
algorithms

Article

Evolutionary Hybrid Particle Swarm Optimization
Algorithm for Solving NP-Hard No-Wait Flow Shop
Scheduling Problems

Laxmi A. Bewoor 1,*, V. Chandra Prakash 1 and Sagar U. Sapkal 2

1 Department of Computer Science and Engineering, K. L. University, Andhra Pradesh, Guntur 522502, India;
vchandrap@kluniversity.in

2 Department of Mechanical Engineering, Walchand College of Engineering, Maharashtra, Sangli 416415,
India; sagarus1201@gmail.com

* Correspondence: laxmiabewoor@gmail.com; Tel.: +91-976-653-1977

Received: 29 July 2017; Accepted: 19 October 2017; Published: 28 October 2017

Abstract: The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and
simultaneous through all machines without waiting for any consecutive machines. The scheduling
of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in
turn reduces total processing time. The classical brute force method for finding the probabilities
of scheduling for improving the utilization of resources may become trapped in local optima, and
this problem can hence be observed as a typical NP-hard combinatorial optimization problem that
requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper
proposes an effective hybrid Particle Swarm Optimization (PSO) metaheuristic algorithm for solving
no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs.
This Proposed Hybrid Particle Swarm Optimization (PHPSO) algorithm presents a solution by the
random key representation rule for converting the continuous position information values of particles
to a discrete job permutation. The proposed algorithm initializes population efficiently with the
Nawaz-Enscore-Ham (NEH) heuristic technique and uses an evolutionary search guided by the
mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid
getting stuck in local optima and to provide the appropriate balance of global exploration and local
exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark
suite. Computational results and comparisons with existing metaheuristics show that the PHPSO
algorithm outperforms the existing methods in terms of quality search and robustness for the problem
considered. The improvement in solution quality is confirmed by statistical tests of significance.

Keywords: NP-hard; no-wait flow shop; metaheuristic; scheduling; particle swarm optimization;
simulated annealing; total flow time

1. Introduction

Scheduling is an integral part of advanced manufacturing systems. Production scheduling is
the arrangement of jobs to be processed on available machines under some constraints. Flow Shop,
Job Shop, and Open Shop are the classical models used to solve scheduling problems. The Flow
Shop Scheduling Problem (FSSP) addresses most famous machine scheduling problems of many
manufacturing systems, assembly lines, and information service facilities [1,2]. Sometimes Flow Shops
have no delay situations that occur in the production environment in many real-life situations where a
job must be processed continuously, without any interruption, from beginning to end, in order to follow
the technological order of a process, which leads to a variant with the added constraint of “no-wait” [3].
In order to maintain continuous processing of a job in No-Wait Flow Shop Scheduling (NWFSS),

Algorithms 2017, 10, 121; doi:10.3390/a10040121 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10040121
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 121 2 of 17

the start of a job by the first machine is delayed, if required, and the scheduling of such a “no-wait”
constraint has attracted many researchers. A No-Wait Flow Shop Scheduling Problem (NWFSSP)
has found applications in various processing industries, such as the chemical industry [4], food [5],
concrete ware production [6], pharmaceuticals [7], etc. Allahverdi [8] reviewed scheduling problems
with the no-wait constraint with respect to different shop environments, performance measures,
setup types, and optimal scheduling criteria. Among various optimality criteria, viz. makespan,
Total Flow Time (TFT), tardiness, lateness, number of tardy jobs, etc., makespan [9] and TFT [7,10] are
of major interest for solving scheduling problems of no-wait type of flow shops, because makespan
and TFT determine the total processing time for an entire pool of jobs and the total processing times
for individual jobs respectively.

This paper addresses TFT as an objective function for solving NWFSSP. TFT is considered
to be an important performance measure that, when optimized, reflects a stable or uniform
utilization of resources, a rapid turn-around on jobs, and the minimization of in-process inventory [4].
The main objective of planning a production schedule is to discover the sequence of jobs, which
minimizes TFT. The classical brute force method for finding such job sequences fails for large-sized
problems, as computational complexity rises exponentially as n!, where “n” is number of jobs;
thus, NWFSSP is treated as combinatorial optimization problem. Because of computational
complexity, researchers [11–13] have concluded that NWFSSP with more than two machines is
NP-hard. The solutions to solve such NP-hard problems consist of an approximate algorithm which
uses constructive heuristics, local search methods, and metaheuristics. Generally, heuristic algorithms
can obtain near-optimal solutions in an acceptable amount of time. Earlier researchers [14–18] have
developed efficient constructive heuristic algorithms for TFT minimization; however, these attempts
are not useful for identifying near optimal solutions for larger-sized problems, as these developed
algorithms usually get trapped in local optima for large-problem sizes [15]. Local search methods
can find the solutions, but the quality of a solution and computational time depends to a great extent
on appropriate initial populations [19]. Due to the advent of computation techniques, metaheuristics
can be used to solve problems in less time so that the limitation of computational complexity can be
resolved through metaheuristic applications.

The field of metaheuristics, for application in combinatorial optimization problems of the scientific
and industrial worlds, is growing rapidly [20]; on the other hand, attempts to use metaheuristics for
solving combinatorial optimization problems began late. The recent past has witnessed a remarkable
shift towards the hybridization of metaheuristics for optimization. The current trend focuses more on
problem-specific approaches that lead to hybridization [21]. This paper attempts to use a metaheuristic
technique, viz. Particle Swarm Optimization (PSO) algorithm, and its hybridization with Simulated
Annealing (SA) to solve NWFSSP with a consideration of the Total Flow Time (TFT) of jobs as
an objective criterion. Through extensive computational analysis using the well-known Taillard
benchmark suite, we demonstrate that the Proposed Hybrid PSO (PHPSO) algorithm outperforms the
recent best-performing algorithms available in the literature.

The remainder of this paper is organized as follows. Section 2 provides a comparative review
of various metaheuristics for solving NWFSSP. Section 3 formally defines and formulates NWFSSP.
Section 4 describes metaheuristic PSO and SA along with a detailed procedure for implementing the
proposed metaheuristic PHPSO. Section 5 describes PHPSO on Taillard benchmark suites, and then
compares the performance of the proposed metaheuristics with that of the best-so-far algorithms.
Finally, concluding remarks are given in Section 6.

2. Literature Review

Various metaheuristics have been proposed for solving NWFSSP for different objective criteria.
This section provides a comparative review of various metaheuristics, used by earlier researchers, for
solving NWFSSP for TFT as an optimization criterion, along with various hybridization techniques for
the improvement of results obtained via metaheuristics over the last decade.

Algorithms 2017, 10, 121 3 of 17

Fink and Vob [3] applied different kinds of metaheuristics and constructive heuristics, such as
nearest neighbor, cheapest insertion, and the pilot method, along with steepest descent (SD), Iterated
Steepest Descent (ISD), Simulated Annealing (SA), and Tabu Search (TS), and examined tradeoffs
between solution quality and running time. Implementation efforts showed that high-quality results
were obtained in an efficient way by applying metaheuristics. Later, Gao et al. [22] proposed the Hybrid
Harmony Search (HHS) algorithm using Nawaz-Enscore-Ham (NEH) [23] heuristics, and provided a
solution with an appropriate balance between global exploration and local exploitation. Gao et al. [24]
attempted to use the Enhanced Migrating Birds Algorithm (EMBO), based on neighborhood search
heuristics, to avoid local optima. In order to improve the quality of solutions, Filho et al. [25] came
up with a novel Evolutionary Clustering Search (ECS) metaheuristic approach, and found it to have
better results than the method of Fink and Vob [3], Discrete Particle Swarm Optimization (DPSO) [9].
Genetic Algorithm (GA) as a metaheuristic technique was quite popular for solving optimization
problems, and, later, it was observed that the solution quality was improved using a hybridization
technique. Tseng and Lin [7] proposed the hybrid genetic algorithm and a novel local search scheme for
improving solution qualities. Zang et al. [26] also proposed the Hybrid-Genetic Algorithm (HGA) using
a new crossover operator, which helped them to argue that metaheuristics always yield better solutions
than heuristics. Further, the Asynchronous Genetic Algorithm (AGA) proposed by Xu et al. [27]
provided a solution for avoiding gene diversity in a short amount of time. Recently, Wang et al. [28]
used a constraint-simplified mixed integer programming model and proposed the Hybridization
of GA with the Neighborhood Search (H&NSGA). Although GA yields better solutions, it requires
the appropriate tuning of parameters; thus, a new population-based methodology working on the
principle of social behavior was introduced.

