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Abstract: Fire occurrence, which is examined in terms of fire density (number of fire/km2) in this
paper, has a close correlation with multiple spatiotemporal factors that include environmental,
physical, and other socioeconomic predictors. Spatial autocorrelation exists widely and should be
considered seriously for modeling the occurrence of fire in urban areas. Therefore, spatial econometric
models (SE) were employed for modeling fire occurrence accordingly. Moreover, Random Forest (RF),
which can manage the nonlinear correlation between predictors and shows steady predictive ability,
was adopted. The performance of RF and SE models is discussed. Based on historical fire records of
Hefei City as a case study in China, the results indicate that SE models have better predictive ability
and among which the spatial autocorrelation model (SAC) is the best. Road density influences fire
occurrence the most for SAC, while network distance to fire stations is the most important predictor
for RF; they are selected in both models. Semivariograms are employed to explore their abilities to
explain the spatial structure of fire occurrence, and the result shows that SAC works much better
than RF. We give a further explanation for the generation of residuals between fire density and the
common predictors in both models. Therefore, decision makers can make use of our conclusions to
manage fire safety at the city scale.

Keywords: fire risk; Random Forest; spatial econometric models; autocorrelation; residuals

1. Introduction

Fire is a widespread phenomenon in modern life. In China in 2015, 1742 people were killed in
fires, with an economic loss of nearly $0.6 billion [1]. The severe threats for human beings caused by
fire make people aware of the necessity of predicting fire risk, and we should adopt efficient measures
to prevent the occurrence of fire. However, how fire occurs and spreads is highly complex and it is still
difficult to explain the reasons and predict future incidents. Fire is similar to other natural and human
disasters that are imbued with uncertainty and occur in dynamic systems with biologically diverse and
complicated structures [2]. Using temporal and spatial datasets, along with historical datasets of fire
ignition, it is possible to build valid and meaningful models for explaining fire occurrence; therefore,
we can adopt these results to benefit the management of fire safety, from which we could assess the
conditions of fire occurrence from a quantitative viewpoint.

According to previous studies, many of which were done in forest regions, human-related
predictors are critical for explaining fire occurrence on the large scales, such as in Europe and
China [2–6]. However, few studies were done at the city scale to explain and predict of the occurrence
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of infrastructure fire, which may lead to a lack of efficient management for the potential fire risks
hidden in a city. It has become exceptionally arduous for governments and policy makers due to the
complexity of risk prediction based on the integrated correlations among multiple socioeconomic
predictors. Therefore, a detailed exploration of the predictors, such as the relative importance and
correlations with fire ignition, should be included in the modeling process. Moreover, many studies
used integrated approaches such as geographic information systems (GIS), remote sensing (RS), and
geostatistical methods for mapping fire occurrence [7–10]. Furthermore, machine learning (ML) and
other regression techniques such as ordinary least squares (OLS), geographically and temporally
weighted regression (GTWR), and geographically weighted regression (GWR) [6,9,11,12] have been
employed widely in environmental and ecological fields because of their advantages. In our previous
research, we successfully used GTWR to model the spatiotemporal distribution of fire occurrence at
the city scale [12]; we try to make further explanations and predictions for the spatial distribution of
fire occurrence by making a comparison between ML- and OLS-based models in this paper. ML has a
relatively robust predictive performance, accounting for outliers, nonlinear trends, and interactions
between the predictors, while GWR can properly explain the spatial heterogeneity [7,9,13,14].

On the other hand, as spatial dependence is a common characteristic widely existing in predictors
or response variables, this may cause biased or inefficient estimation for the coefficients of predictors
in the model. Moreover, the residual term of the adopted models in this paper may still be spatially
auto-correlative, which betrays the statistical assumption that the model could explain the spatial
structure efficiently. In light of this reason, spatial econometric models (SE) including the spatial Durbin
model (SDM), spatial autocorrelation model (SAC), spatial lagging model (SLM), and spatial error
model (SEM) have the potential to offer new insights into the modeling of fire occurrence, considering
spatial autocorrelation in the response variable, explanatory variables or random error terms [15].
However, few studies about fire occurrence at the city scale have been conducted using SE [16].

On the other hand, although most previous studies have offered several cases of fire occurrence
modeling at the national scale using ML such as random forest (RF), whether ML can make robust
and reliable predictions on fire occurrence at the city scale and whether there exist similar regularities
about selected predictors at different space scales need to be examined further [2,10,17]. Therefore, we
used RF as a comparison and discussion with SE models considering their advantages and excellent
predictive ability.

For both models, during the variable selection process, vegetation, topography, climate, and fire
occurrence records are major components for assessing fire risk. In addition, normalized differential
vegetation index (NDVI), elevation, slope, aspect, and land use are popular factors used to assess
fire risk hazard [2]. The parameters and variables used to train a model have a strong influence
on how successful the model may be according to its statistical performance. In this framework,
better knowledge of the spatial patterns of fire occurrence and their relationships with underlying
factors would enable researchers to predict fire occurrence more accurately and develop more effective
prevention efforts [18].

This paper has three main objectives. Firstly, as the literature about the influence of humans and
their activities on fire occurrence at the city scale is scarce and mainly site-specific, this paper explores
different fire occurrence models by including several socioeconomic variables strongly associated with
people’s activities (e.g., places of interests [POI] and the distance to fire stations) in addition to other
physical variables that have been widely used in past research.

