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Abstract: Detecting vehicles in aerial imagery plays an important role in a wide range of applications.
The current vehicle detection methods are mostly based on sliding-window search and handcrafted
or shallow-learning-based features, having limited description capability and heavy computational
costs. Recently, due to the powerful feature representations, region convolutional neural networks
(CNN) based detection methods have achieved state-of-the-art performance in computer vision,
especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many
limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately
locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN
cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection
method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned
above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract
vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier
after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing
false detection by negative example mining. We evaluate our method on the Munich vehicle dataset
and the collected vehicle dataset, with improvements in accuracy and robustness compared to
existing methods.

Keywords: vehicle detection; hyper region proposal network; convolutional neural networks;
hard negative example mining

1. Introduction

In very high resolution (VHR) remote sensing images, vehicle detection is an indispensable
technology in both civilian and military surveillance, e.g., traffic management, urban planning, etc.
Therefore, vehicle detection from aerial images has attracted significant attention worldwide [1–5].
However, automatic vehicle detection in aerial images still has a lot of challenges due to the relatively
small size and variable orientation of vehicles (Figure 1a). In addition, real-time detection in such
large-scale aerial images with intricate backgrounds (Figure 1b) also increases the difficulties.

In previous studies, the existing vehicle detection methods in aerial images are mostly based on
sliding window search and manual features or shallow-learning-based features [6–11]. The work of [2]
is worth mentioning here, as the authors presented an approach that could detect vehicles with type
and orientation attributes on large-scale aerial images without any geo-reference information available.
This method employed a fast binary detector using integral channel features (ICFs) and an AdaBoost
classifier in a soft-cascade structure to detect the location of the vehicles. Then, a histogram of oriented
gradient (HOG) features was used to further classify the orientations and type of the vehicle, resulting
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in both rapid and effective detection performance. However, this method has some drawbacks. Firstly,
hand-crafted features or shallow-learning based features influence the representational power, as well
as the effectiveness of vehicle detection. Secondly, the sliding window technique leads to heavy
computational costs.

Figure 1. Two challenges for vehicle detection in aerial images. (a) small vehicles; (b) hard
negative examples.

In the field of computer vision, region convolutional neural network (R-CNN) based detection
methods have achieved great success in nature scene images [12], especially Faster R-CNN [13].
Faster R-CNN employs a fully convolutional region proposal network (RPN) to generate object-like
regions, and a classifier after RPN to further infer the candidate regions. Considering the powerful
feature representation and fast speed, Faster R-CNN performs much better than the traditional sliding
window based methods. However, directly utilizing it for vehicle detection in such large aerial
imagery has many challenges, due to the big differences between aerial images and nature scene
images. The differences and challenges are as follows: (1) vehicles (only 30× 12 pixels) in aerial images
(with the size of 5616× 3744 pixels) are relatively smaller than those in nature scene images, thus
increasing the difficulty of localization; (2) due to the large size and wide view of the aerial images,
their backgrounds are more intricate than the nature scene images. Accurate vehicle detection in such
aerial images is hard; (3) the aerial images are much larger than the nature scene images (approximately
with the size of 700× 700 pixels), increasing difficulties for rapid detection. In addition, the training
data for vehicle detection in aerial images is much less, causing an over-fitting problem for region
CNN-based methods. Considering all the challenges mentioned above, we argue that two reasons
lead to Faster R-CNN’s poor performance. Firstly, region proposal network (RPN) in Faster R-CNN is
not good enough to accurately detect small-sized vehicles, due to the relatively coarse feature maps.
Secondly, the classifier after RPN cannot distinguish vehicles and complex backgrounds well, due to
the lack of hard negative example (similar to vehicles, see Figure 1) mining process.

To address these problems, in this paper, we propose an accurate and robustness vehicle detection
framework (see Figure 2). Our method contains two parts: a hyper region proposal network (HRPN),
aiming at predicting all of the possible bounding-boxes of vehicle-like objects with high recall rate,
and a cascade of boosted classifiers to further verify the detection results from HRPN with high
precision. Specifically, our HRPN is based on RPN. However, HRPN combines rich-detail feature
maps of shallow layers with coarse-detail feature maps of deep layers, which is more suitable for small
object detection than RPN. In addition, we replace the classifier after RPN by a cascade of boosted
classifiers, which can reduce false detection by mining hard negative examples.