PSO is a population-based metaheuristic technique that is quite popular nowadays, because
of its better solution quality achieved with less parameter tuning efforts. The comparative analysis
of various metaheuristics for NWFSSP, by Bewoor et al. [29,30], advocated the effectiveness of PSO.
Some remarkable metaheuristics were developed by Pan et al. [9,10] for solving NWFSSP. Pan et al. [9]
developed Discrete Particle Swarm Optimization (DPSO) by considering both the makespan and total
flow time minimization as optimization criteria for solving the no-wait flowshop scheduling problem.
Akhshabi et al. [31] proposed a Hybrid Particle Swarm Optimization (HPSO) algorithm, based on the
Memetic Algorithm (MA), and provided better solutions. On the basis of a detailed literature review,
and a study of the status of research work related to use of metaheuristics for solving NWFSSP for TFT
as optimization criteria, the following research gaps were identified:

• The published literature, thus far, has primarily addressed permutation-type flow shop scheduling
problems, but fewer attempts were found in the study of the “no-wait” type variant of flow shop
scheduling problems (NWFSSP).

• Earlier researchers used PSO, variants of PSO, DPSO, and the hybridization of PSO with MA for
solving NWFSSP with TFT as an optimality criterion; however, the development of an efficient
algorithm using the hybridization of PSO with SA and TFT as an optimality criterion for NWFSSP
has not been reported, neither for small-sized jobs (n = 20, 50, and 100) nor for large-sized jobs
(n = 200 and 500).

• Investigations done by most of the researchers for solving NWFSSP have been limited to 100/200
jobs [3,9,15–17]. Recently, Pan-Ruiz et al. [10] tried to solve large-sized problems up to 500 jobs
for the Permutation Flow Shop Scheduling Problem (FSSP) and Akhshabi et al. [31] considered
NWFSSP for solving large-sized problems up to 500 jobs. Hence, the scope for further research
can be clearly sensed to develop improved metaheuristics.

This provided the impetus to study the hybridization of PSO with SA in order to solve NWFSSP
optimally. To know the effectiveness and efficiency of the newly-proposed algorithm, the results
produced by earlier researchers, Fink and Vob [3], DPSO [9], Pan and Ruiz [10], and HPSO [31], are
used for comparison with the PHPSO algorithm.

Algorithms 2017, 10, 121 4 of 17

3. No-Wait Flow Shop Scheduling Problem (NWFSSP)

No-wait Flowshop scheduling has set of “n” jobs and “m” machines. The processing time p(i, j)
of every job “i” on each machine “j” is given. NWFSS has additional constraint of “no-wait”, which
meansthat once a job starts at the first machine, it will be processed entirely through all “m” machines
without waiting in between and without any preemption. To meet this constraint, a job may be
delayed at the beginning. So, in order to solve this type of problems, a delay matrix (δ) needs to be
calculated [17].

Let σ = {σ1, σ2, . . . , σn} represent the sequence of “n” jobs to be processed on “m” machines, and
δ(i, s) represent the minimum delay on the first machine between the start of job “i” and the start of
job “s”. Also, let p(σi, j) represent the processing time on machine “j” of the job at the “i” position
of a given sequence, and let δ(σi−1, σi) denote the minimum delay on the first machine between the
start of two consecutive jobs found in the “(i − 1)” and “i” position of the sequence. Let C(σi) be the
completion time of the job in the ith position of a given sequence.

For i = 1, 2, . . . , n and j = 1, 2, . . . , m

C(σ1) =
m

∑
j=1

p(σ1, j) (1)

C(σ2) = δ(σ1,σ2) +
m

∑
j=1

p(σ2, j) (2)

C(σi) =
i

∑
k=2

δ(σk−1,σk) +
m

∑
j=1

p(σi, j) (3)

The formula for total flow time (TFT) is given as:

TFT =
n

∑
i=1

C(σ1) (4)

=
n

∑
i=2
{

i

∑
k=2

δ(σk−1,σk) +
m

∑
j=1

p(σi, j) }+
m

∑
j=1

p(σ1, j) (5)

=
n

∑
i=2

(n + 1− i) δ (σi−1,σi) +
n

∑
i=2

m

∑
j=1

p(i, j) (6)

The delay matrix of size n × n provides all the δ(i,k) values between the start of any two
consecutive jobs i and k, where i 6= k in a given sequence of n jobs to determine the objective function
value. The delay matrix δ(i,k) values are obtained from the following equation:

δ(i, k) = p(i, 1) + max{
r

∑
h=2

p(i, h)−
m

∑
h=1

p(k, h), 0 } 2 ≤ r ≤ m (7)

Given the matrix of size “n” (jobs) × “m” (machines) with processing time p(i,j), it is possible
to generate (n!) number of feasible sequence of solutions, denoted as F(σ), from which the optimal
sequence, denoted as F(σ*), is to be chosen and can be stated as per the equation given below:

F (σ∗) ≤ F (σ) (8)

The problem is to determine a sequence of “n” jobs which gives minimum total flow time (TFT).

Algorithms 2017, 10, 121 5 of 17

4. Proposed Hybrid PSO (PHPSO) for NWFSSP

In this paper, we propose an extension of the PSO algorithm to solve NWFSSP. PHPSO essentially
differs from the standard PSO in some characteristics. While designing PHPSO, suitable particles from
the current population are selected and effective local search for the selected particles are carried out.
Taillard benchmark suite [32] is used as the input dataset for validating results produced by PHPSO.
The procedural steps for designing PHPSO are explained in detail in the subsequent sections.

4.1. Particle Swarm Optimization (PSO)

PSO is an optimization algorithm that simulates its behavior from the biological example of a
flock of birds searching for food in a defined area [33]. Birds do not know where the food is, but they
know at each time how far the food is, by following the nearest food strategy. PSO simulates this
behavior and finds the best solution in the search space. Each particle in PSO is used to represent a
single solution. The fitness value of each particle is evaluated by the objective function. The velocity
of each particle provides flying direction for food. In this context, the particle reaches towards the
approximate solution for the given objective function. The standard theory and procedure of PSO is
well defined by Eberhard and Kennedy [34].

The algorithm is initialized with particles at random positions, and then it explores the search
space to find a better solution [18]. For each iteration, each particle adjusts its velocity to follow two
best solutions. The first is the cognitive part where a particle follows its own best solution found so
far, called “pbest”, and the other is the current best solution of swarm, called “gbest”. On the basis of
the different learning approaches of particles, PSO presents with two versions viz. the global version
and the local version. In the global PSO, each particle learns from the best particle in the whole
swarm, while in the local version each particle learns from the best particle in its neighborhood. Out of
these two versions, the local PSO has a slower convergence speed; thus, it may adapt to a changing
environment more easily which is followed exactly in the NWFSS. The new velocity is denoted by
Vnew and the new position is denoted by Xnew, as stated in Equations (9) and (10):

Vnew = w*Vcurr + c1*r1*(pbest − Xcurr) + c2*r2*(gbest − Xcurr) (9)

Xnew = Xcurr + Vnew (10)

where w is the inertia weight, which provides balance between local and global search capabilities.
The acceleration constants c1 and c2 in Equation (9) are cognitive parameters which develop the bird’s
own confidence (cognitive behavior) and its confidence in the swarm (social behavior), respectively.
Low values of c1 and c2 may direct particles to roam far from target regions, whereas high values
may lead towards hasty movement from target regions. So, these acceleration coefficients should be
appropriately adjusted. Xnew and Vnew are the new position and velocity of the particle, respectively.
Xcurr and Vcurr are the current position and velocity of the particle, respectively. In the standard
PSO, the new velocity of the particle is found by Equation (9), considering its previous velocity and
the distance of its current position from both its own best historical position and its neighbors’ best
position. Generally, the value of each component in velocity is set to the range (Vmax, −Vmax) due to
which particles cannot roam excessively outside the search space. With this new velocity, the particle
moves towards a new position according to Equation (10). This process stops when the user-defined
terminating criterion is met.