Secondly, in order to identify the predictors that contributed most to fire occurrence, we calibrated
several intermediate models by incorporating the ideas of cross-validation and thus could select
important predictors according to statistical criteria for building the final models. The final model
was fitted by using the selected predictors and the correlations between residuals and predictors were
studied further in order to explore the potential rules among complex analysis.

Thirdly, this study made an analysis of the explanatory ability for spatial structures by comparing
SE and RF models using semivariograms. Moreover, the predictive abilities of each model, and
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the correlations between residuals and common predictors in both models, are presented and
discussed in detail. The graphs of the likelihood of fire occurrence predicted by each model are
also a direct demonstration.

2. Materials and Methods

2.1. Study Area

The study area for this paper is in Hefei City, which is located in the middle of Anhui Province,
China. The city had a total area of around 7029 km2 in 2005. The land use map in Hefei in 2005 is
shown in Figure 1. The dataset is provided by the Database of Global Change Parameters, Chinese
Academy of Sciences (http://globalchange.nsdc.cn).
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Figure 1. Location of study area and land use distribution.

Although the spatial scale of Hefei City is rather small relative to previous studies, there remains
considerable diversity in its socioeconomic, climate, topographic, and other attributes. Previous studies
paved the way for using complex socioeconomic factors for modeling fire occurrence and fire risk
research [19–21]. These factors include population density, population structure, road density, slope,
and other topographic or socioeconomic factors. They play important roles in the modeling process
for explaining fire occurrence [12,14].

2.2. Dependent Variable

Data on the number of fires and related fire records for the period of 2002 and 2005 were obtained
from the Fire Bureau in Anhui Province, China. The dataset is contained with the time of fire occurrence,
location, fire damage, and related fighting time. A total of 4611 historical ignition records were found
and all of them are infrastructure fires. This can be further proven, as shown in Figure 1, when most
of the land use in suburban areas is cropland but not forest. The spatial distribution of fire ignition
points is shown in Figure 2a. Using these data, the dependent variable was derived from the spatial
estimation of kernel density, which was called yearly average fire density and indicates the ignition
frequency in one grid cell (number of fires per year per km2).

http://globalchange.nsdc.cn
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(b) Sample points from 2002 to 2005.

In order to obtain the fire density, we adopted the kernel density method, which turns discrete
points in a study area into a continuous density surface in order to prevent uncertainty and mistakes
in ignition records [10]. A grid spatial resolution of 1 km2, which considers the spatial scale and a
fixed bandwidth of 5 km, are used as a rule of thumb after comparing several different bandwidth
values (from 1 km to 10 km) [22]. The choice of bandwidth was further evidenced by the default
calculation result of kernel density by ArcGis 10.2 (ESRI, Redlands, CA, USA), which was nearly
4.7 km. Water bodies and other similar land cover types where fire cannot occur were excluded from
the analysis afterwards. The resulting base grids have 6985 cells in total, covering the entire study
area without water bodies; next, the centers of the pixels were used as the sample points (Figure 2b).
During the initial analysis, fire was found to occur at only 752 locations at least one time after the
initial statistical analysis.

2.3. Explanatory Variables: Selection and Pre-Processing

In total, 25 explanatory variables were extracted from several databases, including a variety
of socioeconomic attributes according to the results in previous studies [21,23–27]. These variables
not only consider the influence of socioeconomic conditions on fire occurrence but also consider the
influence of climate and topographic conditions. These explanatory variables are shown in Table 1.
In the analyses reported in this paper, values of these explanatory variables were standardized by
subtracting the mean value and divided by the standard deviations of each variable.

All the explanatory variables were resampled and mapped reasonably at a 1-km2 space resolution
in view of the original resolution of each variable and the spatial extent of Hefei City [22]. The main
explanatory variables related to fire occurrence are shown in Figure 3. Before further analysis, Box–Cox
transformation was carried out for variables in order to satisfy the statistical assumption of linear
regression. What is more, multicollinearity between explanatory variables was assessed. The variables
that represent different types of land use were converted into dummy variables and LANDOTHER
was treated as the control predictor. Correlation coefficients that were too high (more than 0.75) were
used as the criterion to remove explanatory variables [10,12]. In addition, data standardization was
done during the pre-processing for training RF models with the “center” and “scale” methods in
RStudio (R Development Core Team, Boston, MA, USA) [28].
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Table 1. Candidate explanatory variables.

Variable Name Code Data Source Resolution

Elevation DEM

Geospatial Data Cloud, Computer
Network Information Center,
Chinese Academy of Sciences

(http://www.gscloud.cn)

30 m

Slope SLOPE The same as DEM 30 m
Aspect index ASPECT The same as DEM 30 m

Position POSITION The same as DEM 30 m
Terrain ruggedness index TRI The same as DEM 30 m

Shaded relief SHADE The same as DEM 30 m
Normalized Difference

Vegetation Index NDVI The same as DEM 500 m

Yearly average maximum
surface temperature TEMMAX The same as DEM 1 km

Yearly average minimum
surface temperature TEMMIN The same as DEM 1 km

Yearly average mean
surface temperature TEMAVE The same as DEM 1 km

Population POPULATION
GPWv4, NASA Socioeconomic
Data and Applications Center

(SEDAC) [29]
1 km

Line density of roads LINE

Product Specification of EarthData
Pacifica (Beijing) Co., Ltd. (http:
//www.geoknowledge.com.cn),

line density calculated by
ArcMap 10.2

1 km

Kernel density of residential points RESIDENT The same as LINE 1 km
Kernel density of entertainment points ENTERTAINMENT The same as LINE 1 km