Moreover, limited annotated training data causes an over-fitting problem, and large-scale aerial
images increase the difficulty of rapid detection. To overcome the two problems above, we crop the
original large-scale training aerial images into image blocks, and augment the number of them by
rotation. In addition, the testing aerial images are also cropped into blocks. The vehicles’ locations
can be acquired when the blocks with testing results are stitched back together. Compared with [2],
our method is more accurate and more robust without setting the size of the detection window in
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advance. Compared with Faster R-CNN [13], our method has better location accuracy and less false
detection. Moreover, we successfully test our method on unmanned aerial vehicle (UAV) images
and pansharpened color infrared (CIR) images, proving the robustness of our method. The main
contributions of our work is: we combine a cascade of boosted classifiers with HRPN, which improves
the classification accuracy by hard negative example mining.

Figure 2. Proposed vehicle detection framework. Original large scale images are cropped into small
scale blocks for training and testing.

This paper is organized as follows: Section 2 discusses related works. The proposed method is
detailed in Section 3. Section 4 reports the experimental results. Finally, Section 5 concludes the paper.

2. Related Work

According to the existed object detection methods, the detection task can be divided into three
main parts: generation of candidate regions, feature extraction and classification.

For generation of candidate regions, most of the existing vehicle detection methods employ a
sliding-window search algorithm [2,3,7,8]. These methods need to set different sizes of windows
to traverse the entire image, or use a fixed-size window to traverse the zoom images. Therefore,
these sliding-window search based methods have a high complexity of time and generate a large
number of redundant windows. Compared with the sliding-window based methods, region-proposal
based methods reduce the computational costs. Traditional methods generate region proposals
by merging segments that are likely be included in objects, e.g., super-pixels [14], saliency [15],
selective search [16], etc. Nevertheless, the human-designed generator for region proposals is still
time-consuming. Recently, CNN based methods have been widely used in region proposals, such as
Deepbox [17] and RPN [13]. These methods can generate candidate regions with deep learning features,
resulting in promising performance and speed.

For feature extraction, hand-crafted features are widely used in vehicle detection. Shao et al. [7]
used Haar-like features and local binary patterns (LBP) for vehicle detection. Moranduzzo et al. [3]
made use of scale-invariant feature transform descriptors (SIFTs). Kluckner et al. [8] and
Tuermer et al. [18] adopted a histogram of oriented gradient (HOG) features, while Liu [2] employed
a fast binary detector using ICFs. However, these hand-crafted features are not good enough
at separating cars from the background in complex environments. Recently, region CNN-based
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detection methods have achieved great success in nature scene images, owing to their powerful feature
representation. The most popular is region-based convolutional neural networks (R-CNN) [19]
and their improved methods Fast R-CNN [20] and Faster R-CNN [13]. All of them achieve
state-of-the-art performance.

For classification, Shao et al. [7] and Moranduzzo et al. [3] used hand-crafted features with a
support vector machine (SVM) for candidate region classification. However, AdaBoost gradually
replaced SVM due to its good performance. Kluckner et al. [8], Tuermer et al. [18] and Liu et al. [2]
employed an AdaBoost classifier to verify candidate regions. This research demonstrates that the
bootstrapping strategy, which mines hard negative examples and reweights examples for iterative
training, improves the classifier considerably by reducing the number of false classification.

Considering all three parts of the detection, the region CNN-based detection methods have the
best performance. R-CNN uses a selective search algorithm to generate object-like regions, and then
extracts deep features for classification by SVM. In order to increase the speed and accuracy of detection
further, Fast R-CNN employs a multi-task network for classification and bounding box regression,
combining feature extraction and classification into one process. Nevertheless, their human-designed
region proposal generator is still time-consuming. Thus, Faster R-CNN employs RPN to generate
object-like regions and a CNN-based classifier to further infer the candidate regions. Faster R-CNN is
an end-to-end method, achieving near real-time detection with state-of-the-art performance. However,
it still has some drawbacks when applied to vehicle detection in aerial images. RPN is not suitable
for small objects, owing to the coarse feature maps it uses. Meanwhile, the classifier is not good
enough to distinguish objects from complex backgrounds, due to the lack of hard negative examples
mining process.