4.2. Solution Representation

Solution representation is one of the most important issues in designing a PSO algorithm.
To represent the solution, a job-permutation-based encoding scheme [2] has been used very often by
earlier researchers for solving NWFSSP. However, as the position of particles in PSO is a continuous
character, a standard encoding scheme of PSO cannot be adopted directly for solving NWFSSP. PSO can

Algorithms 2017, 10, 121 6 of 17

be effectively applied by considering dimension size as “n” for representing “n” jobs, and related
particle information is represented as Xi = {x1, x2, x3, . . . , xn). As permutations of jobs cannot be
presented with the particle alone, it is necessary to find suitable mapping between the job sequence
and the position of particles in PSO. So, in this paper, the Ranked-Order-Value (ROV) rule based on
the random key value [35,36] is used to determine the permutation implied by the position values
xij of particle Xi. The ROV rule converts the continuous position values of particle to a discrete job
permutation. This enables one to convert the continuous nature of PSO algorithms to apply to the
determination of the discrete nature of problems, such as sequencing, which in turn evaluates the
performance of a particle. Moreover, permutations of jobs are constructed by considering a job index,
which is the rank of each position value of a particle. The ROV rule used in PHPSO handles the particle
with the smallest position value first and assigns a rank value i.e., 1, and that which is observed as
the smallest is assigned to that position of the particle. In the case of two or more particles with same
position values, the position with the smallest dimension number is given priority and assigned a rank
value first. The remaining position values are incremented by 1 and subsequently assigned the next
rank values as per the dimension number. Then, the second smallest position value will be handled
in the same manner. Thus, the position information of a particle is converted to corresponding job
permutation σij = [j1, j2, j3, . . . , jn]. To demonstrate the scheme of the ROV rule, we provide a simple
example in Table 1.

Let us consider that the random position values of particle (for n = 5) observed initially are
Xi = {5.45, 4.22, 4.37, 5.47, 4.37}. As x1,2 = 4.22 has the smallest position value of the particle, x1,2 is
prioritized first by being assigned the rank value of 1. Next, two particles x1,3 and x1,5 have equal
position value i.e., 4.37. Yet, index of x1,3 is smaller as compared to x1,5. So, X1,3 is assigned the next
rank value of 2 and x1,5 is incremented to rank value 3. Finally, rank values 4 and 5 are respectively
assigned to x1,1 and x1,4. Thus, the job permutation σij = [4, 1, 2, 5, 3] is obtained considering the
position information value of each particle and the corresponding rank assignment based on the ROV
rule. In the Proposed Hybrid PSO, job permutation based local search approaches are applied rather
than a direct consideration of the particle’s position information. So, it is necessary to convert the
particle’s position information to a corresponding job permutation as per the ROV rule when a local
search is completed. Because of the simple mechanism of the ROV rule, adjustment for a new particle
position is very easy. Local search methods using the position information are handled in the same
way as the process adopted for job permutation. For example, in Table 2, if the SWAP operator [2] is
used as a local search operator for job permutation; the swapping of job 2 and job 4 corresponds to the
swap of position values 4.22 and 4.37.

Table 1. Representation of the solution of position information of each particle and the corresponding
ROV for the corresponding job permutation.

Dimension 1 2 3 4 5

xij 5.45 4.22 4.37 5.47 4.37
Job Permutation 4 1 2 5 3

Table 2. Job permutations and the corresponding position information after swapping job2 and job4
for a swap-based local search.

Dimension 1 2 3 4 5

xij 4.37 4.22 5.45 5.47 4.37
Job Permutation 2 1 4 5 3

4.3. Population Initialization

The initial swarm generation is often random in the standard PSO. An initial population with
a certain quality and diversity provides an efficient solution. In this paper, we propose the NEH

Algorithms 2017, 10, 121 7 of 17

heuristic technique [23] as an efficient population initialization procedure. In order to find NEH-based
seed sequence, jobs are ordered in ascending sums of their total flow times. The partial schedules
depending on the initial order are taken into account to construct a job sequence. Consider a current
sequence σij = [4, 1, 2, 5, 3]; if job 4 at index “i” is the first job, then partial sequences are constructed by
inserting job 4 at all indexes where “i = i + 1” of the current sequence which may appear as [1, 4, 2, 5, 3],
[1, 2, 4, 5, 3], [1, 2, 5, 4, 3], and [1, 2, 5, 3, 4]. Among all these sequences, the sequence generating
the minimum TFT is chosen as the current sequence for the next iteration. Thus, initial population
generation with the NEH technique helps job permutation as compared to a random initial population.

4.4. Simulated Annealing(SA)

In metallurgy, the annealing process is the process where metals are cooled slowly to reach
a state of low energy where they are very strong [37]. At high temperatures, the movements are
random, whereas at low temperatures, little randomness is observed. Khamlichi et al. [38] used SA
as a local search method for finding neighborhoods for optimizing the number of sensors and their
positions in order to achieve the desired application requirements. Here, SA is used for possible job
sequences leading towards minimum TFT in the context of NWFSS. SA starts a random search at
a high temperature, and eventually the temperature is reduced slowly, becoming a greedy descent
as it approaches to zero degrees. Random changes in the temperature not only help to escape from
local minima, but also help to find low heuristic value regions. The results may be worse initially
at high temperatures, but improvements can be observed gradually at lower temperatures. For the
minimization of a given objective function, temperature should be reduced according the probability
(P) given by the Boltzmann factor given in Equation (11):

P = e−∆E/αT (11)

where α is the Boltzmann constant, T is the current temperature, and ∆E is the change in energy.
The Boltzmann probability is a random number between 0 and 1 drawn from a uniform distribution.
If the Boltzmann probability is more than the random number, the configuration is accepted. This
allows the algorithm to escape from local minima. A proper initial temperature should be maintained
high so that all states of the system have an equal probability of being visited.

4.5. Proposed Hybrid PSO (PHPSO) Algorithm

PHPSO algorithm is based on the solution representation by the ROV rule, population
initialization with NEH-based local search and neighborhood searching through SA-based local
search. The complete computational procedure of the PHPSO framework for the NWFSS PHPSO
algorithm for NWFSSP (Algorithm 1) can be summarized as follows:

Algorithm 1: PHPSO for NWFSSP

Step 1: Input the total no. of jobs (n), total no. of machines (m) and processing time matrix (p).
Calculate delay matrix (δ) as per Equation (7).
Step 2:

for i = 0 to n − 1 do

2.1 Initialize particle iwith random value (mpval) and velocity (mvelocity). Set the acceleration constants c1
and to 1.65 and 1.75 respectively; r1 and r2 both are set to the value 0.5 and inertia weight w to 0.65.

2.2 Apply ROV rule to represent random value of particle to position of particle (mpbest).
2.3 Calculate the processing sequence of job (σ) as per ROV rule.
2.4 Evaluate objective function value TFT as per Equation (6).

Algorithms 2017, 10, 121 8 of 17

end for
Step 3:

Sort the particles with increasing order of TFT score.
Step 4: Generate initial seed sequence with NEH algorithm by following:

4.1 Consider the first sequence(σ1) of job and find TFT. Swap first position with next and compute TFT for
new sequence(σ1).