Kernel density of hotel points HOTEL The same as LINE 1 km
Kernel density of education points EDU The same as LINE 1 km
Kernel density of enterprise points ENTERPRISE The same as LINE 1 km

Value of 11 for land cover-
Post-flooding or irrigated croplands LAND11

Database of Global Change
Parameters, Chinese Academy

of Sciences
300 m

Value of 14 for land cover-
Rainfed croplands LAND14 The same as LAND11 300 m

Value of 20 and 30 for land
cover-Mosaic cropland/vegetation LAND2030 The same as LAND11 300 m

Value of 190 for land cover- Artificial
surfaces and associated areas LAND190 The same as LAND11 300 m

The other values of land cover LANDOTHER The same as LAND11 300 m

Distance to water bodies DW ArcMap 10.2 spatial
analysis toolbox m

Distance to fire stations DF The same as DW m
Distance to roads DR The same as DW m

http://www.gscloud.cn
http://www.geoknowledge.com.cn
http://www.geoknowledge.com.cn
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Figure 3. Relevant main predictors including (a) nearest distance to water bodies (m); (b) fire stations
and yearly average population between 2002 and 2005(people/km2); (c) density of roads (km/km2);
(d) places of interests including entertainments, enterprises, education places, hotels, markets, and
residential accommodations, with the background of average NDVI in 2002.

2.4. Method

Considering the characteristic of spatial data such as the dependence and heterogeneity, some
indicators including Moran’s I and Geary’s C index were used in the analysis of global autocorrelation
for natural complex phenomena. The global and local Moran’s I are shown in Equations (1) and (2),
and the related Z score of local Moran’s I is shown in Equations (3) [15]:
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n
∑
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∑
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∑
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2 (2)

Zi =
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, (3)

where n is the number of spatial units; Yi and Yj are the values of variable Y in spatial unit i and j;
−
Y is

the average over all spatial units of the variable. Wij is the spatial weight matrix that measures the
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strength of the relationship between two spatial units. The index value of global Moran’s I falls between
−1.0 and 1.0. The global spatial autocorrelation tool is an inferential statistic, which means that the
results of the analysis are always interpreted within the context of its null hypothesis. However, the
global Moran’s I does not indicate where the clusters are located or what type of spatial autocorrelation
is occurring. Therefore, the local Moran’s I was calculated and the significance test of local Moran’s I
was applied with a local Z test as an indicator of local spatial association, as shown in Equation (3). In
addition, the correlative value of significance level could be calculated from the local Z test at different
significance levels including 0.01, 0.05, 0.1, etc. What is more, if the value of Zi is positive and the
local Moran’s Ii is significant, then the result indicates that the spatial units with higher values are
surrounded by neighboring units, which indicates positive local spatial autocorrelation. After detailed
analysis for the existence of global and local spatial autocorrelation, SE models were used accordingly.
Based on such early-stage preparation of cross-sectional data, SE models are being utilized more and
more widely due to their advantages compared with traditional multiple linear regression [30]. Before
making decisions about which of the SE models is best, Moran’s I was tested for the response variable
and SE models would be trained first in each subsample in order to find the significant explanatory
variables according to the Student’s t-test. Each significant variable should fulfill the criteria of p < 0.05
and the variables selected in the final SE model should be presented at least three times in the five
initial SE training models.

Firstly, we conducted the Moran’s I test in the 6985 sample points and the spatial autocorrelation
of fire density was managed before we could adopt SE models in this research. The map of local
Moran’ I index was extracted and calculated with the “localmoran” function in R studio and spatial
weight matrix was obtained. We can find the local regions where spatial clustering of fire occurrence is
significant or not, as well as the hot points where fire happens most. In this paper, we adopted “KNN
(K-nearest-neighbor)” as the method for building a spatially weighted matrix and 8 as the K value,
which means the nearest eight neighbors around a single sample point were assigned a value of 1 in
the spatially weighted matrix. Afterwards, we divided the whole sample dataset into five folds by
using “createMultiFolds” function in R studio. Each sample fold was used as the testing set in turn and
thus we could get five intermediate models by referring to the ideas of cross-validation. This means
that 80 percent of samples were used as the training set and the other 20 percent of samples were the
testing set; both SE and RF models were trained five times, and thus five intermediate models for these
two regression methods were obtained. Each training set has 5588 sample points and each testing set
has 1397 sample points.

In addition, SE models have three basic patterns, SEM, SLM, and SAC, as shown in
Equations (4)–(6). Moreover, SDM is developed with the extension of SAC, which considers spatial
lagging between explanatory variables, as shown in Equation (7). All of the SE models are parametric
models, whose coefficients can be obtained accordingly. After pre-processing for the explanatory
models, SDM, SEM, SLM, and SAC were implemented in this study using the packages of “sp” and
“spdep”; “train”, “lagsarlm”, “errorsarlm”, ”knearneigh” and “nb2listw” functions were employed in
RStudio (R Development Core Team, Boston, MA, USA) [28]. R is an open-source software widely used
in spatial analysis and prediction due to its advanced integration with GIS and other data formats [31].
The packages and functions mentioned above were all applied because of their excellent performance
on spatial econometrics. The formulations of SE models are shown below [30]:

SEM: {
Y = Xβ + ε

ε = λWε + µ
, (4)

where Y means the vector of response variable, X means the matrix of n × k independent predictors, β

reflects the coefficient matrix of X, ε means the vector of random error term, λ means the coefficients
of spatial random error terms for the vector of cross-sectional response variable, Wε means the spatial
lag of ε, µ means the vector of random error term under normal distribution.
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SLM:
Y = ρWY + βX + ε, (5)

where Y means the vector of response variable, X means the matrix of n × k independent predictors, β

reflects the coefficient matrix of X, ε means the vector of random error term, ρ means the coefficients
of spatial regression terms, W means the n × n spatial weight matrix, WY means the spatial-lag
response variable.