We take the advantages of Faster R-CNN and hard negative example mining to propose our
method, achieving state-of-the-art performance.

3. Proposed Method

The framework of our vehicle detection method is illustrated in Figure 2. For training, we crop
original large-scale images into blocks and augment the number of image blocks by rotation with four
angles (i.e., 0◦, 90◦, 180◦, and 270◦). Then, HRPN takes all the training image blocks as input for training
and produces candidate region boxes, scores and corresponding hyper features. Finally, the outputs of
HRPN are used to train a cascade of boosted classifiers, and the final classifier is obtained.

For testing, a large-scale testing image is cropped into image blocks. Then, HRPN takes these
image blocks as input and generates candidate region boxes as well as hyper feature maps. The final
classifier verifies these boxes using hyper features. Finally, all the detection results of blocks are stitched
together to recombine the original image.

3.1. Hyper Region Proposal Network

There are two kinds of RPN structures: one is based on the Zeiler and Fergus model (ZF) [21],
and the other is based on the VGG model [22]. Owing to the limited training data and video memory,
we choose the relatively few parameter ZF-based RPN as the building block of our HRPN. Different
from RPN, we combine the output feature maps of the last three convolutional layers to achieve a
concatenated feature map. The reasons for our improvement are as follows: Ghodrati [23] indicates
that the deeper convolutional layers can get high recall but poor localization in detection, and the
lower convolutional layers can get more accurate localization but low recall. In addition, the Fully
Convolution Network (FCN) achieves great performance in segmentation [24], in which the authors
combine a high layer with a low layer for segmentation. Therefore, these imply that the combination of
shallow features and deep features will result in better detection results. Figure 3 shows the architecture
of HRPN.
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Figure 3. Architecture of Hyper Region Proposal Network (HRPN). For 702× 624 images, the feature
maps size of Conv1-Conv5 are 351× 312× 96, 88× 79× 256, 45× 40× 384, 45× 40× 384, 45× 40×
256, respectively.

3.1.1. Architecture

HRPN is a full convolutional network to generate candidate regions. The first convolutional
layer (Conv1) takes the training images as input and has 96 kernels of size 7× 7× 34 with a stride of
two pixels. The second convolutional layer (Conv2) takes the output of the previous convolutional
layer as input and filters it with a stride of two pixels by 256 kernels of size 5× 5× 96. The contrast
normalization and max pooling layers are only configured after the first two convolutional layers.
The third (Conv3), fourth (Conv4), and fifth (Conv5) convolutional layers are directly connected to
each other, having 384 kernels of size 3× 3× 384, 384 kernels of size 3× 3× 384, and 256 kernels
of size 3× 3× 256, respectively. We compute hyper feature maps from three convolutional layers
(namely Conv3, Conv4 and Conv5), which have the same size but different levels of detail information.
In addition, two convolutional layers (Conv3_out and Conv4_out) with kernel size of 1× 1× 256 are
added on the top of Conv3 and Conv4 feature maps, respectively, to compress them into the same
number as conv5. Finally, we synthesize these three feature maps and get one single output cube,
which we call hyper feature maps. The “Eltwise” layer is used to complete the operation, which simply
adds the three feature maps together.

In order to generate candidate regions, we use the sliding window operation on hyper
feature maps. This operation is implemented by a 3× 3 convolutional layer, namely “Conv_slid”.
The parameters of weight are initialized by “gaussian”, and the parameters of bias are initialized by
“constant”. At each sliding window location, we simultaneously predict multiple region proposals
associated with different scales and aspect ratios (namely anchors, see blue boxes in Figure 3). As the
size of vehicle is approximately 35× 35, we adopt anchors of three scales of 302,402, and 502 pixels, and
three aspect ratios of 1:1, 1:2, and 2:1. For 256 feature maps in total, we can extract a 256-d feature vector
for each region proposal. Afterwards, these region proposals and their corresponding features are
fed into two sibling 1× 1 convolutional layers for box-classification and box-regression, respectively
(namely conv_cls and conv_bbr). The first sibling layer outputs a vehicle-like score pc, and the second
sibling layer outputs the coordinates vector loc = (x, y, w, h) of each predicted region after bounding
box regression. x and y represent the top-left coordinates of the predicted region, whereas, w and h
denote the width and height of the predicted region.