4.2 for i = 1 to n do

4.2.1 Swap σi with σi+1 and find TFT
4.2.2 if TFT(σi) < TFT(σi+1) set fseq = σi

else fseq = σi+1

Step 5: minArr = fseq

Step 6: Calculate pbest (mpbest) of particle and gbest (pgbest) of swarm for generating the initial seed
sequence.
Step 7: Select particle from the current population for local refinement;

repeat

7.1 for i = 0 to n − 1 do

7.1.1 Update velocity and position of particle according to Equations (9) and (10), respectively.
7.1.2 Update value of particle (mpval) and apply ROV rule to find next job permutation.
7.1.3 Calculate TFT value for the updated particle.
7.1.4 If updated_TFT_value > current_TFT_value and gbest (pgbest) then
7.1.5 update pbest of particle (mpbest) and gbest (pgbest)

end for
until maximum iteration count is reached.
Step 8: Select best_particle from the population for global refinement;
Step 9: Initialize initial_temperature, T as 3.0 and final_temperature, F as 0.9, and cooling rate α as 0.99.
Step 10: Initialize Best_So_Far to current state.
Step 11: while T < final_temperature do

11.1 for i = 0 to n − 1

11.1.1 Randomly perturb from the current state to a new state and calculate corresponding objective
function value.

11.1.2 Update gbest depending on best particle.
11.1.3 Calculate the difference in objective function value between current and new state i.e., ∆E
11.1.4 If ∆E < 0 i.e., new state has minimum TFT, accept new state as current state. Set Best_So_Far to

this new state
11.1.5 If ∆E ≥ 0, consider new state as current state with probability by invoking random number

between range (0, 1).
11.1.6 Prob (accepted) = exp (−∆E/α·T).
11.1.7 Revise T as necessary according to annealing schedule

end for
end while
Step 12: set gbest to Best_So_Far.
End Procedure

Thus, it can be observed that the PHPSO effectively provides a promising solution within the
entire region, along with exploitation for solution improvement in sub-regions. Because of the NP-hard
nature of NWFSSP, PHPSO applies local search methods which include NEH-based local search and
SA-based local search. Since both exploration and exploitation are used in this algorithm, it is expected
to achieve good results for NWFSSP. The results obtained through various numerical simulations and
their comparisons are demonstrated in the next section.

Algorithms 2017, 10, 121 9 of 17

5. Numerical Tests and Comparisons

5.1. Experimental Setup

To test the performance of the PHPSO algorithm, a computational simulation is carried out with
some well-studied benchmarks. In this paper, 120 problem instances that were contributed by the
Taillard dataset are selected. The Taillard benchmark dataset is composed of 12 groups containing
the problems of size ranging from 20 jobs and five machines to 500 jobs and 20 machines with 10
instances of each problem size. Further, these subsets are denoted as 20 × 5 (ta001–ta010), 20 × 10
(ta011–ta020), 20 × 20 (ta021–ta030), 50 × 5 (ta031–ta040), 50 × 10 (ta041–ta050), 50 × 20 (ta051–ta060),
100 × 5 (ta061–ta070), 100 × 10 (ta071–ta080), 100 × 20 (ta081–ta090), 200 × 10 (ta091–ta100), 200 × 20
(ta101–ta110), and 500 × 20 (ta111–ta120) representing the number of jobs and machines respectively.
In this paper, we used this dataset to test our PHPSO algorithm, and this test bed is treated for NWFSSP
with TFT as the optimization criterion. PHPSO is coded in Java and run on Intel Core i5, 8 GB RAM,
2.20 GHz PC.

5.2. Computational and Statistical Evaluation

To compare the proposed heuristic with the existing heuristics, we carried out the experimentation
by running each instance independently 10 times; for each replication we used “Average Relative
Percentage Deviation” (ARPD) as a performance measure, which is popular in the scheduling
literature [9,10,14,16,17]. ARPD is given by:

ARPD =
100

k

k

∑
i=1

(HeuristiCi− BestHi)
BestHi

(12)

where HeuristiCi is the total flowtime obtained by any of four algorithms, and the BestHi is the lowest
total flowtime obtained for that specific instance. Table 3 displays a comparative evaluation of the
proposed metaheuristic, F&V [3], DPSO [9], Pan-Ruiz [10], and HPSO [31] based on ARPD for the
Taillard benchmark data suite for 500 jobs.

Table 3. Comparison of performance of the existing metaheuristics and PHPSO.

Instances F&V DPSO PAN-
RUIZ HPSO PHPSO Instances F&V DPSO PAN-

RUIZ HPSO PHPSO

ta001 0.6602 0.6602 0.4864 0.4864 0 ta062 0.3453 0.3243 0.0779 0.0779 0
ta002 0.8378 0.8378 0.6142 0.6142 0 ta063 0.341 0.3253 0.0802 0.0802 0
ta003 0.3002 0.3002 0.0931 0.0931 0 ta064 0.3614 0.353 0.112 0.112 0
ta004 0.5711 0.5711 0.3505 0.3505 0 ta065 0.2568 0.2431 0.0316 0.0316 0
ta005 0.6642 0.6642 0.4699 0.4699 0 ta066 0.2517 0.2355 0 0 0.6682
ta006 0.8226 0.8226 0.543 0.543 0 ta067 0.41 0.399 0.1294 0.1294 0
ta007 0.7412 0.7412 0.5032 0.5032 0 ta068 0.2638 0.246 0 0 0.578
ta008 0.2086 0.2086 0.0566 0.0566 0 ta069 0.2751 0.2606 0.0276 0.0276 0
ta009 0.6369 0.6369 0.4281 0.4284 0 ta070 0.2429 0.2272 0 0 0.5659
ta010 0.2729 0.2729 0.0747 0.0747 0 ta071 0.5933 0.5818 0.152 0.1519 0
ta011 0.449 0.449 0.2021 0.2021 0 ta072 0.6913 0.6736 0.1762 0.1762 0
ta012 1.4844 1.4844 1.1164 1.1164 0 ta073 0.6287 0.6143 0.1562 0.1562 0
ta013 1.4634 1.4634 1.1326 1.1326 0 ta074 0.6034 0.586 0.143 0.143 0
ta014 0.4945 0.4945 0.2571 0.2571 0 ta075 0.7386 0.725 0.2368 0.2368 0
ta015 1.2817 1.2817 0.8373 0.8373 0 ta076 0.5632 0.5474 0.0772 0.0772 0
ta016 1.7866 1.7866 1.4364 1.4364 0 ta077 0.4528 0.4413 0.03 0.03 0
ta017 1.8615 1.8615 1.3951 1.3951 0 ta078 0.7447 0.7325 0.2625 0.2625 0
ta018 0.9409 0.9409 0.6262 0.6262 0 ta079 0.6651 0.6526 0.2063 0.2063 0
ta019 0.6716 0.6716 0.446 0.446 0 ta080 0.6151 0.5987 0.1464 0.1464 0
ta020 1.1856 1.1856 0.8944 0.8944 0 ta081 1.2881 1.272 0.4875 0.4875 0
ta021 3.459 3.459 2.8844 2.8844 0 ta082 1.1395 1.1295 0.413 0.413 0
ta022 3.0842 3.0842 2.4337 2.4337 0 ta083 1.2602 1.2526 0.487 0.487 0
ta023 2.7716 2.7716 2.3392 2.3392 0 ta084 1.3522 1.3387 0.5561 0.5561 0
ta024 2.4208 2.4208 1.7912 1.7912 0 ta085 1.0442 1.0261 0.3556 0.3556 0

Algorithms 2017, 10, 121 10 of 17

Table 3. Cont.