SAC:
Y = ρW1Y + βX + λW2ε + µ, (6)

where Y means the vector of response variable, X means the matrix of n × k independent predictors,
β reflects the coefficient matrix of , X means the vector of random disturbance term, ρ means the
coefficients of spatial regression terms, W means the n × n spatial weight matrix, W1Y means the
spatial-lag response variable, λ means the coefficients of spatial random error terms for the vector of
cross-sectional response variable, W2ε means the spatial lag of ε, and µ means the vector of random
error term under normal distribution.

SDM:
Y = ρW1Y + βX + W2X + ε (7)

where Y means the vector of response variable, X means the matrix of n × k independent predictors,
β reflects the coefficient matrix of X, ε means the vector of random disturbance term, ρ means the
coefficients of spatial regression terms, W means the n × n spatial weight matrix, W1Y means the
spatial-lag response variable, λ means the coefficients of spatial random error terms for the vector of
cross-sectional response variable, W2X means the spatial lag of ε, and µ means the vector of random
error term under normal distribution.

On the other hand, as other studies have depicted before, RF has become one of the most important
machine learning methods based on ensemble learning [2,8,32–34]. It is developed as the extension of
decision trees [35]. This algorithm applies random binary trees that use a subset of the observations
through bootstrapping techniques. From the original dataset, a random choice of the training data
is sampled and used to build the model accordingly, and the data not included are referred to as an
“out-of-bag” (OOB) dataset [2,10]. This adds the element of randomness to bagging trees so as to
make it less sensitive to variability in calibration such as outliers and data changes [6]. It is also an
extension of bagging trees because it adds random sampling to predictors in each subset, not only
in sample sets. However, this method behaves as a “black box” since the individual trees cannot
be examined separately and it calculates neither regression coefficients nor confidence intervals [10].
Nevertheless, it allows for the computation of variable importance measures, which can be compared
to other regression techniques. The studies before usually adopted %IncNodePurity and %IncMSE as
the statistics for evaluating the importance of variables in the RF model [10,36,37].

In addition, we used the technique called “recursive feature elimination (RFE)” in RStudio
software in order to get the optimal number of predictors that should be included in the model.
The detailed description of RFE algorithm is offered in the help section of the “caret” package in
RStudio. What is more, by making use of such nonparametric techniques (formally called CART
(classification and regression trees)), RF improves a lot on the level of accuracy and prediction and
this advantage could offer technical support in the process of modeling fire occurrence. In this paper,
we used “train”, ”rfFuncs”, “randomForest” and “rfeControl” function in “caret” package to select
variables and get the initial five RF intermediate models. All of these operations were carried out on
the RStudio software platform (R Development Core Team, Boston, MA, USA).

As specified before, different SE and RF models were trained and compared in order to get the final
SE and RF models. They were validated afterwards in the testing set to examine the predictive ability for
fire occurrence. Statistical results such as log likelihood, Akaike information criterion (AIC), coefficient
of determination (R squared), root mean square error (RMSE), and correlation coefficient were obtained
for the purpose of selecting the best model. Moreover, as a comparison in this paper, the RF model
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was also calibrated and optimized according to the criterion of %IncNodePurity, for which could
assume that predictors with a greater value have higher importance [38,39]. %IncNodePurity relates
to the loss function with which the best splits are chosen. The loss function is RMSE for regression
and Gini impurity for classification. More useful variables achieve higher increases in node purities,
through which we can find a split that has a high outer node “variance” and a small intra node
“variance.” The final variables selected in the RF model can be chosen according to the average value
of %IncNodePurity within five intermediate models. Finally, the SE and RF models were fitted in the
whole dataset and the residuals of the two models were extracted from the prediction results.

As presented in the research before, if no autocorrelation remained in the residuals of the
regression models, then the spatial pattern observed in the dependent variable could be explained by
the spatial pattern observed in the predictors [10]. Based on such prior knowledge, semivariograms of
the residuals produced by different regression models were derived and these residuals were further
visualized with different colors in order to examine the heterogeneity and unsteady performance.
What is more, the correlations between the common predictors in both models and the residuals of
each method were discussed in order to explore the factors that affected the generation of residuals.

Lastly, the maps of likelihood of fire occurrence predicted using RF and SE models were obtained
by normalization of the fire density. Maps of the likelihood of fire occurrence were plotted as a
comparison for each model, making it easier for people to understand the probability of ignition from
the perspective of fire science.

3. Results

3.1. Dependent Variable

Figure 4 shows the yearly average fire density for the period 2002–2005, obtained using the kernel
density method. A more detailed analysis revealed only 752 ignition points where fire occurred at least
once, while the average value of fire density was nearly 0.15.