3.1.2. Training HRPN

To facilitate training by limited size of the training set, we use a pre-trained ZF model [13,25] based
on ImageNet [26] to initialize the parameters of five convolutional layers, and then domain-specifically
fine-tuned with a smaller learning rate. Throughout the training process for HRPN, we have 70k
iterations. During each iteration, we process a batch of the labeled image blocks into the network,
and obtain region proposals for each image block. For each batch, the number of image blocks and
predicted regions are Ncls and Nbbr, respectively. If a predicted region has the Intersection-over-Union
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(IoU) bigger than 0.7 with the ground truth box, we assign a positive label to it (pi
∗ = 1). However,

if the IoU ratio of a predicted regions is lower than 0.1 for all ground-truth boxes, we assign a negative
label to it (pi

∗ = 0). Then, the remaining regions are discarded. The IoU ratio is defined as follows:

a =
area(Bp ∩ Bg)

area(Bp ∪ Bg)
, (1)

where area(Bp ∩ Bg) represents the intersection of the vehicle proposal box and ground truth box,
and area(Bp ∪ Bg) denotes their union.

All of the positive and negative region proposals and their corresponding labels are fed into the
loss function. In addition, a multi-task loss function is used to update the parameters of the network,
aiming at minimizing the error of classification and localization. We use Lcls as the softmax loss fuction
for the classification of vehicles and backgrounds, and Lbbr as the box-regression loss. Just like [13],
the loss function is defined as

Equation (2):

LHRPN(pi, loci) =
1

Ncls
∑
i

Lcls(pi, p∗i ) + λ 1
Nbbr

∑
i

p∗i Lbbr(loci, loci
∗), (2)

where i is the index of a batch. pi is the vehicle-like score for each predicted region, and pi
∗ is the

ground-truth label. λ is the balance parameter. During each iteration, the number of positive and
negative region proposals are the same. Therefore, we set λ = 2 to weight both Lcls and Lbbr terms
equally. Lbbr denotes a smooth L1 loss [13], which is the same as those in Faster R-CNN. It is defined
as Equation (3):

Lbbr(loci, loc∗i ) = fL1(loci − loc∗i ),

fL1(x) = { 0.5x2, i f |x| < 1,
|x| − 0.5, otherwise,

(3)

where loci is the coordinates vector of the predicted region, and loci
∗ is the coordinates vector of target

ground-truth bounding-box. When the training of the HRPN is finished, we generate approximately
300 highly overlapped candidate region boxes of each test block. To reduce redundancy, non-maximum
suppression (NMS) is adopted in the proposed regions based on the vehicle confidence score pc. Finally,
the remaining vehicle-like regions and their scores are used as the initial data for the boosted classifiers
that follow.

3.2. Cascade of Boosted Classifiers

The HRPN has proposed candidate regions, scores and corresponding hyper features, which
are used as training data for cascade of boosted classifiers. In this section, a candidate region is
considered as a positive sample if it has an Intersection-over-Union (IoU) ratio bigger than 0.8 with
the ground truth box, and the negative lower than 0.3. Initially, all the positive samples and the same
number of randomly chosen negative samples from candidate regions are used as the training data.
The training process of the cascade of boosted classifiers is illustrated in Figure 4.

We set six stages for training. For stage 0, we use 10k positive examples and 10k negative examples
to train the 64 weak classifiers. Then, all the training data of stage 0 plus 1k new negative examples are
used to train the classifiers of stage 1. Each stage uses the reweighted examples from previous stage
and the newly added negative examples for training.
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Figure 4. Training process of the cascade of boosted classifiers. We adopt the cascade of six stages, and
employ {64, 128, 256, 512, 1024, 2048} weak classifiers in each stage.

