entropy-based measures of risk are introduced as follows:
Philippatos and Wilson [3] proved that Information Entropy satisfies Sub-additivity; namely,

H(X + Y) ≤ H(X) + H(Y), where the equality holds if and only if X and Y are independent
random variables.

Cao [30] proved that Information Entropy satisfies Consistency of a risk measure, namely,
H(X + a) = H(X).

Cao [30] also proved H(aX) = H(X) + ln|a|, which indicates that Information Entropy does not
satisfy Positive Homogeneity.

Obviously, Information Entropy does not satisfy Monotonicity of a risk measure. However,
if X and Y are discrete random variables, with X taking the values {x1, x2, . . . xn} with
corresponding probabilities {P1, P2, · · · Pn−1, Pn}, where ∑n

i=1 Pi = 1, and Y taking the values
{y1, y2, . . . yn−1, yn, . . . , yn+m−1} with corresponding probabilities {P1, P2, · · · Pn−1, k1, k2, · · · km},
where ∑m

j=1 k j = Pn, we have

H(Y) = H(P1, P2, · · · Pn−1, k1, k2, · · · km)

= H(P1, P2, · · · Pn−1, Pn) + PnH
(

k1
Pn

, k2
Pn

, · · · km
Pn

)
= H(X) + Pn H

(
k1
Pn

, k2
Pn

, · · · km
Pn

)
≥ H(X)
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Proposition 1. Information Entropy does not satisfy Convexity of a risk measure.

Proof. For λ ∈ [0, 1], X, Y ∈ Ω, according to the Sub-additivity of Information Entropy, we have
H(λX + (1− λ)Y) ≤ H(λX) + H((1− λ)Y). At the same time, we obtain:

H(λX) + H((1− λ)Y)− [λH(X) + (1− λ)H(Y)]
= H(X) + ln λ + H(Y) + ln(1− λ)− λH(X)− (1− λ)H(Y)
= (1− λ)H(X) + λH(Y) + ln(λ(1− λ)) ≤ max(H(X), H(Y))− ln 4

Obviously, if max(H(X), H(Y)) ≤ ln 4, we determine that Information Entropy satisfies
Convexity. Otherwise, it does not hold. Therefore, Information Entropy does not always satisfy
Convexity of a risk measure.

3.2. Cumulative Residual Entropy

Definition 6. The Cumulative Residual Entropy of a random variable X can be expressed as [31]:

Hr(X) = −
∫ +∞

0
P(|X| > λ) ln P(|X| > λ)dλ (2)

Cumulative Residual Entropy has consistent definitions in both the continuous and discrete
domains. It can be easily computed from sample data and these computations asymptotically converge
to the true value.

Rao et al. [31] proved that Cumulative Residual Entropy satisfies Sub-additivity of a risk measure,
namely, Hr(X + Y) ≤ Hr(X) + Hr(Y).

Proposition 2. Cumulative Residual Entropy satisfies Positive Homogeneity of a risk measure.

Proof. According to the definition of Cumulative Residual Entropy, we obtain

Hr(aX) = −
∫ +∞

0 P(|aX| > λ) ln P(|aX| > λ)dλ

= −
∫ +∞

0 P
(
|X| > λ

|a|

)
ln P

(
|X| > λ

|a|

)
dλ

= |a|
(
−
∫ +∞

0 P
(
|X| > λ

|a|

)
ln P

(
|X| > λ

|a|

)
d λ
|a|

)
= |a|Hr(X)

Thus, Cumulative Residual Entropy satisfies Positive Homogeneity of a risk measure.

Proposition 3. Cumulative Residual Entropy satisfies Convexity of a risk measure.

Proof. For λ ∈ [0, 1], X, Y ∈ Ω, according to the Sub-additivity of Cumulative Residual Entropy, we
obtain Hr(λX + (1− λ)Y) ≤ Hr(λX) + Hr((1− λ)Y).

At the same time, according to the Positive Homogeneity of Cumulative Residual Entropy, we get
Hr(λX) + Hr((1− λ)Y) = λHr(X) + (1− λ)Hr(Y).

Thus, Hr(λX + (1− λ)Y) ≤ λHr(X) + (1− λ)Hr(Y).

According to Definition 6, it is obvious that Cumulative Residual Entropy does not satisfy
Monotonicity of a risk measure. Cumulative Residual Entropy also does not satisfy Translation
Invariance or Consistency of a risk measure. As Cumulative Residual Entropy uses the cumulative
distribution of |X|, we do not have information on the relationship between the cumulative distribution
of |X| and the cumulative distribution of |X + a|. When X ≥ 0 and a ≥ 0, we have:



Entropy 2017, 19, 657 5 of 17

Hr(X + a) = −
∫ +∞

0 P(|X + a| > λ) ln P(|X + a| > λ)dλ

= −
∫ +∞

0 P(X > λ− a) ln P(X > λ− a)dλ

= −
∫ a

0 P(X > λ− a) ln P(X > λ− a)dλ−
∫ +∞

a P(X > λ− a) ln P(X > λ− a)dλ

= −
∫ a

0 1 ln 1dλ−
∫ +∞

a P(X > λ− a) ln P(X > λ− a)dλ

= −
∫ +∞

a P(X > λ− a) ln P(X > λ− a)d(λ− a)
= −

∫ +∞
0 P(X > λ) ln P(X > λ)dλ = Hr(X)

where in the fourth equality we used λ ≤ a, P(X > λ− a) = 1 and in the sixth one we changed the
variables in the inner integral.

3.3. Fuzzy Entropy

Let ξ be a fuzzy variable. Then its membership function is defined as:

µ(x) = M{x ∈ ξ}

where M is an uncertain measure. The value of µ(x) represents the membership degrees of individual
points, x, belonging to fuzzy variable, ξ.

Definition 7. Suppose ξ is a continuous fuzzy variable with membership function µ(x). Then its Fuzzy
Entropy can be expressed as [32]:

H f (ξ) =
∫ ∞

−∞
S(µ(x))dx (3)

where S(t) = −t ln t− (1− t) ln(1− t), 0 · ln 0 = 0.