Instances F&V DPSO PAN-
RUIZ HPSO PHPSO Instances F&V DPSO PAN-

RUIZ HPSO PHPSO

ta025 1.2228 1.2228 0.9689 0.9689 0 ta086 1.1755 1.1604 0.4352 0.4352 0
ta026 2.9389 2.9389 2.3263 2.3263 0 ta087 1.2491 1.2396 0.4628 0.4628 0
ta027 1.5579 1.5579 1.1232 1.1232 0 ta088 0.5035 0.4935 0 0 0
ta028 3.1438 3.1438 2.63 2.63 0 Ta089 1.0852 1.0701 0.3824 0.3824 0
ta029 3.0663 3.0663 2.4829 2.4829 0 ta090 0.3783 0.5 0 0 0.4575
ta030 2.6776 2.6776 2.128 2.128 0 ta091 0.6029 0.5761 0.1025 0.1025 0
ta031 0.5309 0.5242 0.305 0.305 0 ta092 0.4659 0.428 0 0 0.7522
ta032 0.3904 0.3816 0.1345 0.1345 0 ta093 0.4476 0.4266 0 0 0.7405
ta033 0.3633 0.3602 0.1 0.1 0 ta094 0.4936 0.4664 0.0334 0.0334 0
ta034 0.3682 0.3638 0.1283 0.1283 0 ta095 0.4635 0.4351 0 0 0.7278
ta035 0.432 0.425 0.1837 0.1837 0 ta096 0.499 0.4649 0 0 0.7416
ta036 0.4044 0.4014 0.16 0.16 0 ta097 0.4638 0.4366 0 0 0.5638
ta037 0.3379 0.3347 0.125 0.125 0 ta098 0.5586 0.523 0.0621 0.0621 0
ta038 0.3947 0.391 0.1357 0.1357 0 ta099 0.5659 0.5388 0.066 0.066 0
ta039 0.3935 0.3932 0.1572 0.1572 0 ta100 0.5911 0.558 0.0779 0.0779 0
ta040 0.4571 0.4501 0.1953 0.1953 0 ta101 0.9873 0.9636 0.2122 0.2122 0
ta041 0.3132 0.3092 0 0 0.1271 ta102 0.3667 0.6266 0 0 0.7785
ta042 1.1402 1.1346 0.5724 0.5724 0 ta103 0.6347 0.6084 0.0124 0 0
ta043 0.636 0.6346 0.2403 0.2403 0 ta104 1.0478 1.0169 0.2425 0.2425 0
ta044 0.9319 0.929 0.4709 0.4709 0 ta105 0.6518 0.6373 0 0 0.7306
ta045 1.1979 1.1951 0.6446 0.6446 0 ta106 1.0966 1.0666 0.2576 0.2576 0
ta046 0.8167 0.8137 0.3965 0.3965 0 ta107 0.645 0.6233 0 0 0
ta047 0.3134 0.3142 0 0 0.1592 ta108 0.9611 0.9464 0.1955 0.1852 0
ta048 0.9951 0.9953 0.5039 0.5039 0 ta109 1.0853 1.0552 0.2642 0.2642 0
ta049 0.9334 0.9314 0.4952 0.4952 0 ta110 0.6368 0.6159 0 0 0
ta050 0.8461 0.8455 0.4318 0.4318 0 ta111 - - 0.07 0.07 0
ta051 1.7498 1.752 1.0019 1.0019 0 ta112 - - 0.05 0.05 0
ta052 0.3752 0.3731 0.018 0.018 0 ta113 - - 0.05 0.05 0
ta053 1.592 1.5903 0.8841 0.8841 0 ta114 - - 0.05 0.05 0
ta054 1.6893 1.6915 1.0019 1.0019 0 ta115 - - 0.07 0.07 0
ta056 1.2087 1.2087 0.6463 0.6463 0 ta116 - - 0.06 0.06 0
ta057 0.3609 0.3596 0 0 0.0642 ta117 - - 0.02 0.02 0
ta058 1.8276 1.823 1.0604 1.0604 0 ta118 - - 0.11 0.1 0
ta059 0.4815 0.4807 0.0923 0.0923 0 ta119 - - 0 0 0.99
ta060 0.3934 0.3934 0.0257 0.0257 0 ta120 - - 0 0 1.09
ta061 0.3236 0.3051 0.0882 0.0882 0 Avg. 0.9011 0.8955 0.4244 0.4241 0.0999

Table 3 exhibits the results showing that the ARPD of PHPSO is significantly less compared to
existing algorithms. It is also observed that, with respect to ARPD, the proposed method performs
better than either of the existing methods for 103 problems out of the 120 under consideration.

To validate the significance of the proposed algorithm statistically, the results of PHPSO are
compared with the results obtained by earlier developed metaheuristics viz. F&V (2003), DPSO
(2008), Pan-Ruiz (2012), and HPSO (2014). To test the performance of the proposed algorithm and
the best-known solutions of earlier algorithms published in the literature, a series of the paired t-test
at the 95% significance level was carried out by Devore [39]. Paired t-test analyzes the differences
in two observations of the mean of the results of PHPSO and the mean of existing metaheuristics.
Let µD = µ1 − µ2 denote the true difference between the ARPD generated by two different algorithms.
The null hypothesis is given by H0: µD = µ1 − µ2 = 0, saying that there is no difference between
the ARPD generated by two algorithms when compared. The alternative hypothesis is given by
H1: µD = µ1 − µ 2 6= 0, saying that there is a difference between the ARPD generated by two algorithms
when compared. The paired t-test results on the Taillard instances are shown in Tables 4–9.

The p-value is zero. Thus, the null hypothesis was rejected on behalf of the PHPSO algorithm.
This indicates that the difference between TFTs generated using both algorithms are meaningful at
the confidence interval (CI) of 95%. For this reason, it can be concluded that the PHPSO algorithm is
superior to F&V, DPSO, Pan-Ruiz, and HPSO.

In addition to the pair-wise comparison of the metaheuristics, to observe the statistical significance
of the differences between the heuristics, the means of each metaheuristic and the corresponding 95%
confidence intervals are plotted in Figures 1 and 2.

Algorithms 2017, 10, 121 11 of 17

Table 4. Paired t-test for H0 = PHPSO = HPSO vs. H1 = PHPSO 6= HPSO on the best-known solutions.

Algorithm N Mean StDev SE Mean

PHPSO 110 282,949 380,236 36,254
HPSO-2014 110 319,512 405,337 38,647
Difference 110 −36,563.3 60,259.7 5745.5

95% CI for mean difference: (−47,950.8, −25,175.9); t-test of mean difference = 0 (vs. not = 0): t-value = −6.36,
p-value = 0.000.

Table 5. Paired t-test for H0 = PHPSO = Pan-Ruiz vs. H1 = PHPSO 6= Pan-Ruiz on the best-known solutions.

Algorithm N Mean StDev SE Mean

PHPSO 110 282,949 380,236 36,254
Pan+Ruiz-2012 110 319,750 405,889 38,700

Difference 110 −36,801.5 60,548.4 5773.1

95% CI for mean difference: (−48,243.5, −25,359.5); t-test of mean difference = 0 (vs. not = 0): t-value = −6.37,
p-value = 0.000.

Table 6. Paired t-test for H0 = PHPSO = DPSO vs. H1= PHPSO 6= DPSO on the best-known solutions

Algorithm N Mean StDev SE Mean

PHPSO 110 282,949 380,236 36,254
DPSO-2008 110 472,275 637,377 60,771
Difference 110 −189,326 272,438 25,976

95% CI for mean difference: (−240,810, −137,843); t-test of mean difference = 0 (vs. not = 0): t-value = −7.29,
p-Value = 0.000.

Table 7. Paired t-test for H0 = PHPSO = F&V vs. H1 = PHPSO 6= F&V on the best-known solutions.

Algorithm N Mean StDev SE Mean

PHPSO 110 282,949 380,236 36,254
F&V-2003 110 478,400 647,517 61,738
Difference 110 −195,451 267,281 25,484

95% CI for mean difference: (−248, 238, −141, 755); t-test of mean difference = 0 (vs. not = 0): t-value = −7.26,
p-Value = 0.000.

Table 8. Paired t-test for H0 = PHPSO = HPSO vs. H1 = PHPSO 6= HPSO on the best-known solutions.

Algorithm N Mean StDev SE Mean

PHPSO 120 795,657 1,746,744 159,455
HPSO-2014 120 853,494 1,820,273 166,167
Difference 120 −57,837.6 106,077.3 9683.5

95% CI for mean difference: (−77,011.8, −38,663.3); t-test of mean difference = 0 (vs. not = 0): t-value = −5.97,
p-Value = 0.000.

Table 9. Paired t-test for H0 = PHPSO = Pan-Ruiz vs. H1 = PHPSO 6= Pan-Ruiz on the best-known solutions.

Algorithm N Mean StDev SE Mean

PHPSO 120 795,657 1,746,744 159,455
Pan+Ruiz-2012 120 854,696 1,823,535 166,465

Difference 120 −59,039.3 109,396.3 9986.5

95% CI for mean difference: (−78, 813.5, −39,265.1); t-test of mean difference = 0 (vs. not = 0): t-value = −5.91,
p-Value = 0.000.