Moreover, we use {64, 128, 256, 512, 1024, 2048} weak classifiers in each stage. A shallow decision
tree is taken as a weak classifier. Then, the RealBoost algorithm [27] is used to constitute strong
classifiers from weak classifiers—namely, boosted classifiers. In stage 0, we set the weak classifier f0

following the form of RealBoost:

f0 = 1
2 log si

1−si
, ti = 1, 2 · · · Ti, (4)

where si is the score of candidate region from HRPN. Following [27], the weak classifier in each round
of other stage is defined as Equation (5):

fti
= 1

2 log
1−eti

eti
i = 1, 2 · · · 5 , ti = 1, 2 · · · Ti, (5)

where, in stage i round ti, eti is the error rate of the decision tree, and Ti is the number of tree. In each
round, we choose a subset of the training samples to train the classifier and the samples are reweighted
according to the classification results. Specifically, the weights of the correctly categorized samples are
reduced and the weights of the incorrectly categorized samples are increased. Thus, hard negative
examples are mined and added into the training set.

After Ti times iterative training, the weights of training data are updated and Ti weak classifiers
are obtained. The final detector Fi of stage i is defined in Equation (6):

Fi =
1
Ti

Ti
∑

t=1
∂ti fti i = 1, 2 · · · 5, ti = 1, 2 · · · Ti, (6)

where ∂ti is the weight of the decision tree.
After being trained by all stages, a classifier consisting of 2048 weak classifiers is obtained and

used to classify candidate regions. Our implementation is based on [28].

3.3. Implementation Details

In this paper, the structures and layers of HRPN are based on the existing ZF model, and the
kernel sizes are the same as the ZF model. In HRPN, an input image will be resized to n×m pixels
before training and testing (1053× 936 for image blocks with the size of 702× 624 pixels in the Munich
Vehicle data set). Therefore, in order to achieve better results, we need to set different n×m for a new
dataset with different sizes of images. In addition, each batch consists of one image and 120 randomly
selected anchors for training.
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To determine the parameters of the anchor, a comparison experiment is done. We evaluate the
mean average precision (mAP) under different scales and aspect ratios of anchors. The results are
shown in Table 1. As can be seen from the table, the results of one scale and three different ratios are
better than that with one scale and one ratio. The results of three scales and three ratios are similar to
those with one scale and three ratios. Taking all the results into account, we select the parameter of
anchors with three scales and three ratios.

Other parameters of HRPN are the same as in Faster R-CNN [13].

Table 1. The mean average precision (mAP) under different scales and aspect ratios of anchors.

Settings Anchor Scale Aspect Ratios mAP

302 1: 1 0.7624
1 scale, 1 ratio 402 1: 1 0.7625

502 1: 1 0.7623

302 1: 1, 1: 2, 2: 1 0.7950
1 scale, 3 ratio 402 1: 1, 1: 2, 2: 1 0.7951

502 1: 1, 1: 2, 2: 1 0.7950

3 scale, 1 ratio 302, 402, 502 1: 1 0.7624

3 scale, 3 ratio 302, 402, 502 1: 1, 1: 2, 2: 1 0.7954

4. Experimental Results

In this section, we analyze our vehicle detection method. Experiments were implemented
based on the deep learning framework Caffe [29] and run on a PC with Intel core i7-4790 CPU,
a NVIDIA GTX-960 GPU (NVIDIA, Santa Clara, CA, USA), (2 GB video memory), and 8 GB of memory.
The operating system was Ubuntu 14.04 (Canonical, London, UK).

4.1. Data Set

4.1.1. Data Set Description

Two data sets were used in these experiments. The Munich Vehicle data set [30] was collected
over the city Munich, Germany. It contains 20 aerial images captured by a DLR 3K camera system [1]
at a height of 1000 m above ground. The collected vehicle data set contains a total of 17 UAV images
and 85 very-high-spatial-resolution pansharpened color infrared (CIR) images. The first eight UAV
images [3,4] were taken over the Faculty of Science of the University of Trento (Italy) and the other
nine UAV images were captured over the city Changsha, China. Seventeen UAV images have a
spatial resolution of approximately 2 cm, and 85 CIR images were acquired from an Northwestern
Polytechnical University (NWPU) VHR-10 data set [31,32], which are downloaded from the Vaihingen
data set [33] with a spatial resolution of approximately 0.08 m.

4.1.2. Data Preparation

The Munich Vehicle data set is annotated with rotated bounding boxes for eight types of vehicles
(see Figure 5a,c). Following [2], the first ten images are used for training and the other for testing.
In the training dataset, the number of each type of vehicle is shown in Table 2.