Sustainability 2017, 9, 819 9 of 21 

(AIC), coefficient of determination (R squared), root mean square error (RMSE), and correlation 
coefficient were obtained for the purpose of selecting the best model. Moreover, as a comparison in 
this paper, the RF model was also calibrated and optimized according to the criterion 
of %IncNodePurity, for which could assume that predictors with a greater value have higher 
importance [38,39]. %IncNodePurity relates to the loss function with which the best splits are 
chosen. The loss function is RMSE for regression and Gini impurity for classification. More useful 
variables achieve higher increases in node purities, through which we can find a split that has a high 
outer node “variance” and a small intra node “variance.” The final variables selected in the RF 
model can be chosen according to the average value of %IncNodePurity within five intermediate 
models. Finally, the SE and RF models were fitted in the whole dataset and the residuals of the two 
models were extracted from the prediction results. 

As presented in the research before, if no autocorrelation remained in the residuals of the 
regression models, then the spatial pattern observed in the dependent variable could be explained 
by the spatial pattern observed in the predictors [10]. Based on such prior knowledge, 
semivariograms of the residuals produced by different regression models were derived and these 
residuals were further visualized with different colors in order to examine the heterogeneity and 
unsteady performance. What is more, the correlations between the common predictors in both 
models and the residuals of each method were discussed in order to explore the factors that affected 
the generation of residuals. 

Lastly, the maps of likelihood of fire occurrence predicted using RF and SE models were 
obtained by normalization of the fire density. Maps of the likelihood of fire occurrence were plotted 
as a comparison for each model, making it easier for people to understand the probability of ignition 
from the perspective of fire science.  

3. Results 

3.1. Dependent Variable 

Figure 4 shows the yearly average fire density for the period 2002–2005, obtained using the 
kernel density method. A more detailed analysis revealed only 752 ignition points where fire 
occurred at least once, while the average value of fire density was nearly 0.15.  

 
Figure 4. Fire density calculated by using kernel density (bandwidth = 5 km). 

3.2. Explanatory Variables 

Box-Cox transformation was applied in variables and the natural logarithm transformation was 
finally adopted for the response variable. After the multicollinearity diagnostics, four explanatory 

Figure 4. Fire density calculated by using kernel density (bandwidth = 5 km).

3.2. Explanatory Variables

Box-Cox transformation was applied in variables and the natural logarithm transformation was
finally adopted for the response variable. After the multicollinearity diagnostics, four explanatory
variables were excluded, including TEMMAX, TEMAVE, LANDOTHER, and ENTERTAINMENT,
because of their high inter-correlations. Correlations among the explanatory variables were calculated



Sustainability 2017, 9, 819 10 of 21

through “corrgram” package in RStudio. The variance inflation factor (VIF) values of these explanatory
variables except for the land use variables were obtained. There was no VIF value bigger than 10, as the
largest one was 5.01, and this result indicated that there was no multicollinearity between predictors.
The variables included in the initial training process were DEM, SLOPE, ASPECT, POSTION, TRI,
SHADE, NDVI, TEMMIN, POPULATION, LINE, RESIDENT, HOTEL, EDU, MARKET, ENTERPRISE,
DW, DF, DR, LAND11, LAND14, LAND2030, and LAND190.

3.3. Results of Spatial Econometric Models

The value of Moran’s I for the response variable was calculated and the results indicate that there
is significant spatial autocorrelation. The value of global Moran’s I is 0.7108 and the value of P is less
than 0.0000001, which means there are significant clustering patterns and the spatial distribution of
feature values is not the result of random processes. Furthermore, the value of local Moran’s I, as well
as the related P and Z value, is shown in Figure 5. The value of Moran’s I offers evidence for using the
SE model accurately because of the existence of spatial autocorrelation.
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As shown in Figure 5, most of the sample points have a value of P larger than 0.05, especially
outside the urban regions, whereas the urban regions are mostly at the level of p < 0.05, which means
that fire usually clusters as “high–high” in the urban regions, demonstrated by the yellow and red
sample points, called “hot points” as shown in Figure 5. The green points in Figure 5b indicate that
they are not significant. From the results above, the local characteristics of fire occurrence were studied,
paving the way for the following modeling process.

In order to obtain the result of spatial econometric models, five intermediate SE models, SAC,
SEM, SDM, and SLM, were initially built in each of the five training sets and the statistics of variables
were calculated accordingly. After the preprocessing of data and statistical tests, SE models were
obtained (summary shown in Table 2). The result shows that SAC is the best SE model considering its
lowest value of AIC and highest log likelihood, which means SAC could explain most of the variance
in the model and the fitness of SAC is higher than other SE models. We could also infer from the result
that the spatial autocorrelation not only exists in response variable but also in the random error term.
The values of related parameters in SAC including ρ and λ are −0.78 and 0.97, respectively.

A summary of the five SAC intermediate models is shown below and a summary of predictors is
also obtained (see Table 3). The results indicate that LINE, TEMMIN, DEM, and DF (with confidence
level of 0.05) are selected in the final SAC model and the spatial distribution of LINE has a positive
effect on fire occurrence for the SAC model while the other three selected predictors are the opposite.
Meanwhile, according to the absolute value of predictors in Table 3, LINE influences the SAC model
most, followed by TEMMIN, DEM, and DF.
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Table 2. AIC/Log likelihood value of SE models with the OLS model as a comparison.