Liu [33] defined µ−1
l (α) = infµ−1(α), µ−1

r (α) = supµ−1(α) as the left and right inverse
membership functions.

We can express the Fuzzy Entropy of the continuous fuzzy variable ξ in terms of these inverse
membership functions. If H f (ξ) exists [34], then we obtain

H f (ξ) =
∫ 1

0

(
µ−1

l (α)− µ−1
r (α)

)
ln

α

1− α
dα

Liu [32] proved that Fuzzy Entropy satisfies Consistency of a risk measure, namely, for a ∈ R,
H f (ξ + a) = H f (ξ).

Yao [35] proved that Fuzzy Entropy satisfies Positive Homogeneity of a risk measure. Additionally,
they proved that Fuzzy Entropy satisfies Sub-additivity of a risk measure for two independent fuzzy
variables ξ and η, namely, H f (ξ + η) = H f (ξ) + H f (η).

Proposition 4. If ξ and η are independent fuzzy variables, then Fuzzy Entropy satisfies Convexity of a
risk measure.

Proof. If ξ and η are independent fuzzy variables, according to the Sub-additivity of Fuzzy Entropy,
for λ ∈ [0, 1], then we obtain

H f (λξ + (1− λ)η) = H f (λξ) + H f ((1− λ)η)

At the same time, according to the Positive Homogeneity of Fuzzy Entropy, we have H f (λξ) +

H f ((1− λ)η) = λH f (ξ) + (1− λ)H f (η).
Thus, we derived H f (λξ + (1− λ)η) = λH f (ξ) + (1− λ)H f (η).

Fuzzy Entropy does not satisfy Monotonicity of a risk measure because we do not have more
information on the relationship between their membership functions when ξ ≤ η. So we cannot
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compare the value of H f (ξ) with that of H f (η). Denote the membership function of ξ as µ(x) and the
membership function of η as ν(x). If µ(x) ≤ ν(x) when ν(x) ≤ 0.5, and µ(x) ≥ ν(x) when ν(x) > 0.5,
then we have H f (ξ) ≤ H f (η).

3.4. Credibility Entropy

Let ξ be a fuzzy variable with a membership function, µ(x), which satisfies the normalization
condition, namely, sup

x
µ(x) = 1. Within a possibility theory setting, Li and Liu [36] defined

the possibility and necessity measures for a fuzzy event, {ξ ∈ A}, deduced from µ(x) as
Pos{ξ ∈ A} = sup

x∈A
µ(x) and Nec{ξ ∈ A} = 1− sup

x∈Ac
µ(x). Thus, we can obtain the credibility measure:

Cr{ξ ∈ A} = 1
2 (Pos{ξ ∈ A}+ Nec{ξ ∈ A}).

Definition 8. Suppose that ξ is a continuous fuzzy variable. Then its Credibility Entropy can be expressed
as [36]:

Hc(ξ) =
∫ ∞

−∞
S(Cr{ξ = x})dx (4)

For a continuous fuzzy variable ξ with membership function µ(x), we have Cr(ξ = x) = µ(x)/2
for x ∈ R [36]. Thus Equation (4) can be written as:

Hc(ξ) =
∫ ∞

−∞
S(Cr{ξ = x})dx =

∫ ∞

−∞
S(µ(x)/2)dx

Proposition 5. If there exists Hc(ξ), then Credibility Entropy of ξ, with normal membership function µ(x),
can be expressed as:

Hc(ξ) =
1
4

∫ 1

0

(
µ−1

l (α)− µ−1
r (α)

)
ln

α/2
1− α/2

dα

Proof. Since ξ has a normal membership function µ(x), there exists a point, x0, such that µ(x0) = 1.
So we have

Hc(ξ) =
∫ +∞
−∞ S(µ(x)/2)dx =

∫ x0
−∞ S(µ(x)/2)dx +

∫ +∞
x0

S(µ(x)/2)dx

=
∫ x0
−∞

∫ µ(x)
0

1
2 S′(α/2)dαdx +

∫ +∞
x0

∫ µ(x)
0

1
2 S′(α/2)dαdx

where S′(α/2) = (−(α/2) ln(α/2)− (1− α/2) ln(1− α/2))′ = − 1
2 ln α/2

1−α/2 .
It follows from Fubini’s theorem that:

Hc(ξ) = 1
2

∫ 1
0

∫ x0
µ−1

l (α)
S′(α/2)dxdα + 1

2

∫ 1
0

∫ µ−1
r (α)

x0
S′(α/2)dxdα

= 1
2

∫ 1
0

(
x0 − µ−1

l (α)
)

S′(α/2)dα + 1
2

∫ 1
0

(
µ−1

r (α)− x0
)
S′(α/2)dα

= 1
2

∫ 1
0

(
µ−1

r (α)− µ−1
l (α)

)
S′(α/2)dα

= 1
4

∫ 1
0

(
µ−1

l (α)− µ−1
r (α)

)
ln α/2

1−α/2 dα

Thus, Hc(ξ) =
1
4

∫ 1
0

(
µ−1

l (α)− µ−1
r (α)

)
ln α/2

1−α/2 dα.

Credibility Entropy does not satisfy Monotonicity of a risk measure. When ξ ≤ η, we do not have
information on the relationship between their membership functions and we cannot compare the value
of Hc(ξ) with that of Hc(η). Let ξ be a simple fuzzy variable that takes the values {x1, x2, . . . xn} with
corresponding possibilities {µ1, µ2 . . . , µn}, and let η be a simple fuzzy variable that takes the values
{x1, x2, . . . xn} with corresponding possibilities {ν1, ν2 . . . , νn}. If µi ≤ νi, and i = 1, 2, · · · , n, then we
have Hc(ξ) ≤ Hc(η) [35].
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Proposition 6. Credibility Entropy satisfies Consistency of a risk measure.

Proof. Suppose the membership function of ξ is µ(x) and the membership function of ξ + a is
λ(x). Then the left and right inverse membership functions of ξ + a are λ−1

l (α) = µ−1
l (α) + a,

λ−1
r (α) = µ−1

r + a. Then

Hc(ξ + a) = 1
4

∫ 1
0

((
µ−1

l (α) + a
)
−
(
µ−1

r (α) + a
))

ln α/2
1−α/2 dα

= 1
4

∫ 1
0

(
µ−1

l (α)− µ−1
r (α)

)
ln α/2

1−α/2 dα = Hc(ξ)

Thus, Credibility Entropy satisfies Consistency of a risk measure.