Table 2. Number of each type of vehicle.

Type Number Type Number

car 3191 car _ trail (car with trailer) 1
van 227 van _ trail (van with trailer) 3

truck 57 truck _ trail (truck with trailer) 7
cam (long truck) 8 bus 8
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Figure 5. Ground truth of the original Munich dataset, our modified ground truth and types of vehicles.

Following [2], we use two vehicle classes, the composition of “ca” and “van” as car and the “truck”
and “cam” as truck. There are 3418 cars and 65 trucks annotated in the training images, and a few
other types of vehicles (car_trail, van_trail, truck_trailer and bus). In the test set, there are 5799 cars
and 93 trucks. To make the distribution of training data reasonable, we select cars and trucks to train
our model. Due to the limited size of the training set and video memory, each original aerial image
(5616× 3744 pixels) is cropped into 11× 10 image blocks (702× 624 pixels) with overlap. The blocks
without vehicles are discarded and the remaining image blocks are rotated with four angles (i.e., 0◦,
90◦, 180◦, and 270◦). Additionally, as the number of trucks is much less than cars, we copy the image
blocks that contain trucks 30 times. Meanwhile, we create corresponding annotation files for each
block, which contain coordinates vectors of bounding box and type. Thus, based on the ten training
images, we reconstructed a new training set with 2120 images and corresponding annotation files.

Specifically, the annotation information of each image block is loaded from the original dataset,
according to its location in the original image. Then, we update the coordinate of each bounding
box, based on the relationship between image blocks and the original image. Moreover, the original
bounding boxes are rotated, but our method can only generate candidate boxes with no angles.
Therefore, we compute bounding boxes without rotation, according to the center point’s coordinates,
height and width of the bounding boxes in original annotations (center·x, center·y, size·width,
size·height, see Figure 5a). For example, when the angle between 65◦ and 115◦ or −65◦ and −115◦,
the upper left corner’s coordinates of bounding boxes are center·x minus half length, and center·y
minus half width. The width and height of the bounding box are unchanged (see Figure 5b).

For large-scale test images of the Munich data set, we crop each image into 48 blocks. To avoid
missing detection of vehicles on the cross image block boundaries, we set the overlap of the adjacent
image blocks as 50 pixels. The 48 image blocks are detected separately and then stitched together to
recombine the original image.

The collected vehicle data set contains 85 CIR images with annotations. Therefore, we manually
label the 17 UAV images with bounding box and type. This dataset is just used for testing the robustness
of our method.

4.2. Results for Munich Images

We adopt four widely used measures to quantitatively evaluate the performance of our method
in the following—namely, recall rate, precision-recall curve (PRC), mean average precision (mAP),
and F1-score. The recall rate measures the fraction of correctly identified positive detections and true
positive detections, while the precision measures the fraction of correctly identified positive detections
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and predicted positive detections. The mAP metric is measured by the area under the PRC. The higher
the value of mAP, the better the performance. Moreover, F1-score is defined as:

F1-score =
2×recall×precision

recall+precision (7)

4.2.1. The Importance of Hyper Features

Firstly, we evaluate the good performance of HRPN by recall rate. We compare HRPN with the
state-of-the-art method RPN [13], ACF detector (aggregated channel features, ACF) [2], and selective
search [16] in terms of proposal quality. The ACF detector is considered as the baseline method.
The curves of recall rates for the four methods under different IoU thresholds are plotted. In Figure 6,
we evaluate 50, 100, and 150 region proposals per image block in order to see the recall rates changes
with the IoU. The N proposals per image indicates the top-ranked N proposals based on the scores.
The plots show that our method really improves the recall rate compared to RPN, which only uses
the last convolutional layer to compute feature maps. Specifically, with 100 region proposals, HRPN
gets 85.7% recall, outperforming RPN by 13.29 points, and is much better than ACF, Selective Search
(SS) with IoU 0.3. With 50 proposals and 150 proposals, our HRPN also exceeds RPN, ACF and SS by
a large margin with different IoUs. Moreover, the CNN-based methods (HRPN and RPN) get much
higher recall than those without CNN. With IoU thresholds increasing, the recall curve of RPN drops
more sharply than our HRPN with the same region proposals. With the number of region proposals
increasing, recall rate for the corresponding method increases with the same IoU. Overall, HRPN can
generate candidate regions with high recall, which is desirable in object detection.