Training Set OLS SLM SEM SDM SAC

Training set 1 41,877/−20,916 36,923/−18,437 36,911/−18,431 36,912/−18,411 36,652/−18,301
Training set 2 41,905/−20,930 36,979/−18,440 36,969/−18,442 36,870/−18,412 36,752/−18,311
Training set 3 41,880/−20,917 36,917/−18,438 36,913/−18,430 36,934/−18,408 36,676/−18,297
Training set 4 41,858/−20,906 37,046/−18,441 37,048/−18,421 36,916/−18,409 36,725/−18,285
Training set 5 41,898/−20,926 36,936/−18,449 36,933/−18,433 36,897/−18,415 36,724/−18,304

Table 3. Summary of SAC predictors in five intermediate models.

Predictor P Value Min P Value Max The Number of Significance Direction

Intercept 0.000 0.000 5 +
NDVI 0.191 0.808 0 +

RESIDENT 0.541 0.737 0 +
POPULATION 0.387 0.719 0 _

LINE 0.000 0.001 5 +
MARKET 0.523 0.982 0 +

EDU 0.285 0.623 0 _
ENTERPRISE 0.610 0.971 0 +

TEMMIN 0.000 0.000 5 _
LAND11 0.252 0.861 0 _
LAND14 0.110 0.781 0 _

LAND2030 0.568 0.711 0 _
LAND190 0.568 0.945 0 _
ASPECT 0.033 0.665 1 +
SLOPE 0.104 0.969 0 +
SHADE 0.238 0.662 0 +

TRI 0.547 0.951 0 +
DEM 0.001 0.295 4 _

POSITION 0.315 0.963 0 _
DW 0.030 0.102 2 _
DF 0.000 0.001 5 _
DR 0.005 0.561 1 +

The final SAC model was fitted using the above selected predictors and the summary of SAC is
shown in Table 4. We could infer from the results that LINE plays the most important role in modeling
fire occurrence for SAC; TEMMIN ranks the second, followed by DEM and DF. Although DEM and DF
are significant in the model, their coefficients are so small that physical factors and the nearest distance
from sample points to fire stations do not have a significant effect on infrastructure fire occurrence.
This seems reasonable because DF does not affect fire occurrence directly with spatial econometric
models but can only reflect to some extent whether the sample point is in an urban area or not.

Table 4. Summary of the final SAC model.

Predictor Estimate Std. Error Z Value Pr (>|Z|)

Intercept −0.255 0.175 −1.458 0.144
LINE 0.210 0.052 4.009 0.000

TEMMIN −0.045 0.007 −6.067 0.000
DEM −0.043 0.016 −2.611 0.009

DF −0.040 0.008 −4.826 0.000

As for the validations among each training set and testing set, the correlations were calculated
and shown in Table 5. The result shows that each SAC intermediate model has a good predictive
ability among each training set but its robustness is not good according to the low value of correlation
in each testing set. This may point to a dependence on the special structure of spatial weight matrix
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and the coefficients of predictors may not be the same at each location, which may lead to an error in
the prediction for a new dataset.

Table 5. Summary of SAC correlation value for the training set and testing set in each intermediate model.

Correlation Training Set Testing Set

Inner-Model 1 0.867 0.324
Inner-Model 2 0.864 0.325
Inner-Model 3 0.866 0.330
Inner-Model 4 0.868 0.328
Inner-Model 5 0.864 0.327

3.4. Results of Random Forest Model

Just as for the SAC model, five intermediate RF models were calculated by using the same
training sets and the importance of each predictor was obtained in order to select the final RF model.
The predictors are ranked in descending order according to the value of average %IncNodePurity
among five intermediate RF models, as shown in Table 6. The rank order for different predictors
indicates that it is very different from what is shown in the SAC model. DF ranks first and
POPULATION is second, and followed by LINE, ENTERPRISE, TEMMIN, and DEM. LINE, DF,
DEM, and TEMMIN are common variables in both models, from which we could infer that the four
predictors play an important role in modeling fire occurrence and are not sensitive to the different
pattern of models.

Table 6. Summary of the average importance of predictors in five intermediate RF models.

Predictor Average Value of IncNodePurity

DF 126,237.014
POPULATION 114,536.200

LINE 72,765.650
ENTERPRISE 70,646.550

TEMMIN 54,866.200
DEM 41,932.020
NDVI 28,111.240
DW 23,491.300

POSITION 20,968.810
SLOPE 19,643.120

DR 18,995.570
TRI 18,417.120

ASPECT 17,501.270
SHADE 14,339.59

MARKET 5844.180
EDU 5389.423

HOTEL 4763.623
RESIDENT 4445.550
LAND14 1913.884
LAND11 1545.554

LAND190 792.916
LAND2030 730.403

The importance of each predictor in five intermediate RF models was extracted and ranked in
descending order, as shown in Figure 6. As shown in Figure 6, the order of different predictors is
not the same and the importance of a predictor may vary between training sets. Moreover, Figure 6
shows that among all the 22 variables, the rank order of the front six predictors, which have a large
value of %InNodePurity, are not the same. What is more, if we delete the other 16 variables, the whole
degree of fitting in RF is not changed much, which only decreases by less than 2%. Finally, we adopted
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DF, POPULATION, ENTERPRISE, LINE, TEMMIN, and DEM as the predictors in the final RF model.
The selection criterion for the value of %InNodePurity is about 40,000 according to the calculation
result of RFE, from which the optimal number of variables is obtained as 6.
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As for the validations among each training set and testing set, the correlations were calculated
and shown in Table 7. The result shows that the RF model has a good predictive ability both on each
training set and testing set. This may point to the robustness of the non-parametric model and its
excellent prediction for new data.