Proposition 7. Credibility Entropy satisfies Positive Homogeneity of a risk measure.

Proof. Suppose the membership function of aξ is λ(x) and the membership function of ξ is µ(x).

(1) If a > 0, then the left and right inverse membership functions of aξ are λ−1
l (α) = aµ−1

l (α),
λ−1

r (α) = aµ−1
r (α). Then

Hc(aξ) = 1
4

∫ 1
0

(
aµ−1

l (α)− aµ−1
r (α)

)
ln α/2

1−α/2 dα

= a · 1
4

∫ 1
0

(
µ−1

l (α)− µ−1
r (α)

)
ln α/2

1−α/2 dα = |a|Hc(ξ)

(2) If a = 0, we have Hc(aξ) = 0 = |a|Hc(ξ).
(3) If a < 0, then the left and right inverse membership functions of aξ are λ−1

l (α) = aµ−1
r (α),

λ−1
r (α) = aµ−1

l (α). Then

Hc(aξ) = 1
4

∫ 1
0

(
aµ−1

r (α)− aµ−1
l (α)

)
ln α/2

1−α/2 dα

= −a · 1
4

∫ 1
0

(
µ−1

l (α)− µ−1
r (α)

)
ln α/2

1−α/2 dα = |a|Hc(ξ)

Thus, Hc(aξ) = |a|Hc(ξ).

Proposition 8. When two fuzzy variables are independent, Credibility Entropy satisfies Sub-additivity of a
risk measure.

Proof. Suppose ξ and η are independent fuzzy variables. The membership function of η is ν(x).
The membership function of ξ is µ(x) and the membership function of ξ + η is λ(x). Then, we have
λ−1

l (α) = µ−1
l (α) + ν−1

l (α), λ−1
r (α) = µ−1

r (α) + ν−1
r (α).

Therefore,

Hc(ξ + η) = 1
4

∫ 1
0

(
µ−1

l (α) + ν−1
l (α)−

(
µ−1

r (α) + ν−1
r (α)

))
ln α/2

1−α/2 dα

= 1
4

∫ 1
0

(
µ−1

l (α)− µ−1
r (α)

)
ln α/2

1−α/2 dα + 1
4

∫ 1
0

(
ν−1

l (α)− ν−1
r (α)

)
ln α/2

1−α/2 dα

= Hc(ξ) + Hc(η)

Thus, Credibility Entropy satisfies Sub-additivity of a risk measure.

Proposition 9. When two fuzzy variables are independent, Credibility Entropy satisfies Convexity of a
risk measure.

Proof. If ξ and η are independent fuzzy variables, according to the Sub-additivity of Credibility
Entropy, for λ ∈ [0, 1], we then obtain:

Hc(λξ + (1− λ)η) = Hc(λξ) + Hc((1− λ)η)
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At the same time, according to the Positive Homogeneity of Credibility Entropy, we have Hc(λξ)+

Hc((1− λ)η) = λHc(ξ) + (1− λ)Hc(η). Thus, Hc(λξ + (1− λ)η) = λHc(ξ) + (1− λ)Hc(η).

3.5. Sine Entropy

Definition 9. Suppose ξ is a continuous fuzzy variable with membership function µ(x), then its Sine Entropy
is defined by [37]:

Hs(ξ) =
∫ +∞

−∞
sin(πµ(x))dx (5)

If Hs(ξ) exists, then Hs(ξ) = π
∫ 1

0

(
µ−1

r (α)− µ−1
l (α)

)
cos(πα)dα.

Yao [37] proved that Sine Entropy satisfies Consistency and Positive Homogeneity of a risk
measure, namely, for a ∈ R, Hs(ξ + a) = Hs(ξ), Hs(aξ) = |a|Hs(ξ). In addition, he also proved that
Sine Entropy satisfies Sub-additivity of a risk measure for two independent fuzzy variables ξ and η,
namely, Hs(ξ + η) = Hs(ξ) + Hs(η).

Proposition 10. If two fuzzy variables are independent, Sine Entropy satisfies Convexity of a risk measure.

Proof. If ξ and η are independent fuzzy variables, according to the Sub-additivity of Sine Entropy,
for λ ∈ [0, 1], we then obtain

Hs(λξ + (1− λ)η) = Hs(λξ) + Hs((1− λ)η)

At the same time, according to the Positive Homogeneity of Sine Entropy, we have Hs(λξ) +

Hs((1− λ)η) = λHs(ξ) + (1− λ)Hs(η). Thus, Hs(λξ + (1− λ)η) = λHs(ξ) + (1− λ)Hs(η).
Sine Entropy does not satisfy Monotonicity of a risk measure. When ξ ≤ η, we do not have

information on the relationship between their membership functions and cannot compare the value
Hs(ξ) with that of Hs(η). Suppose the membership function of ξ is µ(x) and the membership function
of η is ν(x). If, when ν(x) ≤ 0.5, µ(x) ≤ ν(x); and, when ν(x) > 0.5, µ(x) ≥ ν(x); we have
Hs(ξ) ≤ Hs(η).

3.6. Hybrid Entropy

Fuzzy Entropy describes the uncertainty of a fuzzy variable in a fuzzy space. This is defined as

H f (ξ) = H f (µ1, µ2, . . . , µn) =
n
∑

i=1
S(µ(xi)), where µi = µ(xi), i = 1, 2, . . . , n.

When there exists both random uncertainty and fuzzy uncertainty at the same time, according to

the probability distribution, statistical average fuzzy uncertainty is defined as m =
n
∑

i=1
PiS(µi).