Moreover, we choose a loose IoU [13] (0.3 for the final detection) for such small vehicles. If a
predicted candidate region has an IoU bigger than 0.3 with the ground truth box, it is considered to be
the correct detection result.

Figure 6. Recall versus Intersection-over-Union (IoU) threshold on the Munich Vehicle test set.
(a 50 region proposals; (b) 100 region proposals; (c) 150 region proposals.

Secondly, we investigate which layers should be combined. In Figure 7, we evaluate recall rate
versus a different number of proposals for different combining layers. In Table 3, we evaluate the
detection performance with different combining layers (region proposal number is 100 and IoU is 0.3).
In addition, the recall rate and mAP in both Figure 6 and Table 3 are calculated when a boost of
classifiers are added. We train all the networks with the same configuration as RPN [13] and only
extract features from different combining layers for a cascade of boosted classifiers. The results
in Figure 6 and Table 3 show that the combination of layers 3, 4 and 5 has the best performance.
The combination of two or three layers has better results than a single layer in both recall and AP.
In addition, the last layer has better performance than the other shallow single layers in detection.
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Figure 7. Recall versus number of proposals for different combining layers (IoU = 0.3).

Table 3. Recall and mean average precision (mAP) with different layers.

Layers Recall mAP

3 68.60% 66.46%
4 69.31% 68.29%
5 72.40% 72.92%

34 73.29% 73.11%
45 73.58% 73.33%
345 78.30% 79.54%

4.2.2. Analysis for a Cascade of Boosted Classifiers

To verify the importance of mining hard negative samples, we compare the detection AP of HRPN
alone, HRPN + Fast R-CNN (H-Fast) and HRPN + Cascade of boosted classifiers (Ours), as shown in
Figure 8. According to [2], the results of ACF are considered the baseline. The histogram shows that
our method has a higher AP than HRPN and H-Fast. Specifically, in image 9, our method gets an AP
of 83.9%, outperforming HRPN by 12.96 points and H-Fast by 11.48 points. These results prove that
the hard example mining process leads to a better identification ability. Furthermore, these results also
indicate that CNN-based methods have much more impressive performance than the state-of-the-art
traditional methods.

4.2.3. Comparisons

We compare our method with state-of-the-art detection methods. Table 4 shows the numerical
comparison results of four methods (ACF, Faster R-CNN, H-Fast and Ours) for the Munich data set.
The ACF detector is the method that [2] uses. The best performances are highlighted in bold. It can be
observed that our proposed method achieves the best performance in terms of recall rate and F1-score.
Faster R-CNN achieves a much better performance than ACF. Compared with Faster R-CNN and
H-Fast, our proposed method based on a hyper feature map can improve the recall rate effectively.
Compared with H-Faster, our method has less false positives and higher F1-scores due to the hard
example mining and iterative training process.
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Figure 8. Performance comparisons of the proposed method, HRPN, H-Faster (HRPN + Fast R-CNN)
and aggregated channel features (ACF) detector in terms of mAP values in 10 test images.

The average time spent on vehicle detection is 81 ms for each image block, respectively. Specifically,
it spends 63.9 ms on HRPN, including a proposal of candidate regions and NMS. Meanwhile, the time
for the cascade of classifiers is 17.9 ms.The comparisons show that the speed of our method is
comparable. Furthermore, using advanced GPU with higher video memory, we can crop large
aerial images into a lower number of image blocks and make the detection process parallel, which will
accelerate the speed of detection.

Table 4. Performance comparison between different methods.

Method Ground Truth True Positive False Positive Recall Rate Precision Rate F1-Score Time/per Image

ACF detector 5892 3078 4062 52.24% 43.31% 0.47 4.37
Faster R-CNN 5892 4050 503 68.74% 88.95% 0.78 3.84

H-Fast 5892 4363 696 74.00% 86.2% 0.80 3.65
Ours 5892 4615 560 78.3% 89.2% 0.83 3.93

Quantitative comparison results of ten test large scale images measured by PRCs are shown in
Figure 9. We can observe that the performances of CNN-based detection methods are significantly
improved over the ACF detector. The superior performance of the CNN-based methods demonstrate
the high superiority of the learning based region proposal network compared with the human-designed
region proposal algorithms for extracting good vehicle-like regions, which is a critical task for
vehicle detection.