Algorithms 2017, 10, 121 12 of 17

Algorithms 2017, 10, 121 12 of 18

considered by closely examining all existing results. They are applied to these 120 benchmark

instances ranging from ta001 to ta120 (i.e., for 20–500 jobs).

Table 10 shows that the proposed algorithm improves 103 out of 120 instances of the Taillard

dataset. This shows that the optimal results obtained by the PHPSO are better than values obtained

by various metaheuristics to date, exhibiting the effective searching quality of PHPSO.

Compared with the results by the F & V and DPSO methods, PHPSO could improve the results to

a great extent, which demonstrates the noteworthy improvement by PHPSO over F & V and DPSOVND

metaheuristics. Values obtained by PHPSO are better than those obtained by HPSO for almost all of

the instances. So, it is concluded that our proposed NEH- and SA-based local search methods,

especially their utilizations in a hybrid sense, are more effective than the variable neighborhood-based

[9] and MA-based local search methods [31], especially for large-sized problems.

9
5

 %

C
 I

 f
o

r
 t

h
e

 M
e

a
n

PHPSOHPSOPAN-RuizDPSOF&V

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1. Means and 95% confidence intervals for different algorithms for ta001 to ta110.

9
5

 %
 C

 I
 f

o
r
 t

h
e

 M
e

a
n

PHPSOHPSOPAN-Ruiz

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 2. Means and 95% confidence intervals for different algorithms for ta001 to ta120.

Figure 1. Means and 95% confidence intervals for different algorithms for ta001 to ta110.

Algorithms 2017, 10, 121 12 of 18

considered by closely examining all existing results. They are applied to these 120 benchmark

instances ranging from ta001 to ta120 (i.e., for 20–500 jobs).

Table 10 shows that the proposed algorithm improves 103 out of 120 instances of the Taillard

dataset. This shows that the optimal results obtained by the PHPSO are better than values obtained

by various metaheuristics to date, exhibiting the effective searching quality of PHPSO.

Compared with the results by the F & V and DPSO methods, PHPSO could improve the results to

a great extent, which demonstrates the noteworthy improvement by PHPSO over F & V and DPSOVND

metaheuristics. Values obtained by PHPSO are better than those obtained by HPSO for almost all of

the instances. So, it is concluded that our proposed NEH- and SA-based local search methods,

especially their utilizations in a hybrid sense, are more effective than the variable neighborhood-based

[9] and MA-based local search methods [31], especially for large-sized problems.

9
5

 %

C
 I

 f
o

r
 t

h
e

 M
e

a
n

PHPSOHPSOPAN-RuizDPSOF&V

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1. Means and 95% confidence intervals for different algorithms for ta001 to ta110.

9
5

 %
 C

 I
 f

o
r
 t

h
e

 M
e

a
n

PHPSOHPSOPAN-Ruiz

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 2. Means and 95% confidence intervals for different algorithms for ta001 to ta120. Figure 2. Means and 95% confidence intervals for different algorithms for ta001 to ta120.

5.3. Comparison of Proposed Hybrid PSO(PHPSO) with Fink and Vob, DPSOVND, Pan-Ruiz, and HPSO

We report the best-known solutions termed as objective function values found so far for NWFSSP
with TFT criterion for Taillard’s benchmark suite in Table 10. First, we carried out a simulation for
the effectiveness of the PHPSO algorithm, and later, we compared our PHPSO with four existing
metaheuristics viz. HPSO, which is an MA-based PSO by Akhshabi [31]; PRA, which is a local
search-based algorithm by Pan and Ruiz [10]; the hybrid PSO based on the variable neighborhood
search (DPSO) by Pan et al. [8]; and the F&V algorithm by Fink and Vob [3]. The best solution for each
of the 120 Taillard dataset available in Operation Research (OR) library [32] was considered by closely
examining all existing results. They are applied to these 120 benchmark instances ranging from ta001
to ta120 (i.e., for 20–500 jobs).

Algorithms 2017, 10, 121 13 of 17

Table 10. New objective function values for Taillard’s benchmarks treated as NWFSS with TFT criterion.

Instance F&V DPSO Pan+Ruiz HPSO PHPSO Instance F&V DPSO Pan+Ruiz HPSO PHPSO

ta001 15,674 15,674 14,033 14,033 10,841 ta061 308,052 303,750 253,266 253,266 232,745
ta002 17,250 17,250 15,151 15,151 11,386 ta062 302,386 297,672 242,281 242,281 224,780
ta003 15,821 15,821 13,301 13,301 12,168 ta063 295,239 291,782 237,832 237,832 220,164
ta004 17,970 17,970 15,447 15,447 11,438 ta064 278,811 277,093 227,738 227,738 204,798
ta005 15,317 15,317 13,529 13,529 10,204 ta065 292,757 289,554 240,301 240,301 232,933
ta006 15,501 15,501 13,123 13,123 11,505 ta066 290,819 287,055 232,342 232,342 232,342
ta007 15,693 15,693 13,548 13,548 13,548 ta067 300,068 297,731 240,366 240,366 212,821
ta008 15,955 15,955 13,948 13,948 11,394 ta068 291,859 287,754 230,945 230,945 230,945
ta009 16,385 16,385 14,295 14,298 12,010 ta069 307,650 304,131 247,921 247,921 241,266
ta010 15,329 15,329 12,943 12,943 12,943 ta070 301,942 298,119 242,933 242,933 242,933
ta011 25,205 25,205 20,911 20,911 17,395 ta071 412,700 409,715 298,385 298,358 259,015
ta012 26,342 26,342 22,440 22,440 20,603 ta072 394,562 390,417 274,384 274,384 233,285
ta013 22,910 22,910 19,833 19,833 15,300 ta073 405,878 402,274 288,114 288,114 249,201
ta014 22,243 22,243 18,710 18,710 14,883 ta074 422,301 417,733 301,044 301,044 263,386
ta015 23,150 23,150 18,641 18,641 16,146 ta075 400,175 397,049 284,681 284,681 230,167
ta016 22,011 22,011 19,245 19,245 17,899 ta076 391,359 387,398 269,686 269,686 250,354
ta017 21,939 21,939 18,363 18,363 17,667 ta077 394,179 391,057 279,463 279,463 271,318
ta018 24,158 24,158 20,241 20,241 19,447 ta078 402,025 399,214 290,908 290,908 230,425
ta019 23,501 23,501 20,330 20,330 20,059 ta079 416,833 413,701 301,970 301,970 250,337
ta020 24,597 24,597 21,320 21,320 21,254 ta080 410,372 406,206 291,283 291,283 254,082
ta021 38,597 38,597 33,623 33,623 29,656 ta081 562,150 558,199 365,463 365,463 245,683
ta022 37,571 37,571 31,587 31,587 29,199 ta082 563,923 561,305 372,449 372,449 263,582
ta023 38,312 38,312 33,920 33,920 30,158 ta083 562,404 560,530 370,027 370,027 248,834
ta024 38,802 38,802 31,661 31,661 31,343 ta084 562,918 559,690 372,393 372,393 239,313
ta025 39,012 39,012 34,557 34,557 29,551 ta085 556,311 551,388 368,915 368,915 272,137
ta026 38,562 38,562 32,564 32,564 29,790 ta086 562,253 558,356 370,908 370,908 258,445
ta027 39,663 39,663 32,922 32,922 25,506 ta087 574,102 571,680 373,408 373,408 255,264
ta028 37,000 37,000 32,412 32,412 28,929 ta088 578,119 574,269 384,525 384,525 384,525
ta029 39,228 39,228 33,600 33,600 29,647 ta089 564,803 560,710 374,423 374,423 270,858
ta030 37,931 37,931 32,262 32,262 29,314 ta090 522,798 568,927 379,296 379,296 379,296
ta031 76,016 75,682 64,802 64,802 49,655 ta091 1,521,201 1,495,730 1,046,314 1,046,314 949,025
ta032 83,403 82,874 68,051 68,051 59,984 ta092 1,516,009 1,476,863 1,034,195 1,034,195 1,034,195

Algorithms 2017, 10, 121 14 of 17

Table 10. Cont.