Definition 10. Hybrid Entropy of a discrete variable is defined by the following Equation [38]:

Hh(ξ) = H + m = −
n

∑
i=1

Pi ln Pi +
n

∑
i=1

PiS(µi) = −
n

∑
i=1
{Piµi ln Piµi + Pi(1− µi) ln Pi(1− µi)} (6)

Hybrid Entropy is an effective tool to measure financial risk caused by both randomness and
fuzziness, simultaneously. Shang and Jiang [38] presented proofs that showed that when randomness of
variables disappears, Hybrid Entropy Hh(ξ) is reduced to Fuzzy Entropy H f (ξ), and when fuzziness
of variables disappears, Hybrid Entropy is reduced to Information Entropy H(ξ). According to
the aforementioned research outcomes and the relationships between Hybrid Entropy, Information
Entropy, and Fuzzy Entropy, Hybrid Entropy satisfies the common properties of both Information
Entropy and Fuzzy Entropy: Consistency and Sub-additivity.

Proposition 11. Hybrid Entropy satisfies Consistency of a risk measure.
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Proof. Suppose the membership function of ξ + a is λ(x) and the function with ξ is µ(x). Then

λ(x) = M{x ∈ (ξ + a)} = M{x− a ∈ ξ} = µ(x− a)

Hh(ξ + a) = H(ξ + a) + m(ξ + a) = H(ξ) +
n
∑

i=1
P(xi + a)S(µ(xi − a))

= H(ξ) +
n
∑

i=1
P(xi)S(µ(xi)) = H(ξ) + m(ξ) = Hh(ξ)

Thus, Hybrid Entropy satisfies Consistency of a risk measure.

Proposition 12. Hybrid Entropy satisfies Sub-additivity of a risk measure.

Proof. Suppose ξ and η are independent fuzzy variables. The membership function with respect to η

is ν(x). The membership function of ξ is µ(x) and the membership function of ξ + η is λ(x). Then,
we have

Hh(ξ + η) = H(ξ + η) + m(ξ + η) ≤ H(ξ) + H(η) + m(ξ + η)

According to the properties of Fuzzy Entropy: H f (ξ + η) = H f (ξ) + H f (η)

Further, H f (ξ + η) =
n
∑

i=1
S(λ(xi)) = H f (ξ) + H f (η) =

n
∑

i=1
S(µ(xi)) +

n
∑

i=1
S(ν(xi))

Thus,

m(ξ + η) =
n

∑
i=1

PiS(λ(xi)) =
n

∑
i=1

PiS(µ(xi)) +
n

∑
i=1

PiS(ν(xi)) = m(ξ) + m(η)

Hh(ξ + η) = H(ξ + η) + m(ξ + η) ≤ H(ξ) + H(η) + m(ξ + η)

= H(ξ) + H(η) + m(ξ) + m(η) = H(ξ) + m(ξ) + H(η) + m(η)

= Hh(ξ) + Hh(η)

.

Thus, Hybrid Entropy satisfies Sub-additivity of a risk measure.

3.7. Comparing the Properties of Risk Measures of Generalized Entropy

According to the results obtained above, we can present a comparison of the properties of risk
measures of generalized entropy in Table 1.

Table 1. The properties of risk measures of generalized entropy.

Information
Entropy

Cumulative
Residual Entropy

Fuzzy
Entropy

Credibility
Entropy

Sine
Entropy

Hybrid
Entropy

Monotonicity × × × × × ×
Translation
Invariance × × × × × ×

Sub-additivity
√ √ √

*
√

*
√

*
√

*
Positive

Homogeneity ×
√ √ √ √

×
Consistency

√
×

√ √ √ √

Convexity ×
√ √

*
√

*
√

* ×
Remark: * represents that the two fuzzy variables are independent.

Table 1 shows that none of the six kinds of risk measures are monetary risk measures, coherent
risk measures, or convex risk measures. When the fuzzy variables are independent, Fuzzy Entropy,
Credibility Entropy and Sine Entropy are deviation risk measures. Cumulative Residual Entropy is
the extension of Information Entropy, with slightly different properties. Our results show that Fuzzy
Entropy, Credibility Entropy and Sine Entropy are similar risk measures because they exhibit the
same properties: Sub-additivity, Positive Homogeneity, Consistency, and Convexity. Finally, Hybrid
Entropy satisfies the common properties of Information Entropy and Fuzzy Entropy. These results
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could provide an important reference for constructing an effective risk measure and rationally selecting
the appropriate risk measure under different portfolio selection conditions.

4. Empirical Comparisons of Seven Models

4.1. The Portfolio Selection Models Based on Generalized Entropy

In order to analyze the effect of generalized entropy on actual portfolio selection problems,
we developed seven portfolio models based on different risk measures under the standard
risk/return framework. 

min Fj[ξ1x1 + ξ2x2 + . . . + ξnxn]

subject to :
E[ξ1x1 + ξ2x2 + . . . + ξnxn] ≥ c
∑n

i=1 xi = 1
xi ≥ 0, i = 1, 2, . . . , n

(7)

where Fj[ξ1x1 + ξ2x2 + . . . + ξnxn] (j = 1, 2, · · · , 7) denotes seven kinds of risk measures, each
shown in Table 2; E[ξ1x1 + ξ2x2 + . . . + ξnxn] stands for the expected return; c represents the given
expected return.

Table 2. The seven models and corresponding risk measure.

Model Name Risk Measure

Mean and Variance Model (MVM) F1 = V[ξ1x1 + ξ2x2 + . . . + ξnxn]
Mean Information Entropy Model (MIEM) F2 = H[ξ1x1 + ξ2x2 + . . . + ξnxn]

Mean Residual Entropy Model (MREM) F3 = Hr[ξ1x1 + ξ2x2 + . . . + ξnxn]
Mean Fuzzy Entropy Model (MFEM) F4 = H f [ξ1x1 + ξ2x2 + . . . + ξnxn]

Mean Credibility Entropy Model (MCEM) F5 = Hc[ξ1x1 + ξ2x2 + . . . + ξnxn]
Mean Sine Entropy Model (MSEM) F6 = Hs[ξ1x1 + ξ2x2 + . . . + ξnxn]

Mean Hybrid Entropy Model (MHEM) F7 = Hh[ξ1x1 + ξ2x2 + . . . + ξnxn]

Note: here ξ is a variable, which represents a random variable in the first three models and a fuzzy variable in
other models.