Table 7. Correlations for each training set and testing set in five intermediate RF models.

Correlation Training Set Testing Set

Inner-Model 1 0.752 0.740
Inner-Model 2 0.752 0.760
Inner-Model 3 0.750 0.748
Inner-Model 4 0.732 0.771
Inner-Model 5 0.757 0.744

3.5. Results of the Correlations for Both Final Models

The final SAC and RF model were fitted for the whole sample data using selected predictors
and the correlations between the observed fire density and predicted value, as shown in Figure 7.
The red line means the correlation between the observed and the predicted is 1 and the blue is the
linear fit curve. The figure shows that SAC has a higher value of correlation at 0.875 than RF, whose
correlation value is 0.797, evidenced by the smaller included angle for SAC. What is more, the trend
line of correlation has a decreasing tendency for both RF and SAC, which means these points below
the red line are underestimated. What is interesting is that there exist some random dispersive points
that have a very small value of fire density in the left area of the plots. This shows that the prediction
result is mainly dominated by a high density of fires within the urban areas, while it is difficult to
predict areas far from the city. The rural and suburban areas have a small probability of fire occurrence.
This phenomenon indicates that RF and SAC cannot predict well on all points neither, especially for
points seldom at risk of fire, but models are efficient for the points under high fire risk.
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3.6. Spatial Autocorrelation for Residuals among Different Models

After the above analysis, a spatial autocorrelation test for residuals was performed and visualized
for the whole study area. We divided the value of residuals into five quantiles as the minimum, 25%,
50%, 75%, and the maximum, and then each quantile was colored with light green, green, yellow,
red, and black. In Figure 8, the light color points represent the sample points with underestimations,
while the dark ones represent overestimations, as shown in Figure 8. Moreover, it is easy to find that
regions covered with underestimated points (light color) for SAC are exactly where covered with
overestimated points (dark color) for RF.Sustainability 2017, 9, 819 15 of 21 
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The semivariograms are presented in Figure 9. They indicate that SAC performs better than RF
when considering the ability to explain the spatial structure. In detail, the semivariogram plots of SAC
show relatively stable trends and a lower value when compared with RF. Moreover, after the break
point of nearly 20 km, the value of the semivariograms decreased for both models. This means the
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spatial autocorrelation of residuals increases to a distance of 20 km. The semivariogram plot of RF
shows an increasing trend in general, while SAC is steady and the value of semi-variance decreases
after about 110 km. The result shows that the SAC model is better at modeling the occurrence of
infrastructure fires and also explaining the spatial structure of fires at the city scale.
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3.7. Correlations between Common Variables and Residuals in RF and SAC

As shown above, SAC is better than RF when concentrating on its good predictive performance.
A deeper analysis of the correlations between the residuals and the common variables in both SAC
and RF models will increase our understanding of the reasons why prediction errors are generated.
Therefore, as shown in Figure 10, we could find some useful potential regularity by taking SAC as an
example. As shown in Figure 10a, most of the residuals are skewed to the left, and the corresponding
value of LINE is between 0 and 0.30. This shows that regions with low road density may be not as
reliable as regions with high road density for predicting the probability of fire occurrence. The regions
where people have limited access may be hard for models to make efficient predictions. On the other
hand, the residuals are skewed to the right, as shown in Figure 10b, which indicates that the residuals
are generated when the value of TEMMIN is between 0.60 and 0.90. The regions with high temperature
may contribute to prediction residuals and could help explain the heat island effect in urban areas.
We can also infer from Figure 10c that most residuals are skewed to the left because regions with low
elevation may be easier for human beings to settle in and the clustering of humans and their activities
will create the conditions necessary for fire to occur. However, the flatlands may be not beneficial for
predicting fire occurrence at the city scale, which contribute significantly to the generation of residuals.
The last predictor is DF, which means the nearest distance to fire stations and can indirectly reflect the
efficiency of the fire prevention and emergency response, as shown in Figure 10d. Figure 10d shows
that the residuals are evenly dispersed across almost the whole range of DF.
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3.8. Maps of the Likelihood of Fire Occurrence

The likelihood of fire occurrence was normalized by transforming fire density into a variable
ranging from 0 to 1. Figure 11 shows, in the left panel, the actual fire density, the value predicted
by SAC (middle panel), and the value predicted by RF (right panel). We can infer from the figure
that SAC could describe the approximate shape of fire occurrence, while RF could not. Moreover,
most of the sample points were underestimated for SAC, while RF could make good predictions of
the points with high risk value but the spatial boundaries of the predicted fire density were not as
clear as with SAC. This means that both SAC and RF have their strengths and shortcomings and the
predictive performance of each model changes in different city areas. A deeper analysis shows that
the values of correlation coefficient between observed and predicted are 0.875 and 0.797 for SAC and
RF, respectively. This indicates that the spatial distribution characteristics of fire occurrence are better
explained by SAC than by RF on the whole.
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3.9. Comparison with Other Fire Models

Different spatiotemporal scales, approaches to spatial sampling, and study regions can affect
which model to choose and the performance of models [40]. Wildfires have close correlation
with physical factors, climate factors, and the activities of human beings. However, as to urban
infrastructure fires, the important predictors are much different and, therefore, the measures for
preventing infrastructure fires from happening will be very different too. We should not deny that
the occurrence of fire often shows spatial and temporal clustering and lagging [41–43]. Moreover,
many natural phenomena such as chemical toxicants and PM 2.5 are spatially auto-correlative and
the SE model is a useful tool for explaining the structure of natural hazards [44–48]. Therefore, when
analyzing natural phenomena and trying to find key predictors, we should be cautious and adopt a
specific model only after sufficient investigation.