Instance F&V DPSO Pan+Ruiz HPSO PHPSO Instance F&V DPSO Pan+Ruiz HPSO PHPSO

ta033 78,282 78,103 63,162 63,162 57,420 ta093 1,515,535 1,493,502 1,046,902 1,046,902 1,046,902
ta034 82,737 82,467 68,226 68,226 60,470 ta094 1,489,457 1,462,300 1,030,481 1,030,481 997,214
ta035 83,901 83,493 69,351 69,351 58,590 ta095 1,513,281 1,483,894 1,034,027 1,034,027 1,034,027
ta036 80,924 80,749 66,841 66,841 57,620 ta096 1,508,331 1,474,000 1,006,195 1,006,195 1,006,195
ta037 78,791 78,604 66,253 66,253 58,893 ta097 1,541,419 1,512,861 1,053,051 1,053,051 1,053,051
ta038 79,007 78,796 64,332 64,332 56,646 ta098 1,533,397 1,498,330 1,044,875 1,044,875 983,816
ta039 75,842 75,825 62,981 62,981 54,424 ta099 1,507,422 1,481,283 1,026,137 1,026,137 962,641
ta040 83,829 83,430 68,770 68,770 57,533 ta100 1,520,800 1,489,218 1,030,299 1,030,299 955,843
ta041 114,398 114,051 87,114 87,114 87,114 ta101 2,012,785 1,988,772 1,227,733 1,227,733 949,025
ta042 112,725 112,427 82,820 82,820 82,820 ta102 2,057,409 2,025,561 1,245,271 1,245,271 1,245,271
ta043 105,433 105,345 79,931 79,931 64,446 ta103 2,050,169 2,017,216 1,269,673 1,254,162 1,254,162
ta044 113,540 113,367 86,446 86,446 68,770 ta104 2,040,946 2,010,121 1,238,349 1,238,349 1,238,349
ta045 115,441 115,295 86,377 86,377 62,523 ta105 2,027,138 2,009,299 1,227,214 1,227,214 1,227,214
ta046 112,645 112,459 86,587 86,587 62,005 ta106 2,046,542 2,017,240 1,227,604 1,227,604 976,118
ta047 116,560 116,631 88,750 88,750 88,750 ta107 2,045,906 2,018,945 1,243,707 1,243,707 1,243,707
ta048 115,056 115,065 86,727 86,727 67,669 ta108 2,044,218 2,028,861 1,246,123 1,235,460 983,816
ta049 110,482 110,367 85,441 85,441 67,144 ta109 2,037,040 2,007,678 1,234,936 1,234,936 962,641
ta050 113,462 113,427 87,998 87,998 61,460 ta110 2,046,966 2,020,806 1,250,596 1,250,596 955,843
ta051 172,845 172,981 125,831 125,831 62,857 ta111 – – 6,698,656 6,698,656 6,263,859
ta052 161,092 160,836 119,247 119,247 117,137 ta112 – – 6,770,735 6,723,548 6,413,646
ta053 160,213 160,104 116,459 116,459 101,810 ta113 – – 6,739,645 6,739,645 6,437,528
ta054 161,557 161,690 120,261 120,261 100,074 ta114 – – 6,785,991 6,743,598 6,432,538
ta055 167,640 167,336 118,184 118,184 114,468 ta115 – – 6,729,468 6,729,468 6,312,830
ta056 161,784 161,784 120,586 120,586 103,248 ta116 – – 6,724,085 6,724,085 6,361,035
ta057 167,233 167,064 122,880 122,880 122,880 ta117 – – 6,691,468 6,691,468 6,539,854
ta058 168,100 167,822 122,489 122,489 119,449 ta118 – – 6,783,916 6,755,489 6,126,127
ta059 165,292 165,207 121,872 121,872 111,571 ta119 – – 6,711,305 6,711,305 6,711,305
ta060 168,386 168,386 123,954 123,954 120,849 ta120 – – 6,755,722 6,755,722 6,755,722

Bold values indicate improvement over existing metaheuristics.

Algorithms 2017, 10, 121 15 of 17

Table 10 shows that the proposed algorithm improves 103 out of 120 instances of the Taillard
dataset. This shows that the optimal results obtained by the PHPSO are better than values obtained by
various metaheuristics to date, exhibiting the effective searching quality of PHPSO.

Compared with the results by the F & V and DPSO methods, PHPSO could improve the results to
a great extent, which demonstrates the noteworthy improvement by PHPSO over F & V and DPSOVND

metaheuristics. Values obtained by PHPSO are better than those obtained by HPSO for almost all of the
instances. So, it is concluded that our proposed NEH- and SA-based local search methods, especially
their utilizations in a hybrid sense, are more effective than the variable neighborhood-based [9] and
MA-based local search methods [31], especially for large-sized problems.

6. Conclusions and Future Research

In this paper, we proposed a hybridization of PSO with SA for flow shop scheduling with a
no-wait constraint. The PHPSO algorithm not only applies an evolutionary search guided by the
mechanism of PSO, but also it applies a local search guided by the NEH-based initial population and
the mechanism of SA. Thus, both global exploration and local exploitation are balanced. The results
and comparisons of the simulation demonstrate the supremacy of PHPSO in terms of searching quality
and robustness of solution.

The effectiveness of the proposed method was measured by using ARPD, which is a widely used
performance measure. We carried out an extensive experimental and statistical analysis and found
that PHPSO has improved objective function values for 103 out of the 120 best-known solutions for
Taillard’s benchmark suite. After comparing the solutions obtained through PHPSO with the solutions
provided by other algorithms reported in the literature (viz. HPSO, Pan-Ruiz, DPSO, F & V algorithms),
it is clearly seen that the PHPSO algorithm outperforms the existing algorithms. Hence, to the best of
our knowledge, it is concluded that the PHPSO algorithm is the improved hybrid algorithm for the
application of PSO to NWFSSP with a TFT criterion.

Author Contributions: Laxmi A. Bewoor has designed and developed the algorithm under the supervision
and guidance of Sagar U. Sapkal and V. Chandra Prakash. They explored the applicability of this algorithm to
manufacturing scheduling problem in general and no wait flow shop in particular. Accordingly, Laxmi A. Bewoor
has tested the algorithm and obtained the results which are incorporated in this paper. All of them contributed for
writing this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pinedo, M. Scheduling: Theory, Algorithms and Systems, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA,
2002.

2. Wang, L.; Zheng, D.Z. An effective hybrid heuristic for flow shop scheduling. Int. J. Adv. Manuf. Technol.
2003, 21, 38–44.

3. Fink, A.; Vob, S. Solving the continuous flow-shop scheduling problem by metaheuristics. Eur. J. Oper. Res.
2003, 151, 400–414. [CrossRef]

4. Rajendran, C. A no-wait flowshop scheduling heuristic to minimize makespan. J. Oper. Res. Soc. 1994, 45,
472–478. [CrossRef]

5. Grabowski, J.; Pempera, J. Sequencing of jobs in some production system. Eur. J. Oper. Res. 2000, 125,
535–550. [CrossRef]

6. Raaymakers, W.; Hoogeveen, J. Scheduling multipurpose batch process industries with no-wait restrictions
by simulated annealing. Eur. J. Oper. Res. 2000, 12, 6131–6151. [CrossRef]

7. Tseng, L.; Lin, Y. A genetic local search algorithm for minimizing total flow time in the permutation flowshop
scheduling problem. Int. J. Prod. Econom. 2010, 127, 121–128. [CrossRef]

8. Allahverdi, A. A survey of scheduling problems with no-wait in process. Eur. J. Oper. Res. 2016, 255, 665–686.
[CrossRef]

9. Pan, Q.; Tasgetiren, F.; Liang, Y. A discrete particle swarm optimization algorithm for the no-wait flowshop
scheduling problem. Comput. Oper. Res. 2008, 35, 2807–2839. [CrossRef]

http://dx.doi.org/10.1016/S0377-2217(02)00834-2
http://dx.doi.org/10.1057/jors.1994.65
http://dx.doi.org/10.1016/S0377-2217(99)00224-6
http://dx.doi.org/10.1016/S0377-2217(99)00285-4
http://dx.doi.org/10.1016/j.ijpe.2010.05.003
http://dx.doi.org/10.1016/j.ejor.2016.05.036
http://dx.doi.org/10.1016/j.cor.2006.12.030

Algorithms 2017, 10, 121 16 of 17

10. Pan, Q.; Ruiz, R. Local search methods for the flowshop scheduling problem with flowtime minimization.
Eur. J. Oper. Res. 2012, 222, 31–43. [CrossRef]

11. Rock, H. The three-machine no-wait flow shop is NP-complete. J. ACM 1984, 31, 336–345. [CrossRef]
12. Garey, M.; Johnson, D. Computers and Intractability, a Guide to the Theory of NP-Completeness, 4th ed.; Freeman:

New York, NY, USA, 1979.
13. Graham, R. Optimization and approximation in deterministic sequencing and scheduling.