In addition, to further validate the ability of our method for vehicle detection in aerial images with
different scales, we resized the image for the test but not the training. These detection results of scaled
test image 2 are shown in Figure 10. Our detector performs best on the same scale as it was trained.
Regardless of whether the resolution is increased or decreased, the performance remains comparable.
However, if the resolution is increased or decreased under a larger scale factor, our method does not
perform well.
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Figure 9. precision-recall curve (PRC) of the proposed method and other state-of-the-art approaches
for vehicle detection in 10 test images, respectively.

Figure 10. Performance after rescaling the image with different factors.

4.3. Results of the Collected Vehicle Images

To show the robustness of our method, we also evaluate it on the collected vehicle data set.
We directly use the model trained on the Munich dataset and test the image without training on this
new dataset. Table 5 and Figure 11 show the results of different methods tested on the collected vehicle
data set. In Table 5, the best performances are highlighted in bold. Our proposed method still achieves
the best performance in terms of recall rate, precision and F1-Score. These results also indicate that
CNN based methods have better migration capacity compared with the traditional method. Figure 11
shows detection AP of different methods for five pictures. The histogram shows that our method still
has higher AP than other methods for the new dataset.

Table 5. Results of different methods for the collected vehicle images

Method Ground Truth True Positive False Positive Recall Rate Precision Rate F1-Score

ACF detector 882 382 652 43.31% 36.94% 0.3987
Faster R-CNN 882 395 149 44.78% 72.61% 0.5540

HRPN 882 400 145 45.35% 73.39% 0.5605
H-Fast 882 411 169 46.60% 70.86% 0.5622
Ours 882 439 146 49.77% 75.04% 0.5985
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Figure 11. Performance comparisons of different methods in terms of AP values for the collected
vehicle dataset.

Figure 12a–d show several vehicle detection results of test image blocks on the Munich dataset
with our proposed method, in which the red box denotes correct localization of car, the yellow box
denotes correct localization of truck, and the green box and blue box denote missing detection and
wrong detection, respectively. Figure 12j shows detection results for original large-scale test images
(5616× 3744 pixels). As shown in Figure 12, despite the vehicles being located in the shade or near
the image block boundaries (only part of the vehicle is shown in the image), the proposed approach
has successfully detected most of the vehicles. Figure 12e–i show several vehicle detection results
with the proposed approach on the collected vehicle dataset. Figure 12k shows results for a very large
satellite image (18239× 12837 pixels) of Tokyo download from Google Earth, Mountain View, CA,
USA. It can be observed that our method can detect most of the vehicles successfully from the collected
vehicle dataset but performs poorly for such large satellite images. These results demonstrate that
our method has good migration capacity for some images, but not all of the images. Moreover, our
method cannot handle highly occluded vehicles (see Figure 12d,h), and the vehicles in thick shadows
(see Figure 12a,d). This may be caused by the overlap of the vehicles’ local peaks in the coarse hyper
feature map. In a future study, we will consider enhancing the resolution of the hyper feature map and
improve the migration capacity of our method.
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Figure 12. Detection results from test images. Red boxes denote correct localization of car, yellow boxes
denote correct localization of truck, green boxes and blue boxes denote missing detection and incorrect
detection, respectively. (a–d) are results for the Munich test aerial image blocks; (e–h) are results on
unmanned aerial vehicle (UAV) images; (i) is results for pansharpened color infrared (CIR) image; (j) is
results for the original large-scale Munich test image; (k) is results for a large satellite image of Tokyo.

5. Conclusions

In this paper, we developed a vehicle detector with two parts: an HRPN to generate vehicle-like
regions, which combines hierarchical feature maps for small object detection and a cascade of
boosted classifiers, which improves the classification accuracy by hard negative example mining.
Extensive experiments on two datasets show that our method can detect small-sized vehicles more
accurately and reject most of the vehicle-like background objects. It also has good robustness for
images captured from UAV or CIR. For future work, the performance could be further improved by
enhancing the resolution of the hyper feature map using deconvolution layers to improve the detection
performance further.
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