4.2. Empirical Comparisons among the Portfolio Selection Models

4.2.1. Empirical Analysis from Chinese Sample Data

In order to avoid the drastic fluctuations in portfolio returns that may be associated with industrial
risk, we select 10 listed stocks from 10 different industries from the Shenzhen Stock Exchange of China.
The stocks are shown in Table 3. The daily data obtained from Beijing Juyuan Rui Data Technology
Co., Ltd. (RESSET) is composed of samples covering the period from 1 January 2016 to 1 January 2017,
from which the daily yields, highest possible yields and lowest possible yields can be calculated.
For each stock, we can obtain an approximate discrete probability distribution of observed data by
Markov method in probability space. Here, we assume the return of a stock has five outcomes and
we can get the corresponding five probability values for each stock. In fuzzy space, stock yields
are defined as triangular fuzzy random variables. Detail processes can be referenced in Part 2 from
Reference [21]. Using Equations (1)–(6), we calculated the value of generalized entropy of the sample
stocks. The results are shown in Table 4.
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Table 3. Ten Chinese sample stocks collected from ten industries.

Stock Code Industry Company Name

002116 Scientific research and technology service China Haisum Engineering Co Ltd
000966 Utilities Guodian Changyuan Electric Power Co Ltd
000005 Water resources, environment and public facilities management Shenzhen Fountain Corporation
000937 Mining Jizhong Energy Resources Co Ltd
000882 Leasing and business services Beijing Hualian Department Store Co Ltd
000776 Finance GF Securities Co Ltd
000010 Construction Beijing Shenhuaxin Co Ltd
000022 Transportation, warehousing and postal services Shenzhen Chiwan Wharf Holdings Co Ltd
000592 Agriculture, forestry, livestock farming, fishery Zhongfu Straits (Pingtan) Development Co Ltd
000837 Manufacturing Qinchuan Machinery Development Co Ltd of Shaanxi

Table 4. Expected values, Variance and generalized entropy for ten stocks.

Stock Code Expected Value Variance Information Entropy Cumulative Residual Entropy

002116 0.000358 0.000684 0.522250 0.014387
000966 0.000106 0.000411 0.522197 0.010422
000005 0.000583 0.000771 0.495046 0.018321
000937 0.002914 0.000879 0.541494 0.020575
000882 0.001688 0.000690 0.517706 0.014476
000776 0.001089 0.000443 0.486794 0.013178
000010 0.001764 0.000831 0.536057 0.018320
000022 0.001292 0.000717 0.555807 0.015292
000592 –0.001478 0.000942 0.529302 0.019134
000837 0.000007 0.000784 0.524759 0.020385

Stock Code Fuzzy Entropy Credibility Entropy Sine Entropy Hybrid Entropy

002116 0.917527 0.017518 0.022316 0.768799
000966 0.909969 0.012838 0.016354 0.798535
000005 0.925415 0.018119 0.023081 0.752247
000937 0.921937 0.023726 0.030225 0.825716
000882 0.923970 0.020318 0.025883 0.767248
000776 0.907789 0.014732 0.018767 0.752970
000010 0.923278 0.017534 0.022336 0.812668
000022 0.894561 0.020841 0.026549 0.829238
000592 0.922229 0.017690 0.022535 0.794126
000837 0.832758 0.016749 0.021337 0.802894

The covariance matrix for the ten stocks is calculated as follows:

Σ1 =



0.0007 0.0003 0.0005 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005
0.0003 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004
0.0005 0.0003 0.0008 0.0003 0.0005 0.0004 0.0005 0.0004 0.0005 0.0006
0.0003 0.0003 0.0003 0.0009 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
0.0004 0.0003 0.0005 0.0003 0.0007 0.0004 0.0005 0.0005 0.0005 0.0005
0.0004 0.0003 0.0004 0.0003 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004
0.0004 0.0003 0.0005 0.0003 0.0005 0.0004 0.0009 0.0004 0.0004 0.0006
0.0004 0.0003 0.0004 0.0003 0.0005 0.0004 0.0004 0.0007 0.0005 0.0005
0.0004 0.0003 0.0005 0.0003 0.0005 0.0004 0.0004 0.0005 0.0010 0.0005
0.0005 0.0004 0.0006 0.0003 0.0005 0.0004 0.0006 0.0005 0.0005 0.0008


According to the historical data in Table 4, when c is chosen as 0.0003, we can optimize the seven

different portfolio models in 4.1 and obtain their optimal investment proportions. The distinct results
are presented in Table 5.

From the data shown in Table 5, we find that, among MVM, MIEM, MREM, MCEM, MSEM, and
MHEM, the highest value in their optimal investment proportions exceeds 0.45. On the other hand,
the highest value of optimal investment proportions is less than 0.45 in MFEM. This result shows that
the degree of diversification in MFEM is more appropriate.

In order to appraise the investment performance of the seven different portfolio models, we can
further predict the daily returns (DR) and relative cumulative returns (RCR) of each model. The price
data of the corresponding stocks is taken from the period between 3 January 2017 and 1 April 2017.
First, we can get the return of each stock of the period in the market. Then we assume that we have the
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seven portfolios based on the proportion obtained in Table 5. Therefore, we can calculate the returns
and relative cumulative returns during the time. The results are shown in Figures 1 and 2.

Table 5. The proportion of sample stocks in different portfolio models.

Stock Code MVM MIEM MREM MFEM MCEM MSEM MHEM

002116 0.0662 0.0189 0.450 0.0149 0.0181 0.0106 0.0077
000966 0.4994 0.0341 0.4056 0.1194 0.2561 0.6104 0.0508
000005 0.0349 0.0911 0.0011 0.0605 0.0043 0.0110 0.3407
000937 0.1124 0.0005 0.0006 0.0009 0.0015 0.0016 0.0011
000882 0.0518 0.0621 0.0007 0.0167 0.0017 0.0008 0.0547
000776 0.1368 0.7124 0.1315 0.0767 0.5738 0.2742 0.4900
000010 0.0380 0.0089 0.0013 0.0258 0.0754 0.0241 0.0146
000022 0.0392 0.0016 0.0050 0.1899 0.0037 0.0013 0.0188
000592 0.0202 0.0125 0.0029 0.1069 0.0089 0.0516 0.0132
000837 0.0011 0.0579 0.0005 0.3883 0.0565 0.0144 0.0084

Figure 1. The daily returns of samples from seven different portfolio models.