Ann. Discret. Math. 1979, 5, 287–326.
14. Rajendran, C. A heuristic for scheduling in flowshop and flowline-based manufacturing cell with

multicriteria. Int. J. Prod. Res. 1994, 32, 2541–2558. [CrossRef]
15. Bertolissi, E. Heuristic algorithm for scheduling in the no-wait flow-shop. J. Mater. Process. Technol. 2000, 107,

459–465. [CrossRef]
16. Aldowaisan, T.; Allahverdi, A. New heuristics for m -machine no-wait flowshop to minimize total completion

time. Int. J. Manag. Sci. 2004, 32, 345–352. [CrossRef]
17. Sapkal, S.; Laha, D. A heuristic for no-wait flow shop scheduling. Int. J. Adv. Manuf. Technol. 2013, 68,

1327–1338. [CrossRef]
18. Tasgetiren, M.; Pan, Q.; Kizilay, D.; Gao, K. A variable block insertion heuristic for the blocking flowshop

scheduling problem with total flowtime criterion. Algorithms 2016, 9, 71. [CrossRef]
19. Liu, J.; Reeves, C. Constructive and composite heuristic solutions to the P//∑Ci scheduling problem. Eur. J.

Oper. Res. 2001, 132, 439–452. [CrossRef]
20. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison.

Appl. Soft Comput. J. 2003, 35, 268–308. [CrossRef]
21. Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey.

Appl. Soft Comput. J. 2011, 11, 4135–4151. [CrossRef]
22. Gao, K.; Pan, Q.; Li, J.; Wang, Y.; Liang, J. A hybrid harmony search algorithm for the no-wait flow-shop

scheduling problems. Asia-Pac. J. Oper. Res. 2012, 29, 12500–12512. [CrossRef]
23. Nawaz, M.; Enscore, E., Jr.; Ham, I. A Heuristic Algorithm for the m-Machine, n-Job Flow-shop Sequencing

Problem. Int. J. Manag. Sci. 1983, 11, 91–95. [CrossRef]
24. Gao, K.; Suganthan, P.; Chua, T. An enhanced migrating birds optimization algorithm for no-wait flow shop

scheduling problem. In Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling,
Singapore, 16–19 April 2013; pp. 9–13.

25. Filho, G.; Nagano, M.; Lorena, L. Hybrid Evolutionary Algorithm for Flowtime Minimization in No-Wait Flowshop
Scheduling; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2007; Volume 4827, pp. 1099–1109.

26. Zhang, Y.; Li, X.; Wang, Q. Hybrid genetic algorithm for permutation flowshop scheduling problems with
total flowtime minimization. Eur. J. Oper. Res. 2009, 196, 869–876. [CrossRef]

27. Xu, X.; Xu, Z.; Gu, X. An asynchronous genetic local search algorithm for the permutation flowshop
scheduling problem with total flowtime minimization. Expert Syst. Appl. 2011, 38, 7970–7979. [CrossRef]

28. Wang, F.; Rao, Y.; Tang, Q. A hybrid intelligence algorithm for no-wait flow shop scheduling. Adv. Mater. Res.
2013, 712, 2447–2451. [CrossRef]

29. Bewoor, L.; Chandra Prakash, V.; Sapkal, S. Comparative analysis of metaheuristic approaches for m-machine
no-wait flow shop scheduling for minimizing total flow time with stochastic input. Int. J. Eng. Technol. 2016,
8, 3021–3026. [CrossRef]

30. Bewoor, L.; Chandra Prakash, V.; Sapkal, S. Comparative analysis of metaheuristic approaches for makespan
minimization for no-wait flow shop scheduling problem. Int. J. Electr. Comput. Eng. 2017, 7, 31–37. [CrossRef]

31. Akhshabi, M.; Tavakkoli-Moghaddam, R.; Rahnamay-Roodposhti, F. A hybrid particle swarm optimization
algorithm for a no-wait flow shop scheduling problem with the total flow time. Int. J. Adv. Manuf. Technol.
2014, 70, 1181–1188. [CrossRef]

32. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
33. Vannucci, P. ALE-PSO: An adaptive swarm algorithm to solve design problems of laminates. Algorithms

2009, 2, 710–734. [CrossRef]
34. Eberhard, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995;
pp. 39–43.

http://dx.doi.org/10.1016/j.ejor.2012.04.034
http://dx.doi.org/10.1145/62.65
http://dx.doi.org/10.1080/00207549408957083
http://dx.doi.org/10.1016/S0924-0136(00)00720-2
http://dx.doi.org/10.1016/j.omega.2004.01.004
http://dx.doi.org/10.1007/s00170-013-4924-y
http://dx.doi.org/10.3390/a9040071
http://dx.doi.org/10.1016/S0377-2217(00)00137-5
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1142/S0217595912500121
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/j.ejor.2008.04.033
http://dx.doi.org/10.1016/j.eswa.2010.12.075
http://dx.doi.org/10.4028/www.scientific.net/AMR.712-715.2447
http://dx.doi.org/10.21817/ijet/2016/v8i6/160806265
http://dx.doi.org/10.11591/ijece.v7i1.pp417-423
http://dx.doi.org/10.1007/s00170-013-5351-9
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.3390/a2020710

Algorithms 2017, 10, 121 17 of 17

35. Bean, J. Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 1994, 6,
154–160. [CrossRef]

36. Liu, B.; Wang, L.; Jin, Y.-H. An effective PSO-based memetic algorithm for flowshop scheduling. IEEE Trans.
Syst. Man Cybern. Part B 2007, 37, 18–27. [CrossRef]

37. Jarboui, B.; Ibrahim, S.; Siarry, P.; Rebai, A. A combinatorial particle swarm optimization for solving
permutation flowshop problems. Comput. Ind. Eng. 2008, 54, 526–538. [CrossRef]

38. Khamlichi, Y.; Tahiri, A.; Abtoy, A.; Bulo, I.; Lozano, F. A hybrid algorithm for optimal wireless sensor
network deployment with the minimum number of sensor nodes. Algorithms 2017, 10, 80. [CrossRef]

39. Devore, J. Probability and Statistics for Engineering and the Sciences, 9th ed.; Brooks Cole: Pacific Grove, CA,
USA, 2016.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/ijoc.6.2.154
http://dx.doi.org/10.1109/TSMCB.2006.883272
http://dx.doi.org/10.1016/j.cie.2007.09.006
http://dx.doi.org/10.3390/a10030080
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	No-Wait Flow Shop Scheduling Problem (NWFSSP)
	Proposed Hybrid PSO (PHPSO) for NWFSSP
	Particle Swarm Optimization (PSO)
	Solution Representation
	Population Initialization
	Simulated Annealing(SA)
	Proposed Hybrid PSO (PHPSO) Algorithm

	Numerical Tests and Comparisons
	Experimental Setup
	Computational and Statistical Evaluation
	Comparison of Proposed Hybrid PSO(PHPSO) with Fink and Vob, DPSOVND, Pan-Ruiz, and HPSO

	Conclusions and Future Research