3.10. Limitations

This study has several limitations that may influence the results. First, because of the constrained
access to a wider range of relevant variables, more explanatory variables need to be considered
and explored in future studies. In particular, we should pay more attention to other socioeconomic
predictors such as the spatial distribution of POIs, since these factors may have a significant influence
on fire occurrence at the city scale. Second, as fire risk is always changing and its spatial distribution
varies with the development of a city, fire risk in urban areas is considerably different from wildfires in
forest regions. Therefore, the predictors should take into account these dynamic characteristics. Third,
fire occurrence is an integrated process where time and space are integral dimensions. This means
that the varying-coefficient models such as geographic temporally weighted regression or geographic
weighted regression should be contrasted with SAC or global models. Other limitations such as the
parameter tuning process, running time, and feature selection should also be recognized in order to
construct more suitable models.

4. Conclusions

This paper compares SE and RF models for studying fire occurrence at the city scale. As regards
the applicability of models, we found that RF performed better than SAC in predicting a new dataset
with more robustness. Cross-validation was employed and the relatively important predictors were
included for both models. On the other hand, SAC showed an efficient ability for explaining the spatial
structure of fire occurrence because of its functional equation, which could effectively eliminate the
autocorrelation in the residual terms.
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Global and local spatial autocorrelation were tested using Moran’s I index; the results showed
that there was significant global spatial autocorrelation for the average density of infrastructure fires.
In addition, significant local autocorrelation mostly clusters in urban areas. Therefore, we could use SE
models to perform further analysis of the distribution patterns and spatial structure of fire occurrence
at the city scale. Afterwards, the statistics of each predictor among SE models was examined by using
the ideas of five-fold cross-validation in terms of the accuracy of prediction in each training set. Five
intermediate models for SEM, SLM, SDM, and SAC were obtained and SAC was selected because of
its lowest AIC value and highest log likelihood. Afterwards, LINE, TEMMIN, DEM, and DF were
selected in the final SAC model. The predictive performance in each training set and testing set for
SAC was obtained and the results showed that SAC could predict well in the five training sets but
rather poorly in the new datasets. This was caused by the special principle of spatial weight matrix
based on the spatial structure of sample points as well as the spatial heterogeneity.

As regards RF, we used the same procedure for SAC and five intermediate models were examined
for selecting the predictors in the final RF model. The predictive performance in each training set
and testing set was obtained and the results showed that RF performed well in both training sets and
testing sets. In comparison with SAC, RF is not sensitive to the spatial structure of sample points and
thus could make robust predictions for new datasets. However, RF lacks the ability to explain the
spatial structure of fire occurrence and thus the correlation values in five training sets are smaller than
with SAC. We adopted DF, POPULATION, ENTERPRISE, LINE, TEMMIN, and DEM as the predictors
selected in the final RF model.

We fitted the whole dataset by using the final RF and SAC model, and the correlation value
between the observed and the predicted is 0.7965 and 0.8750, respectively. What is interesting is
that there are some random dispersive points in plots whose value of fire density is small. This
phenomenon indicates that RF and SAC cannot predict well on all sample points, especially for points
seldom at risk of fire, but both models are efficient for points under high fire risk.

With respect to the spatial autocorrelation of residuals, SAC is much better than RF. A comparison
of model performance between RF and SAC showed that SAC is better at fitting fire risk and explaining
the spatial structure in terms of the flat trend and a lower level of semivariogram function.

The common variables selected in both models were analyzed for the correlation with the residuals
predicted in SAC. The results showed that areas with low road density may be not as reliable as those
with high road density for predicting fire occurrence. In areas where people have limited transportation
access it may be hard for the models to make efficient predictions. High temperature may be one
contributor to the residuals generated by prediction. We could also infer that most residuals are
associated with regions of low elevation, where it may be easier for human beings to settle and
the clustering of humans and their activities will create the necessary conditions for fire occurrence.
However, flatlands may be not beneficial for predicting fire occurrence and are one of the contributors
to residuals. The last predictor, DF, which represents the nearest distance to fire stations, may reflect
the efficiency of the fire prevention and emergency response. The residuals are evenly dispersed across
the whole range of DF.

Furthermore, at the city level, we should focus on the redistribution of POIs highly correlated with
human abilities and make more discoveries about the estimation of the source of danger, especially for
the purposes of fire prevention. RF could be an efficient tool for decision makers to make forecasts.
Moreover, SAC could be applied after a sufficient exploration of predictors for a specific city when
there is spatial autocorrelation or a hysteresis effect.

In future, we should adopt dynamic approaches for predicting and estimating the quantitative fire
risk within each grid cell. However, the ability to explain the spatial structure using spatial econometric
models should not be ignored. In addition, other predictors associated with fire risk should be included
in the study in order to find better ways to analyze fire risk from a spatiotemporal perspective. Lastly,
predictors that have close correlation with humans should be carefully examined.
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