Figure 2. The relative cumulative returns of samples from seven different portfolio models.

It is apparent from Figures 1 and 2 that MFEM has both greater volatility in its DR and better
general performance in its RCR than the alternative models. The DR and RCR of the other six models,
meanwhile, are similar to one another. Furthermore, we evaluate means of DR and RCR for seven
different models and display them in Table 6. MFEM clearly possesses the highest mean for RCR
among the seven models. This result corroborates the above observation that MFEM has a higher
degree of diversification. MCEM and MIEM have similar means, but perform slightly better than
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MVM, MREM, MSEM and MHEM. MHEM has the lowest means for DR and MSEM has the lowest
means for RCR.

Table 6. The means of daily returns and relative cumulative returns for seven different portfolio models.

MVM MIEM MREM MFEM MCEM MSEM MHEM

DR 0.00039 0.00055 0.00080 0.00338 0.00050 0.00020 0.00011
RCR 0.02074 0.03744 0.01912 0.10800 0.03087 0.01128 0.01937

4.2.2. Empirical Analysis from American Sample Data

As was the case with the Chinese Shenzhen Stock Exchange, we selected nine listed stocks from
nine different industries in the New York Stock Exchange of America. The stocks are shown in Table 7.
The original data obtained from Yahoo Finance is composed of weekly data samples covering the
period from 1 January 2011 to 1 January 2016, from which the weekly yields, highest possible yields
and lowest possible yields can be calculated. Using Equations (1)–(6), we calculated the value of
generalized entropy of the sample stocks. The results are shown in Table 8.

Table 7. Nine American sample stocks collected from nine industries.

Stock Code Industry Company Name

XOM Basic Materials Exxon Mobil Corporation
NEE Utilities NextEra Energy, Inc.
PG Consumer Goods The Procter & Gamble Company
JNJ Healthcare Johnson & Johnson
T Technology AT&T Inc.

BCH Financial Banco de Chile
WMT Services Wal-Mart Stores, Inc.

GE Industrial Goods General Electric Company
HRG Conglomerates HRG Group, Inc.

Table 8. Expected values, Variance and generalized entropy for ten stocks.

Stock Code Expected Value Variance Information Entropy Cumulative Residual Entropy

XOM 0.000684 0.000667 0.579663 0.009051
NEE 0.002050 0.000476 0.617725 0.007630
PG 0.001078 0.000382 0.597884 0.006739
JNJ 0.001719 0.000333 0.595278 0.006417
T 0.000886 0.000472 0.582108 0.007338

BCH –0.001058 0.000906 0.547013 0.009808
WMT 0.001595 0.000533 0.622009 0.008027

GE 0.001872 0.000858 0.546699 0.010659
HRG 0.001702 0.001756 0.625417 0.014955

Stock Code Fuzzy Entropy Credibility Entropy Sine Entropy Hybrid Entropy

XOM 0.954630 0.018010 0.022943 0.856335
NEE 0.935999 0.016779 0.021374 0.891082
PG 0.929912 0.014469 0.018432 0.876359
JNJ 0.946126 0.014319 0.018241 0.877410
T 0.963329 0.016518 0.021042 0.862157

BCH 0.939306 0.022284 0.028387 0.829200
WMT 0.960407 0.015609 0.019883 0.894488

GE 0.909638 0.020336 0.025906 0.838212
HRG 0.943969 0.036577 0.046594 0.890792
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The covariance matrix for the nine stocks is calculated as follows:

Σ2 =



0.0007 0.0002 0.0002 0.0003 0.0003 0.0003 0.0002 0.0005 0.0003
0.0002 0.0005 0.0002 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002
0.0002 0.0002 0.0004 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002
0.0003 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0003 0.0003
0.0003 0.0002 0.0002 0.0002 0.0005 0.0002 0.0002 0.0003 0.0003
0.0003 0.0001 0.0001 0.0002 0.0002 0.0009 0.0001 0.0003 0.0001
0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0005 0.0002 0.0003
0.0005 0.0003 0.0002 0.0003 0.0003 0.0003 0.0002 0.0009 0.0005
0.0003 0.0002 0.0002 0.0003 0.0003 0.0001 0.0003 0.0005 0.0023


According to the historical data in Table 7, when c is chosen as 0.0009, we can optimize the seven

different portfolio models described in Section 4.1 and obtain their optimal investment proportions.
The distinct results are presented in Table 9.

Table 9. The proportion of sample stocks in different portfolio models.

Stock Code MVM MIEM MREM MFEM MCEM MSEM MHEM

XOM 0.0081 0.0492 0.0007 0.0011 0.0019 0.0022 0.0679
NEE 0.1468 0.0010 0.0033 0.4415 0.0263 0.2012 0.0010
PG 0.2469 0.0902 0.7990 0.0816 0.2990 0.3991 0.0834
JNJ 0.2063 0.0839 0.1713 0.0451 0.1509 0.1537 0.0150
T 0.0938 0.1074 0.0185 0.1128 0.1000 0.0826 0.0737

BCH 0.1289 0.2412 0.0012 0.2363 0.0001 0.0002 0.2515
WMT 0.1652 0.0014 0.0037 0.0159 0.4201 0.1598 0.0278

GE 0.0009 0.4248 0.0012 0.0423 0.0011 0.0003 0.4671
HRG 0.0031 0.0009 0.0011 0.0234 0.0006 0.0009 0.0126

In Table 9, we can observe that, for MREM, the highest value in its optimal investment proportions
exceeds 0.45. On the other hand, the highest value of optimal investment proportions is less than 0.45
in other models. This result shows that the degrees of diversification of MVM, MIEM, MFEM, MCEM
and MSEM are more appropriate than that of MREM.

In order to appraise the investment performance of the seven different portfolio models, we
can further predict the daily returns (DR) and relative cumulative returns (RCR) of each model.
The weekly price data of the corresponding stocks was taken from the period between 1 January 2016
and 1 May 2017. The results are shown in Figures 3 and 4.

Figure 3. The daily returns of samples from seven different portfolio models.



Entropy 2017, 19, 657 15 of 17

Figure 4. The relative cumulative returns of samples from seven different portfolio models.

Figures 3 and 4 show that MFEM has better general performance in its RCR than the alternative
models. The DR of the seven models, meanwhile, are similar to one another. For further analysis,
we evaluate the means of DR and RCR for the seven different models and display them in Table 10.
MFEM clearly possesses the highest mean for both DR and RCR among the seven models. This
result corroborates the above observation that MFEM has a higher degree of diversification than some
alternatives. MVM and MSEM have similar means, but perform slightly better than MIEM, MREM,
MCEM and MHEM. MHEM has the lowest means for both DR and RCR.

Table 10. The means of daily returns and relative cumulative returns for seven different portfolio models.

MVM MIEM MREM MFEM MCEM MSEM MHEM

DR 0.00372 0.00268 0.00289 0.00422 0.00321 0.00334 0.00256
RCR 0.18683 0.16366 0.16107 0.20296 0.15893 0.17101 0.15561

Both of our empirical examples show that the highest value of optimal investment proportions
is less than 0.45 in MFEM. In other words, MFEM has a higher degree of diversification than
some worse-performing alternatives, and we think that the degree of diversification of MFEM is
more appropriate. From our investment performance results, we see that MFEM has better general
performance in terms of RCR than its alternatives in both empirical examples. In fact, the empirical
results show MFEM clearly possesses the highest mean for both DR and RCR among the seven models.

5. Conclusions

Considering the fact that Entropy is widely used in portfolio selection as a risk measure, this paper
systematically investigates the properties of risk measures of generalized entropy in financial field.
These risk measures include Information Entropy, Cumulative Residual Entropy, Fuzzy Entropy,
Credibility Entropy, Sine Entropy and Hybrid Entropy. Their properties include Monotonicity,
Translation Invariance, Sub-additivity, Positive Homogeneity, Consistency, and Convexity. We find that
no risk measure satisfies all six properties (and no risk measure satisfies monotonicity or translation
invariance). Fuzzy Entropy, Credibility Entropy, and Sine Entropy all exhibit the same properties:
Sub-additivity, Positive Homogeneity, Consistency, and Convexity. Information Entropy and Hybrid
Entropy both only exhibit the properties of Sub-additivity and Consistency. Finally, Cumulative
Residual Entropy satisfies just Sub-additivity, Positive Homogeneity, and Convexity.

In order to observe the actual performance of generalized entropy in portfolio selection problems,
we construct seven portfolio models based on different risk measures. The empirical results from the
samples of China and America show that MFEM performs the best among the seven models with
respect to both DR and RCR, with the highest means in both categories.
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Future research work can present two interesting avenues. On one hand, we can make some
comparisons between the seven different portfolio models under the constraints of transaction costs,
liquidity, and so on, instead of only expected return and risk. On the other hand, we can examine the
implications of MFEM’s comparatively high performance for portfolio selection problems.

Acknowledgments: This work is partially supported by the National Natural Science Foundation of China under
Grant No. 71631005, and the humanities and Social Science Foundation of the Ministry of Education under Grant
No. 16YJA630078 and No. 14YJA790075, and the Major program for social and science of Beijing Grant No.
15ZDA46, and the central university basic scientific research operating expenses special funds of University of
International Business and Economics Grant No. 15JQ04.

Author Contributions: Rongxi Zhou conceived, designed and revised the paper. Xiao Liu performed the
experiments and wrote the paper. Mei Yu and Kyle Huang completed the discussion and polished the paper. All
authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Markowitz, H.M. Portfolio selection. J. Financ. 1952, 7, 77–91.
2. Markowitz, H.M. Portfolio Selection: Efficient Diversification of Investment; John Wiley: New York, NY,

USA, 1959.
3. Philippatos, G.C.; Wilson, C.J. Entropy, market risk, and the selection of efficient portfolios. Appl. Econ. 1972,

4, 209–220. [CrossRef]
4. Konno, H.; Yamazaki, H. Mean-absolute deviation portfolio optimization model and its application to Tokyo

stock market. Manag. Sci. 1991, 37, 519–531. [CrossRef]
5. Cai, X.Q.; Teo, K.L.; Yang, X.Q.; Zhou, X.Y. Portfolio optimization under a minimax rule. Manag. Sci. 2000,

46, 957–972. [CrossRef]
6. Jorion, P. Measure the risk in value at risk. Financ. Anal. J. 1996, 52, 47–55. [CrossRef]
7. Rockafellar, R.T.; Uryasev, S. Optimization of Conditional value at risk. J. Risk. 2000, 2, 21–41. [CrossRef]
8. Acerbi, C.; Tasche, D. On the coherence of expected shortfall. J. Bank. Financ. 2002, 26, 1487–1503. [CrossRef]
9. Zhou, R.X.; Cai, R.; Tong, G.Q. Applications of Entropy in Finance: A Review. Entropy 2013, 15, 4909–4931.

[CrossRef]
10. Philippatos, G.C.; Gressis, N. Conditions of equivalence among E-V, SSD, and E-H portfolio selection criteria:

The case for uniform, normal and lognormal distributions. Manag. Sci. 1975, 21, 617–625. [CrossRef]
11. Nawrocki, D.N.; Harding, W.H. State-value weighted entropy as a measure of investment risk. Appl. Econ.

1986, 18, 411–419. [CrossRef]
12. Smimou, K.; Bector, C.R.; Jacoby, G. A subjective assessment of approximate probabilities with a portfolio

application. Res. Int. Bus. Financ. 2007, 21, 134–160. [CrossRef]
13. Huang, X.X. Mean-Entropy Models for Fuzzy Portfolio Selection. IEEE Trans. Fuzzy Syst. 2008, 16, 1096–1101.

[CrossRef]
14. Xu, J.P.; Zhou, X.; Wu, D.D. Portfolio selection using λ mean and hybrid entropy. Ann. Oper Res. 2011, 185,

213–229. [CrossRef]
15. Usta, I.; Kantar, Y.M. Mean-Variance-Skewness-Entropy Measures: A Multi-Objective Approach for Portfolio

Selection. Entropy 2011, 13, 117–133. [CrossRef]
16. Zhang, W.G.; Liu, Y.J.; Xu, W.J. A possibilistic mean-semivariance- entropy model for multi-period portfolio

selection with transaction costs. Eur. J. Oper. Res. 2012, 222, 341–349. [CrossRef]
17. Zhou, R.X.; Wang, X.G.; Dong, X.F.; Zong, Z. Portfolio Selection Model with the Measures of Information

Entropy-Incremental Entropy-Skewness. Adv. Inf. Sci. Serv. Sci. 2013, 5, 853–864.
18. Zhang, W.G.; Liu, Y.J.; Xu, W.J. A new fuzzy programming approach for multi-period portfolio optimization

with return demand and risk control. Fuzzy Set. Syst. 2014, 246, 107–126. [CrossRef]
19. Yao, K. Sine entropy of uncertain set and its applications. Appl. Soft Comput. 2014, 22, 432–442. [CrossRef]
20. Yu, J.R.; Lee, W.Y.; Chiou, W.J.P. Diversified portfolios with different entropy measures. Appl. Math. Comput.

2014, 241, 47–63. [CrossRef]
21. Zhou, R.X.; Zhan, Y.; Cai, R.; Tong, G.Q. A Mean-Variance Hybrid-Entropy Model for Portfolio Selection

with Fuzzy Returns. Entropy 2015, 17, 3319–3331. [CrossRef]

http://dx.doi.org/10.1080/00036847200000017
http://dx.doi.org/10.1287/mnsc.37.5.519
http://dx.doi.org/10.1287/mnsc.46.7.957.12039
http://dx.doi.org/10.2469/faj.v52.n6.2039
http://dx.doi.org/10.21314/JOR.2000.038
http://dx.doi.org/10.1016/S0378-4266(02)00283-2
http://dx.doi.org/10.3390/e15114909
http://dx.doi.org/10.1287/mnsc.21.6.617
http://dx.doi.org/10.1080/00036848600000038
http://dx.doi.org/10.1016/j.ribaf.2005.12.002
http://dx.doi.org/10.1109/TFUZZ.2008.924200
http://dx.doi.org/10.1007/s10479-009-0550-3
http://dx.doi.org/10.3390/e13010117
http://dx.doi.org/10.1016/j.ejor.2012.04.023
http://dx.doi.org/10.1016/j.fss.2013.09.002
http://dx.doi.org/10.1016/j.asoc.2014.04.023
http://dx.doi.org/10.1016/j.amc.2014.04.006
http://dx.doi.org/10.3390/e17053319


Entropy 2017, 19, 657 17 of 17

22. Gao, J.W.; Liu, H.C. A Risk-Free Protection Index Model for Portfolio Selection with Entropy Constraint
under an Uncertainty Framework. Entropy 2017, 19, 1–12. [CrossRef]

23. Ramsay, C.M. Loading gross premiums for risk without using utility theory. Trans. Soc. Actuar. 1993, 45,
305–349.

24. Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent Measures of Risk. Math. Financ. 1999, 9, 203–228.
[CrossRef]

25. Follmer, H.; Schied, A. Convex measures of risk and trading constraints. Financ. Stoch. 2002, 6, 429–447.
[CrossRef]

26. Bali, T.G.; Cakici, N.; Fousseni, C.Y. A Generalized Measure of Riskiness. Manag. Sci. 2011, 57, 1406–1423.
[CrossRef]

27. Zheng, C.L.; Chen, Y. Coherent risk measure based on relative entropy. Appl. Math. Inform. Sci. 2012, 6,
233–238.

28. Gaivoronski, A.; Pflug, G. Value at Risk in Portfolio Optimization; Properties and Computational Approach;
Technical Report; University of Vienna: Wien, Austria, 2001.

29. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
30. Cao, X.H. Information Theory and Coding; Tsinghua University Press: Beijing, China, 2009.
31. Rao, M.; Chen, Y.; Vemuri, B.; Fei, W. Cumulative residual entropy: A new measure of information.

IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [CrossRef]
32. Liu, B.D. Uncertain logic for modeling human language. J. Uncertain Syst. 2011, 5, 3–20.
33. Liu, B.D. A Survey of Entropy of Fuzzy Variables. J. Uncertain Syst. 2007, 1, 4–13.
34. Liu, B.D. Membership functions and operational law of uncertain sets. Fuzzy Optim. Decis. Mak. 2012, 11,

387–410. [CrossRef]
35. Yao, K.; Ke, H. Entropy operator for membership function of uncertain set. Appl. Math. Comput. 2014, 242,

898–906. [CrossRef]
36. Li, P.K.; Liu, B.D. Entropy of credibility distributions for fuzzy variables. IEEE Trans. Fuzzy Syst. 2008, 16,

123–129.
37. Yao, K. Sine entropy of uncertain variables. Int. J. Uncertain. 2013, 21, 743–753. [CrossRef]
38. Shang, X.G.; Jiang, W.S. Rationality Analysis and Promotion of De Luca-Termini Hybrid Entropy. J. East

China Univ. Sci. Technol. 1996, 23, 590–595.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/e19020080
http://dx.doi.org/10.1111/1467-9965.00068
http://dx.doi.org/10.1007/s007800200072
http://dx.doi.org/10.1287/mnsc.1110.1373
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/TIT.2004.828057
http://dx.doi.org/10.1007/s10700-012-9128-7
http://dx.doi.org/10.1016/j.amc.2014.06.081
http://dx.doi.org/10.1142/S0218488513500359
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Some Basic Properties of Risk Measures 
	Properties of Risk Measures of Generalized Entropy 
	Information Entropy 
	Cumulative Residual Entropy 
	Fuzzy Entropy 
	Credibility Entropy 
	Sine Entropy 
	Hybrid Entropy 
	Comparing the Properties of Risk Measures of Generalized Entropy 

	Empirical Comparisons of Seven Models 
	The Portfolio Selection Models Based on Generalized Entropy 
	Empirical Comparisons among the Portfolio Selection Models 
	Empirical Analysis from Chinese Sample Data 
	Empirical Analysis from American Sample Data 


	Conclusions 

